
A Fast and Stable Parallel QR Algorithm 
for Symmetric Tridiagonal Matrices 

Ilan Bar-On 
Department of Computer Science 
Technion 
Haifa 32000, Israel 

and 

Bruno Codenotti* 
IEZ-CNR 
Via S. Maria 46 
561 OO- Piss, ltaly 

Submitted by Daniel Hershkowitz 

ABSTRACT 

We present a new, fast, and practical parallel algorithm for computing a few 
eigenvalues of a symmetric tridiagonal matrix by the explicit QR method. We present 
a new divide and conquer parallel algorithm which is fast and numerically stable. The 
algorithm is work efficient and of low communication overhead, and it can be used to 
solve very large problems infeasible by sequential methods. 

1. INTRODUCTION 

Very large band linear systems arise frequently in computational science, 
directly from finite difference and finite element schemes, and indirectly 
from applying the symmetric block Lanczos algorithm to sparse systems, or 
the symmetric block Householder transformation to dense systems. In this 
paper we present a new divide and conquer parallel algorithm for computing 
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a few eigenvalues of a symmetric tridiagonal matrix by the explicit QR 
method. Our algorithm is fast and numerically stable. Moreover, the algo- 
rithm is work efficient, with low communication overhead, and it can be used 
in practice to solve very large problems on massively parallel systems, 
problems infeasible on sequential machines. We conjecture that our method 
can be generalized to band systems as well. 

The QR algorithm, developed by Francis [8,9], is an orthogonal successor 
to the LR algorithm of Rutishauser. We quote here Wilkinson, who said that 
the LR method is “the most significant advance which has been made in 
connection with the eigenvalue problem since the advent of automatic 
computers” [23, p. 4851. In fact, the LR algorithm for the symmetric 
tridiagonal case is very efficient, stable, and with cubic convergence rate [18]. 
An efficient parallel implementation of this method is presented in Bar-On 
[3]. However, the LR method has several limitations. The eigenvalues are 
found in increasing order, from the smallest to the largest, and it is not 
possible to locate an intermediate eigenvalue directly. On the other hand, the 
QR algorithm has similar properties but can be applied to compute any 
eigenvalue, given a sufficiently close initial approximation. 

Before discussing this method we would like to mention some other 
related methods for locating a few eigenvalues. Bisection is a popular 
sequential method based on the Sturm sequence properties, for locating 
some ordered eigenvalues or some eigenvalues in a given interval, but its 
convergence rate is only linear. Hence, it may be used to locate an approxi- 
mation from which other and faster methods should be used. A new divide 
and conquer parallel bisection algorithm, both stable and efficient, is given in 
Bar-On [2] and has the benefits of having the matrix subdivided between the 
processors through all stages with little communication overhead. This is not 
the case for other parallel variants such as multisection [12, 111, which is 
inefficient and requires that the whole matrix be shared by all the processors 
in the system. Another approach to this problem is a combination of bisection 
with inverse iteration; see Peters and Wilkinson [16]. A new factorization for 
the efficient parallel implementation of the inverse iteration method is given 
in Bar-On and Munk [6]. 

We turn now our attention to the literature on the QR method for 
symmetric tridiagonal matrices. To our knowledge, the only specific result in 
this field is by Sameh and Kuck [I91 f rom 1977. In their paper they present a 
parallel implementation of a variant of the QR method of Reinsch [17] which 
runs in O(log n) time with O(n) processors, where n is the order of the 
matrix. Hence, the efficiency of that algorithm is of order I/log n only. 
Furthermore, their numerical results are only for very small size matrices (up 
to order 128>, for which the accuracy is not as good as for the sequential 
method, and the theoretical error analysis implies an exponential error 
growth. Moreover, their method cannot be applied to general band systems. 
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Finally, we would like to mention the survey paper of Ipsen and Jessup 1111, 
which concludes that the “shifted QR algorithm alone does not seem to have 
an efficient parallel implementation.” We will rebut this conjecture in this 
paper. 

