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Increased expression of heparanase in puromycin aminonucle- Heparan sulfate proteoglycans (HSPGs) are negatively
oside nephrosis. charged glycosaminoglycans (GAGs) covalently linked to

Background. The �-D-endoglycosidase heparanase has been a protein core. They produce most of the negative charge
proposed as an important contributor to loss of glomerular charge

associated with the glomerular basement membranein proteinuria. Expression of heparanase was, therefore, deter-
(GBM) [1]. Besides acting as adhesion molecules on cellmined in acute puromycin aminonucleoside (PAN) nephrosis.

Methods. A rabbit polyclonal antibody was produced against surfaces and in collagen networks, HSPGs also function
a 17-amino acid peptide derived from the predicted amino acid as growth factor, cytokine, and enzyme reservoirs [2].
sequence of heparanase. The antibody was validated by West- Recent evidence suggests that selective GAG side-chain
ern blot. Immunohistochemical staining and Western blotting

degradation occurs in models of proteinuria, resulting inwere used to localize heparanase protein in normal kidneys
a reduction in the anionic charge of the GBM that mayand kidneys from rats with PAN nephrosis. Northern blot anal-
contribute to the development of proteinuria [3, 4]. Fourysis was used to determine mRNA expression.

Results. Immunohistochemical staining showed that hepa- mechanisms have been proposed to explain charge alter-
ranase protein was localized to tubular cells in the distal convo- ation in the GBM: masking by immune complexes [5, 6],
luted tubules, thick ascending limb of the loop of Henle, and depolymerization by oxygen radicals [7, 8], metabolic-transitional cell epithelium in normal kidney. Minimal expres-

ally induced biochemical changes to HS structure [9, 10],sion was noted in normal glomeruli. Western blot analysis of
and degradation by enzymes [11, 12]. Recent evidence sug-protein from isolated normal glomeruli showed minimal ex-

pression of the 65 kD proheparanase protein. A marked in- gests that elastase and cathepsin G bind to anionic HSPGs
crease in the staining for heparanase was found at day 5 of the and contribute to the development of albuminuria [13].
PAN nephrosis model, at approximately the time of onset of Endoglycosidases, such as heparanase, have also been im-
proteinuria, and at day 14. Expression was predominantly seen

plicated in enzymatic GBM degradation [14, 15], al-in podocytes. At day 5, only the 65 kD proheparanase species
though there is little evidence that they are involved.was identified, but at day 14, mature 58 kD heparanase also

Heparanase is liberated as a pre-pro-enzyme that un-was present. Northern blot analysis of sieved glomeruli at day
14 confirmed an increase in heparanase mRNA. The human dergoes post-translational glycosylation (Fig. 1) [16]. Se-
podocyte cell line 56/10A1 also produced both proheparanase cretion of pre-proheparanase requires removal of the
and mature heparanase, suggesting that podocytes can activate prepeptide, leaving a 65 kD precursor form that is proba-
heparanase without other cell types.

bly inactive, at least in humans. Processing to the activeConclusion. The previously mentioned data confirm that the
enzyme occurs through removal of 48 amino acids inter-novel �-D-endoglycosidase heparanase is up-regulated and

activated in glomeruli from rats with proteinuria. Heparanase nally, forming a 58 kD heterodimer, with a noncovalently
may be involved, therefore, in the loss of glomerular charge linked 8 kD N-terminal fragment. This species, often con-
seen in proteinuria. Moreover, the presence of heparanase in sidered to be 50 kD because of loss of the small 8 kD frag-
normal tubules suggests that it may also be involved in cell

ment during purification, is the most active form [16–18].migration or turnover.
Heparanase selectively degrades HSPGs and is expressed
in highly metastatic malignant cells, peripheral T cells,
placental tissue, and lymphoid tissue [19]. Its proposedKey words: proteinuria, cell migration, podocytes, heparan sulfate pro-

teoglycans, albuminuria, vascular basement membrane. action is to promote degradation of the vascular base-
ment membrane, thereby permitting the egress of these
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Fig. 1. Immunizing peptide sequence. Schematic representing the peptide sequence used to generate the rabbit polyclonal anti-heparanase antibody,
228. The 17-amino acid peptide used to generate the antibody is located on the conserved 50 kD protein found in all heparanase species. The se-
quence is analogous to AA 423 to 442 in humans and AA 436 to 453 in rats (adapted from Fairbanks et al, Journal of Biological Chemistry 1999
[16]).

the GBM [3]. These studies are, to our knowledge, the Aldrich). The antiserum was tested by enzyme-linked
first to describe the distribution of heparanase in normal immunosorbent assay (ELISA) using the purified pep-
and abnormal kidney. tide as the antigen. Optical density readings of �0.30 at

492 nm were achieved in all three rabbits, at a dilution of
1 in 800, compared with preimmune serum control valuesMETHODS
�0.01. The preimmune and immune sera were incubated

Induction of puromycin aminonucleoside nephrosis
at 56�C for 45 minutes to inactivate complement.

Normal rats were obtained from the Animal Resources
Center (Western Australia, Australia). PAN was induced Immunohistochemical staining
in 150 to 200 g Sprague-Dawley rats (N � 6 per group) Eight-week-old Sprague-Dawley rats were sacrificed
by a single intraperitoneal injection of 15 mg/100 g puro- by lethal Nembutal anesthesia. Kidney tissue was har-
mycin aminonucleoside (Sigma-Aldrich, Milwaukee, WI, vested, immersion fixed in 4% paraformaldehyde, and
USA). Rats were housed in metabolic cages for 24 hours then processed and embedded in paraffin; 4-�m thick sec-
to collect urine prior to induction of disease and at days tions were cut, dewaxed, and microwaved in 10 mmol/L
5 and 14 following disease induction. Urinary protein citrate buffer, pH 6, for seven minutes. Sections were
concentrations were determined using the Bradford calo- cooled and washed in phosphate-buffered saline (PBS)
rimetric method (Bio-Rad Lab., Hercules, CA, USA). for five minutes. Endogenous hydrogen peroxidases were
Rats were sacrificed at days 5 and 14 of disease. Kidney inactivated using 3% H2O2 in methanol for 10 minutes.
tissue was fixed in 4% paraformaldehyde and then pro-

Sections were washed in PBS three times for three min-cessed and embedded in paraffin for immunohistochem-
utes per wash. Goat serum was used as a blocking agentistry. All experiments were approved by the Animal Ethics
for 30 minutes, and then the preimmune or immuneCommittee (St. Vincent’s Hospital, Melbourne, Australia).
serum was added at a concentration of 1:500 in 10%
goat and 10% rat serum. The sections were incubatedPolyclonal antibody generation
overnight at 4�C. Sections were then washed three timesRabbit anti-heparanase antibodies were generated by
for three minutes in PBS. Goat anti-rabbit antibodyimmunizing three female New Zealand White rabbits with
(Dako, Carpinteria, CA, USA) diluted 1:100 with 10%a synthetic 17-amino acid peptide, RQVFFGAGNYHL
goat and 10% rat serum was incubated on sections forVDENF (Fig. 1; Auspep Pty. Ltd, Parkville, Melbourne,
30 minutes at room temperature. Sections were washedAustralia). The peptide sequence chosen was identical
three times in PBS for three minutes. Rabbit PAPto residues 382 to 398 of heparanase in humans and 375 to
(DAKO) diluted 1:100 with 10% goat and 10% rat serum391 in rats (Accession Numbers NM_006665 and AF18-
was then added, and the sections incubated for 30 min-94967, respectively; GenBank Data Base). The peptide
utes at room temperature. Sections were washed and de-was purified to �97% and coupled to keyhole limpet
veloped with diaminobenzidene (DAB; Dako) and coun-hemocyanin (KLH). Each rabbit was immunized with
terstained with hematoxylin. To validate the specificity250 �g of conjugated peptide in complete Freund’s adju-
of antibody staining, the immune serum was incubated,vant (Sigma-Aldrich). A further three immunizations were