A very fast and efficient parallel QR algorithm, based on the Cholesloj 
decomposition, was first considered in Bar-On [l, 31. However, in general, 
this method seems to be somewhat less accurate than the sequential algo- 
rithm. In this paper we would like to present a new divide and conquer 
parallel QR algorithm which theoretically and experimentally seems to be as 
stable as the sequential method. For the sake of clarity and to help the reader 
Bx ideas, we will consider models of parallel computation with the following 
features: 

(i) There are p processors, which are connected by a network; the 
network can at least support fan-in algorithms with optimal speedup. 

(ii) The network is synchronous. 
(iii) Each processor can access the data without a time penalty. 
(iv) Each processor has a local memory. 
(v) The processors do not have access to a shared memory. 

Note that we do not assume the existence of a common memory, because our 
algorithm has a very small communication overhead that allows us to transfer 
messages between pairs of processors with optimal speedup. 

2. THE SEQUENTIAL QR ALGORITHM FOR SYMMETRIC 
TRIDIAGONAL MATRICES 

In this section we review the basic features of the sequential QR 
algorithm, and the method by which it can be adapted to parallel machines. 
Let A be an n X n real symmetric tridiagonal matrix, and let us seek some of 
its eigenvalues close to the real number T. 

Let A, = A - t-1, and z0 = r. Repeat the following: 

?? For s = 0, 1, . . . , do 

1. Choose a shift ys. 
2. Find the QR decomposition of A, - ysI = Q,R,. 
3. Set A(,+,, = R,Qs and z(,+r) = z, + ys. 
until the last off diagonal element becomes negligible. 

?? The computed eigenvalue is z (s + r) plus the last diagonal element. 

?? Deflate the matrix, and proceed as above to get the next eigenvalue. 

An implementation of this sort is given in the EISPACK routine BQR [2O]. 
Although the shifting strategy can be quite involved (see Parlett [15, Chapter 
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81, “Shifts for all seasons”), our main concern in this paper is with the 
parallelization of the basic transformation, 

A = QR j A=Q”AQ=RQ. (1) 

In practice, we do not actually compute the orthogonal matrix Q, but apply it 
implicitly by a sequence of Givens rotations as follows: 

A =A0 +A1 = G;A, (2) 

-+ A, = G;A,G, -+ a.. 

-+ A(4) = Gr:A.-zGc,,-u (3) 

+ A, = A,,_,,G, = A, (4) 

where G:, i = 2,. . . , n, is the Givens rotation that annihilates the (i, i - 0th 
element of A. The process looks highly serial, but a closer examination 
reveals its high potential for parallelization. We need look at a more specific 
example, such as the following one, for n = 4: 
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Hence, the n middle diagonal and off-diagonal elements in each c give the 
corresponding elements of A. 

The correctness of the above algorithm follows immediately from the 
above discussion, as the operations on rows below row in do not affect the 
values above it. Note that by the end of each iteration, there is no need to 
produce the whole matrix A, as it should remain subdivided for the following 
iterations. Only the extreme rows are exchanged between adjacent processors 
before the next iteration resumes. Hence, in terms of both complexity and 
communication issues, the parallel QR stage is very efficient. However, in 
order to devise an efficient parallel algorithm that exploits the above possible 
parallelization, we need answer the following two questions: 

1. Can we compute the above x’s and y’s efficiently in parallel? 
2. What is the effect of rounding errors on the stability of the algorithm? 

A positive answer to both of these questions is given in the remainder of this 
paper. We provide the mathematical and numerical foundations in Section 3, 
and present and analyze the parallel algorithm in Section 4. An elaborate 
discussion of the numerical stability of the algorithm is given in Section 5. We 
finally report on some open related problems in the conclusion, and provide 
additional details in the appendix. 

3. MATHEMATICAL ANALYSIS 

We assume that computations are over the set of real numbers, and we 
view n-vectors as elements of R”. We denote by A(n) and by d(n, m) the 
classes of n x n and n X m matrices respectively. We denote the i th row of 
A EL(n, m) by AI+ its jth column by Arjl, and its (i, j)th element by aij. 
More generally, we denote rows i, to i, by Atio,i,l, columns j, to j, by 
Atjo:jll, and the submatrix of rows i, to i, and columns j, to j, by A&$!. We 
denote an N X N symmetric tridiagonal matrix by A = diag(bi_ i, a,, bi), 
i=l ,***> N, where it is assumed implicitly that b,, b, are missing. We say 
that A is unreduced if all the off diagonal elements are nonzero, i.e., bi # 0, 
i=l ,**.> N - 1. We note that if some of the off diagonal elements become 
zero, the problem decouples into independent subproblems which can then 
be dealt with in parallel. Henceforth, we will assume that the underlying 
tridiagonal matrix is unreduced. Note that, in practice, we are dealing with 
finite precision, and an element becomes zero when it reaches some given 
threshold. 
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LEMMA 3.1. Let A be an unreduced 
order N > n, and let B = A[[~i(,nl+r)]. Let Q 
such that 

69 

symmetric tridiagonal matrix of 
E.M( n) be an orthogonal matrix 

C=Q’B=(; ; ;), Xw%(n-1), z),wER”-~. (11) 

Then the last row of C is unique up to a sign change. 

Proof. Since A is unreduced, then B[l’(“- ‘)I = (B[‘I se* B[cn- ‘)I) E 
_d(n X (n - 1)) has full rank, and X is nonsingular. Hence, there is a unique 
factorization X = QR, where the diagonal of i is taken to be positive. 
Substituting in (111, we get the QR factorization of B, i.e., 

B = @R, 0 = QQ’, Q’= (f ;), Rz(i “: -,‘), 

(12) 

which is unique up to the sign of the last column of Q, i.e. Qtnl = Qt”]. 
Hence, the last row C,,, = QFn, B is unique up to a sign change. ??

From Lemma 3.1 we have the following: 

COROLLARY 3.2. Let A be an unreduced symmetric ttidiagonal matrix of 
order N = np, and let Bi = A\ii(rI+ ‘)I for i = 1,. . . , p - 1. Let Qi be an 
orthogonal matrix such that 

C, = Q:Bj(: :j: I:), Xi Ed(in - l), ui,w, E Ri”-‘. (13) 

Then (xi,,, y,,) are unique up to a sign change. 

For completeness, we state the following; see Parlett [15, Chapter 71. 
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PROPOSITION 3.3. The QR transformation of an unreduced symmetric 
tridiagonal matrix is unique up to a sign change of its off diagonal elements. 

We therefore call two QR transformations of A equivalent if they are the 
same up to the sign of the off diagonal elements. 

LEMMA 3.4. Let G,, G, be two Given rotations such that 

where zLe assume that b, # 0. Then 

and G is orthogonal. 

Proof. The correctness of Equation (16) is readily verified by inspection. 
In case cg = ci and s2 = -si, we are done. Otherwise, by assumption 
b, # 0, so that the first column of G, is unique up to a sign change. Hence, 
c2 = -cl and sp = si, so G is orthogonal. ??

We will say that the orthogonal matrix G simulates the action of the 
corresponding two orthogonal matrices G, and G,. We are now ready to 
present our main theorem. 

THEOREM 3.5. Consider a sequential QR transformation applied to 4, 
and let I;, i = l,..., p, denote the respective blocks as in (9). Let Ti, 
i = l,..., p, denote the same matrix as T, except for a possible sign change of 
thefirst row, i.e., 

(‘(ib1)np !?(i-l)n) = *tX~i-l)n~ Yci-l)n). 

Let us apply the parallel QR transformations to $ and denote by 

T, = diag(ZCj_,,, 4, I?,), j = (i - 1)n + l,...,in, 

(17) 

(18) 
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the corresponding transfomd matrices as in (10). Then the transformed 

matrices A- and A-are equivalent. 

Proof. We will present a sequefltial QR transformation for which the 
corresponding transformed matrix A is equivalent to the computed one A. 
The proof is by induction on the number of blocks. The basis of the induction 
for k = 1 is trivial. We prove the inductive step, showing that the theorem is 
true for k > 1 blocks, provided it is true for k - 1 blocks. By induction, the 
first k - 1 parallel transformations can be simulated by an equivalent trans- 
formation applied to A[ii((kI i’,:: z :{. H ence, this sequential transformation, 
together with the k th transformation applied to fk, is equivalent to the whole 
set of k parallel operations. We may therefore assume w.1.o.g. that p = 2, 
a*nd consider the parallel QR transformations applied to ?,, fz. (Note that 
T, = T,.) We will then show that these can be simulated by an equivalent 
transformation applied to A. 