performed using Incomplete Freund’s adjuvant (Sigma- with and without the immunizing non-coupled peptide for
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30 minutes at 37�C. An irrelevant peptide also was incu- 63 �mol/L). Tissue trapped by the 63 �mol/L sieve was
washed with chilled MT-PBS and centrifuged at 4�C atbated with the antibody as a control. Distal convoluted

tubules and collecting ducts were stained using the FITC- 1560 � g for five minutes. The pellet was resuspended
in PBS and examined under phase contrast microscopy.conjugated lectin Arachis hypogenaea (PNA; Sigma-

Aldrich) at 0.01 mg/mL. Lectin binding was detected us- The preparation contained �95% glomeruli with mini-
mal tubular contamination. A modification of the meth-ing anti-Fluorescence–POD Fab fragments (Boehringer

Mannheim, Mannheim, Germany) diluted 1:100 in PBS for ods of Hjelmeland and Chrambach [21] and Egerton et
al [22] was used to isolate cytoplasmic protein. All buffers25 minutes. Sections were washed in PBS, developed with

DAB (Dako), and lightly counterstained. Proximal tubules were supplemented with the protease inhibitors 1 mmol/L
phenylmethylsulfonyl fluoride (PMSF; Pierce, IL, USA),were stained using the FITC-conjugated lectin Phasseolus

Vulgaris (PHA-E; Sigma-Aldrich) at 0.01 mg/mL. Lectin 1 �mol/L leupeptin (Sigma-Aldrich) and 0.2 �mol/L
aprotonin (ICN Biochemicals). The washed glomerularbinding was detected using anti-fluorescence-POD Fab

fragments (Boehringer Mannheim) diluted 1:300 in PBS pellets were resuspended in buffer containing 50 mmol/L
Tris-HCl, pH 7.4, 150 mmol/L NaCl, 5 mmol/L ethylene-for 30 minutes. Sections were washed, developed with

DAB (Dako), and lightly counterstained. Tubular cells diaminetetraacetic acid (EDTA) and homogenized using
a pro200 homogenizer (Proscientific Inc., Monroe, CT,of the thick ascending limb of the loop of Henle (TAL)

were stained with anti-Tamm-Horsfall antibody (ICN, USA). Thereafter, the homogenates were centrifuged at
7000 � g for five minutes at 4�C, and the nuclear pelletCA, USA). Sections were trypsin (1 mg/mL) digested at

room temperature for 30 minutes and blocked for one was discarded. Supernatants were then centrifuged at
100,000 � g for 60 minutes in an ultracentrifuge to obtainhour with Casblock (Zymed, South San Francisco, CA,

USA). Anti-Tamm-Horsfall antibody at 1:100 was incu- cytoplasm-rich samples.
bated on sections for one hour. Sections were washed and

Glomerular epithelial cell lysatesHRP-conjugated rabbit anti-goat antibody (Sileneus) at
1:100 was incubated on sections for 20 minutes. Sections The immortalized human visceral glomerular epithe-

lial cell line 56/10A1 [23], a generous gift from Professorwere washed, developed with DAB (Dako), and coun-
terstained. Goat IgG was used as a negative control. J.D. Sraer, was grown to confluence in 150 cm2 flasks.