We start by ap&ing to A the same sequence of orthogonal transforma- 
tions applied to T,, up to the nth row. At this stage we consider the 
respective transformed matrices T, (,, _ 1 ), L(,~ _ ]). Let T,,(,, _ 1j denote the last 
three rows of T, (,, _ i), and let T,,, denote the first three rows of ?,, i.e., 

Tl.(.-1, = x,, Y, T2.0 = bIl a(,, + 1) b (n+l) . 

6, a(,+,) b 
/ \ (n+l) 5,,2)} 

(19) 

Similarly, let A,, ._ i) denote the respective rows of A,,, _ i), i.e. 

‘9-l) 4-1, \ 

A(n-1) = 
x,, Y" 

b,, a(,+ 1) b . 
(20) 

(n f 1) 

b 
\ 

(n+l) b(n+2’, 

In addition note that (x”,, $“> = +(x,, yn) from Corollary 3.2. In case ( tn, 
&J = (r,, y,>, we proceed immediately with the respective rotations of T2, 
and we are done. We therefore assume henceforth that the signs have been 
changed. 
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Let G, be the last Givens rotation applied to the first two rows of 
T,,,, - l)> and let G(,+ 1j be the next. Then we proceed with Ti,n = 
Gi + lT1,(, - 1~ i.e. 

T’ 1,n = 

= 

1 

C(n + 1) S(n + 1) 
_S(n+l) C(n+ 1) 

‘Y(n-1) 4-1, 
4 PI2 

* 

’ “(n-l) P(n-1, 1, 
\ 

I 

*n YTl 

hi a(,+ 1) 

to be followed by T,,, = T;,,G,, i.e. 

I "(n-1) P(n-1, 
T 1,n = 4 

d (n-1) qn- 1) 

= 
qn-1) %I 

II Cl2 

P, sfl 
* 

A ’ 
f I 

where e(,_,) = (Y:s, and (Y, = CY:C,. Finally, 
TI,,G(, + l)> 

-sn 
c rl 

1 

(21) 

(22) 

we obtain T1,(,+ 1j = 

(23) 

where 4, = v(,+l) + P,s(,+l). 
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Next, we consider the rotations of fz. Let 6” + r, G,, + 2j be the first two 
row rotations to be applied to ‘I’,,,. We then obtain T,,, = GtrC,, 1jT2.0, i.e., 

and from Ti 2 = G&,+tz,Tz.l we get T,,, = T&/&,+ ,), i.e. 

(24) 

where e,, = a;,,+ I);(,,+ I), and cr(,+ r) = ai,+ I);(,,+ 1). We now present an 
equivalent sequential transformation that has the same effect as these two 
parallel transformations. Let A,, _ r) be as in (20), and let G be the orthogo- 
n,al matrix that simulates the action of the two orthogonal matrices G,, 1 and 
G n+ 1’ Then we proceed with A’,, = GtA,,_ ,), i.e. 

A:, = 

X(t, + 1) Y(n+ 1) 
b (n+l) U(n+Z) 

PC”-1, 
X” Y7l 

bn a(, + 1) b (n+l) 

b (n+ 1) a(” + 2) 

\ 

\ 

(26) 

(27) 
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to be followed by A, = A\G,, i.e. 

i a(“‘- 1) 

A,, = 

\ 

d(,-1) 
q” - 1) = 

P(d) \ 

4 P7l 
X(n.1) Y(n+l) 
b (n+l) a(n+2)) 

e(“- 1) 
\ 

% P” 
X(n+l) Y(n+l) 

b (n+l) @(?I f 2) t 

At this point we conclude the following: 

1. The first n - 1 subdiagonal and diagonal elements, i.e. 

ei-1, di, i = l,...,n - 1, (30) 

(29) 

are the same as in Fr. 
2. Proceeding with the respective rotations of FS, the last n - 1 subdi- 

agonal and diagonal elements, i.e. 

ei-1, di, 

will be the same as in ?;,. 

i = n + 2,. . . , N, (31) 

Hence, the only difference between A and the computed Acan occurjn the 
two middle rows of A,, +a). Proceeding with the next rotation of T,, we 
obtain Ai,,+r) = G[n+2jA,, and then AC,+lj = Ai,+r)G, i.e. 