The cells were washed with isotonic normal saline.To identify podocytes in sequential sections, a rabbit
polyclonal antibody against WT-1 (Santa Cruz, Biotech- Whole cell lysis buffer (25 mmol/L HEPES, 0.3 mmol/L

NaCl, 1.5 mmol/L MgCl2, 0.2 mmol/L EDTA, 0.5% Tritonnology, Santa Cruz, CA, USA) was used. Sections were
dewaxed and microwaved in 10 mmol/L citrate buffer, X-100) was supplemented with 1 mmol/L PMSF (Pierce),

1 �mol/L leupeptin (Sigma-Aldrich), 0.2 �mol/L apro-pH 6, for 25 minutes. Sections were then treated with
3% H2O2 in PBS for 10 minutes and blocked with pig tonin (ICN), and 1 mmol/L dithiothreitol (DTT; Pierce).

Lysates were centrifuged at 15,000 � g for five minutesserum for 60 minutes. Rabbit anti–WT-1 antibody, di-
luted 1:200, was incubated on sections overnight at 4�C. at 4�C, and supernatants were stored at �70�C.
Rabbit IgG (Dako) was used as a control. Antibody

Western blot analysisbinding was detected using the Dako LSAB kit according
to the manufacturer’s instructions (Dako). Sections were Reducing sample buffer (10% SDS, 40% glycerol,

1 mol/L Tris-HCl, pH 6.8, 1 mol/L DTT, 1% bromophe-developed with DAB and counterstained.
nol blue) was added to each sample, ensuring that the

Isolation of rat leukocytes end sample concentration was 1:3. Protein samples were
boiled for five minutes and loaded onto a 10% resolvingTo obtain leukocytes as a source of heparanase, fresh

whole rat blood was decanted into a citrated collection gel. Gels were run at a constant 30 amps. Thereafter, gels
were transferred onto nitrocellulose membranes (Bio-tube; 0.9% NH4CL was added to the blood to yield an

end concentration of 20% blood. The collection tube was Rad). All membranes were stained with Ponceau red to
ensure even protein loading and blocked with 5% skimheated at 37�C to induce erythrolysis. The suspension was

centrifuged at 300 � g for five minutes at 4�C, and the pel- milk powder in TBS for one hour. Anti-heparanase anti-
body was added to 5% skim milk powder at a dilution oflet was washed three times in chilled PBS and recentri-

fuged. The remaining pellet was fawn in color, reflecting 1:2000. Preimmune serum was used as a control. The mem-
branes were incubated in primary antibody overnight atcomplete erythrolysis. Thereafter, the white-cell pellet

was used as a positive control in Western blot analysis. 4�C on a rocking platform. The membranes were washed
two times with TBS/0.05% Tween for seven minutes and

Isolation of glomerular cytosolic protein incubated in swine anti-rabbit HRP (Dako) diluted in
5% skim milk at a concentration of 1:2000 for 30 minutes.Control and diseased rats were anesthetized with intra-

peritoneal Nembutal. Kidneys were harvested, decapsu- The membranes were washed three times in TBS/0.05%
Tween for five minutes. After the final wash the mem-lated, and macerated through three sieves (150, 106, and
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brane was dabbed dry using Whatmans’ absorbant paper
and developed using Pierces’ SuperSignal Chemilumi-
nescent Substrate system (Pierce) according to the manu-
facturers’ instructions. After five minutes immersion in the
substrate mixture, membranes were dried on Whatman’s
paper, wrapped in transparent plastic wrap, and exposed
to Kodak Biomax film (Kodak, Rochester, NY, USA).

Northern blot analysis

A rat cDNA template was made from rat white blood
cell RNA. RNA was extracted using Trizol Reagent
(GIBCO BRL, Grand Island, NY, USA) according to
the manufacturer’s instructions. Briefly, 1 �L of total
mRNA was resuspended in 10 �L DEPC-treated MQ
water and heated at 65�C for five minutes, and then
cooled; 1 �L 500 �g/mL OligodT (Promega), 6 �L of
5 � AMVRT buffer, 0.6 �L of 10 �L 10 mmol/L dNTPs,

Fig. 2. Validation of the anti-heparanase antibody using Western blot1 �L Random primer, 1 �L RNAsin, 1 �L AMVRT9Av- analysis. Whole white blood cell/platelet lysates generated from rat blood
ian Myeloblastosis Virus Reverse Transcriptase (GIBCO revealed a 58 kD band when probed with anti-heparanase antibody. No

band was observed when membranes were incubated with the pre-BRL) and 9.4 �L of DEPC-treated MQ water were
immune serum (228, immune serum; C, control preimmune serum).added to the tube. The reaction was incubated at 42�C

for 90 minutes. Using primers derived from the known
rat heparanase sequence (GenBank accession number
AF184967) corresponding to positions 179 to 200 and Unincorporated label was removed using the Magic PCR

DNA Purification System (Promega).636 to 613, the cDNA template was PCR amplified. The
PCR reaction comprised 1 �L of forward primer and 1 Glomeruli sourced using differential sieving from nor-

mal animals and at day 14 of disease were used to prepare�L of reverse primer, 5 �L of 10 � Taq buffer, 1 �L of
10 mmol dNTPS, 0.5 Taq polymerase, 3 �L of cDNA total RNA; 1 mL of Trizol Reagent (GIBCO BRL) was

added to the washed glomerular pellets, and RNA was ex-and 38.5 �L of sterile MQ water. All reagents used were
purchased from Promega. A DNA engine (MJ Research, tracted according to the manufacturer’s instructions. Glo-

merular RNA and RNA molecular standards (GIBCO)Watertown, MA, USA) was used for polymerase chain
reaction (PCR). Conditions used were cycle 1 at 94�C were separated electrophoretically on a 1% agarose RNA

gel at 80 V. Following electrophoresis, gels were washedfor 2 minutes, cycle 2 at 55�C 30 seconds, cycle 3 at 72�C
for 1.5 minutes, cycle 4 at 94�C for 30 seconds, cycle 5 in MQ water, visualized using an ultraviolet transillumi-

nator and transferred to GeneScreen Plus Nylon Mem-at 57.5�C for 30 seconds, and cycle 6 at 72�C for 1.5
minutes. Cycles 4, 5, and 6 were repeated eight times. branes (NEN) overnight by capillary action. Membranes

were rinsed and RNA cross-linked using a StratalinkerCycle 8 at 94�C for 10 minutes, cycle 9 at 57.5�C for 10
minutes, and cycle 10 at 72�C for 1.5 minutes. Cycles 8, (Stratagene, La Jolla, CA, USA).

Membranes were hybridized using Rapid-Hyb Buffer9, and 10 were repeated 24 times. Cycle 12 was done at
72�C for 5 minutes and cycle 13 at 4�C, indicating that (Amersham) according to the manufacturer’s instruc-

tions. After hybridization, the membranes were washedthe PCR reaction was complete. The cDNA fragment
was separated on a 2% agarose gel. The resulting 458 prior to exposure to autoradiographic film (Kodak). Films

were subsequently developed.bp cDNA fragment was ligated into the multiple cloning
site of the pGEM-T plasmid vector (Promega, Madison,
WI, USA), and XL-1 Blue Escherichia coli cells were

RESULTS
transformed. Both strands of the insert were sequenced

Validation of the anti-heparanase antibody 228over their full length using purified plasmid and found to
by Western blotbe identical to the published sequence of rat heparanase.

The rat heparanase cDNA insert was excised from the Western blot analysis was used to ensure that the se-
rum generated detected a band of the expected size. Pre-vector using EcoR1 (Promega). A mouse glyceraldehydes-

3-phosphate dehydrogenase (GAPDH) insert that cross- immune serum was used as a control. A band of 58 kD
was detected in rat leukocytes and platelets using thereacts with rat GAPDH was used as a housekeeping

gene. All purified cDNAs were labeled using the Mega- immune serum but not with the pre-immune serum con-
trol (Fig. 2). This is consistent with the known size ofprime Labeling System (Amersham, Arlington Heights,

IL, USA) according to the manufacturer’s instructions. heparanase [16].



Levidiotis et al: Heparanase in glomerulonephritis 1291

Fig. 3. Immunohistochemical validation of the anti-heparanase antibody. (A) The preimmune serum (negative control) showed no staining. (B)
The rabbit polyclonal antibody, 228, showed no staining when incubated with the immunizing uncoupled peptide. (C ) In contrast, the polyclonal
antibody stained glomeruli minimally and cortical tubules, strikingly. (D) Staining with the polyclonal serum was unaffected by incubation with
an irrelevant peptide. All magnifications are �128.

Distribution of heparanase protein in normal epithelium of the ureter (Fig. 4G) were strongly stained.
rat kidney Sequential staining with the lectin PNA showed that

the cortical tubular staining was restricted to the distalTo verify the specificity of staining with 228, the pre-
convoluted tubules and cortical collecting ducts (Fig. 5immune serum was used as a control (Fig. 3A). This was
A and B). The medullary collecting ducts contained he-compared with the staining obtained using the immune
paranase when sequentially stained with PNA (data notserum (Fig. 3C). The staining pattern of the immune
shown). Tubular cells of the thick ascending limb alsoserum was completely removed by the immunizing pep-
expressed heparanase (Fig. 5 C and D) unlike the proxi-tide (Fig. 3B) and remained unaffected by an irrelevant
mal tubular cells stained with the lectin PHA-E (Fig. 5peptide (Fig. 3D).
E and F).The anti-heparanase antibody 228 stained normal en-

dothelium in small arteries (Fig. 4F), but not the capillary
Expression of heparanase in puromycinendothelium. Cortical staining was limited to tubules and
aminonucleoside nephrosisminimal staining was present in glomeruli (Fig. 4 A and

Normal rats excreted less than 1 mg/24 h of protein.D, and 6A). A distinct junction was evident marking the
Rats at day 5 and 14 after induction of PAN nephrosisinner and outer medulla (Fig. 4 B and C). The tubules

located in the inner medulla (Fig. 4E) and the transitional excreted 181 	 23 and 235 	 68 mg/24 h of protein, re-
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Fig. 6. Immunohistochemical expression of he-
paranase in glomerular disease. (A) Normal
glomeruli contain minimal heparanase pro-
tein. (B and C ) In contrast, glomeruli at days
5 (B) and 14 (C) of PAN nephrosis abundantly
express heparanase. The distribution is pre-
dominantly glomerular epithelial as shown by
the sequential sections C and D, staining for
heparanase and GECs with WT-1 antibody,
respectively. All magnifications are �128.
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Fig. 5. Tubular localization of heparanase. (A
and B) Sequential sections, stained with 228
and the lectin PNA, respectively. (C and D)
Sequential stained sections, stained with 228
and anti-Tamm-Horsfall antibody, respectiv-
ely. Arrows demonstrate the identical staining
patterns in each instance. (E and F ) Sequen-
tial sections, stained with 228 and the lectin
PHA-E, respectively. The arrows and stars
exemplify the staining mismatch. All magnifi-
cations are �28.

spectively. Heparanase protein was minimally expressed day 14 alone (Fig. 7B). The 65 kD band was more abun-
in normal rat glomeruli (Fig. 6A). At days 5 and 14 of dant in diseased glomeruli. The transformed and acti-
PAN nephrosis, there was increased staining for he- vated GEC line 56/10A1 [23] contained two species of
paranase in glomeruli (Fig. 6 B and C, respectively). heparanase, running at 65 and 58 kD (Fig. 7C).
Sequential staining performed using the anti-WT1 anti-
body, a podocyte marker, revealed colocalization with Northern blot analysis
cells staining for heparanase (Fig. 6D).

Diseased glomeruli at day 14 contained an abundance
of the 2.0 kb message, in contrast to normal glomeruliWestern blot analysis
(Fig. 8). This species of mRNA is typically found inGlomeruli obtained from normal rats contained a
tumor cells and is considered indicative of heparanasesmall amount of heparanase protein by Western blot.
message up-regulation. The 4.4 kb message is found inDiseased glomeruli, however, contained more heparan-
most cells probed for heparanase mRNA, generally inase. Specifically, a 65 kD band was observed at day 5

and 14, and an additional 58 kD band was observed at low abundance.

�

Fig. 4. Heparanase distribution in normal rat kidney. (A) Demonstrates cortical staining, magnification �25. (B and C ) Cortical and medullary
distribution of heparanase (magnification �28; C, cortex; OM, outer medulla; IM, inner medulla). (D) Distribution of heparanase in glomeruli
and tubules (�112). Note that there is minimal staining in glomeruli in contrast to the intense staining observed in tubules. (E ) Further demonstrates
heparanase distribution; note the basolateral cytoplasmic distribution of heparanase (�400). (F ) Confirms the presence of endothelial heparanase
staining (�56). (G ) A ureter in cross-section. The transitional cell epithelium is intensely stained (�25).
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Fig. 8. Northern blot analysis of diseased glomeruli. GAPDH message
is equally expressed in both normal and diseased glomeruli, confirming
equal loading of mRNA. The 2.0 kb message is up-regulated in diseased
glomeruli only. Expression of the 4.4 kb message is equally expressed
in diseased and normal glomeruli (normal, normal glomeruli; PAN D14,
PAN model at day 14).

DISCUSSION

This study has shown that heparanase is present in nor-
mal rat kidneys. The molecular weight of the heparanase
species detected by the rabbit polyclonal antibody was
consistent with that described for other tissues [16, 18,
24, 25]. A striking amount of heparanase protein was
found along the basolateral surface of normal tubules.
Immunohistochemical studies have shown that heparan-
ase in not only an intracellular enzyme, but it also resides
on cell surfaces [18]. Sequential staining studies con-
firmed its distribution in the distal convoluted tubule,
collecting ducts, and thick ascending limb of the loop of
Henle. Functionally, heparanase expressed by normal tu-
bules may contribute to the maintenance of normal tubu-
lar cell integrity, adhesion, and turnover. The basolateral
distribution of heparanase suggests that the peritubular
capillaries may be involved in recirculating the end prod-
ucts of heparanase action. It is possible that heparanase
may be involved in the liberation of growth factors and

the 65 kD species in a greater quantity. In addition, at day 14 the 58
kD species is noted. (C) Whole cell lysates derived from the activatedFig. 7. Western blots of cytosolic fractions and glomerular epithelial
GEC line 56/10A1, revealed the 58 and 65 kD heparanase species.lysates. (A) Ponceau red staining indicates even protein loading. (B)
All molecular weights are measured molecular weight values (normal,Cytosol-enriched fractions derived from normal glomeruli contain mini-
normal glomeruli; PAN D5, PAN model at day 5; and PAN D14, PANmal heparanase protein with a molecular weight of 65 kD. In contrast,
model at day 14).cytosol-enriched samples from days 5 and 14 of PAN nephrosis contain
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cytokines that are redistributed locally to ensure mainte- with plasminogen activator [32] and thrombin [20, 33].
Indeed, if heparanase is important in the loss of glomeru-nance of tubular cell integrity [26]. Heparanase activity

has been detected in the urine from some patients with lar charge and altered function of the GBM, then inhibi-
tion of heparanase may offer a new therapeutic optionmetastatic neoplastic disease [18]. Since there is intense

staining for heparanase in the uroepithelium, this is not a in the treatment of proteinuria. Further studies are re-
quired, however, to determine whether its action is bene-surprising finding. The uroepithelium is normally rapidly

turned over, so cell detachment may require expression ficial or deleterious.
of heparanase.
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