A(n+,) = 

d(n-1) qn-1) 

e("-l) % Pn 
ff;fl+ 1) P(n+l, 

X(*+2) 

'1 
n 

C(n + 1) 
X 

s(“+ 1) 

+,+I) &+l) 
\ 1 

(32) 
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d (n-1) e(” - 1) \ 

qn-1) 4 e^n 
z 

e^,, “(n+l) P . 
(33) 

(n + 1) 

\ 
X(n+e) 

Comparing with Equation (23) and with Equation (25), we observe that the 
only change that may occur is in e^, = ai, + r)s(,+ r). However, s(,+ 1j = 

& 
fS(n+l)r from Lemma 3.4, and therefore e^, = fe,. Hence, from Proposi- 
tion 3.3, the transformed matrix A^ is equivalent to x ??

COROLLARY 3.6. Let A be an N X N unreduced symmetric tridiagonal 
matrix, and suppose we have computed the (Gi,, ijj,>, i = 1,. . , , p - 1, as 
in (13), by some orthogonalization meth<d. Then we can apply the parallel 
QR stage to the corresponding blocks Ti of Theorem 3.5, and obtain an 
equivalent QR transformation of A. 

4. DIVIDE AND CONQUER 

We present in this section the divide and conquer parallel algorithm for 
the precomputation of the x, y pairs. We assume as before that A is an 
N X N symmetric tridiagonal matrix where N = np and p = 2k is the 
number of processors available. We further assume that the matrix is initially 
divided into blocks of rows between the processors, each having n consecu- 
tive rows. We denote these blocks Ti EJCn, n + 2), i = 1,. . . , p, by 

’ b(i 1)n ‘(i-l)n+l b(iPl)n+l 
\ 

Ti = 

bi,,il ai,: bin) 

(34) 

\ 

We compute the x, y pairs in three stages as follows: (i) diagonalization, (ii) 
bottom-up sweep, (iii) top-down sweep. In the diagonalization stage the 
processors work completely in parallel with no communication overhead, 
doing approximately the same amount of work. In parallel complexity terms 
this is the most significant stage of the algorithm. In fact, its speedup is linear, 
so that the whole process is very efficient. The next two stages can be viewed 
as a bottom-up sweep followed by a top-down sweep of a complete binary 
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FIG. 1. The active processors for p = 23. 

tree with p leaves; see Figure 1. In level i, i = 1,. . . , k - 1, of the tree, 
processors 

(<j - 1)2’ + lJei), j = 1,. . .) p/2’, (35) 

are active in step s = i of the bottom-up sweep, and in step s = i - 1 of the 
top-down sweep. Each pair of processors in (35) exchanges constant informa- 
tion and performs a computation which can be carried out in constant time. 
Hence, the overall time complexity of these stages is of order log p, and the 
communication overhead on any parallel architecture that allows an efficient 
embedding of a treelike network is low. As an example, Bar-On and Munk 
present an implementation of a related problem on the hypercube [6]. 

We may further distinguish between the extreme processors and the other 
ones. Processor 1 starts immediately with the QR transformation of its 
enlarged block as in (9). At the end of this computation, it delivers (3,, in> as 
a by-product. Later, it remains active in the bottom-up and top-down stages, 
and becomes inactive during the last parallel step, i.e. the application of the 
QR transformation. Processor p is inactive in the divide and conquer step, 
and becomes active only later in applying the QR transformation to its block. 
Hence, a single processor can simulate the computation of these two proces- 
sors, thus providing us with an improved speedup. Throughout the rest of the 
paper, we will disregard this kind of local improvements for the sake of a 
simpler presentation. In what follows we denote the computed x, y pairs by 
(gin, Gin), i = 1, . . . , p - 1. 
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4.1. DIAGONALIZATION 

Let us denote for simplicity the block of a given processor by 

! 

b,, 01 h, 

T= -..‘./._ . 

b II- 1 art bn 1 

Then each processor applies a sequence of Givens rotations, i.e. 

(36) 

i; = QtT = ( C&_,, ..a G:)T= [; ’ * : :)> (37) 

to its block, to obtain the above transformed two extreme rows. Note that we 
are not interested in the elements in the rows in between. In what follows, we 
present an exact implementation. Let 

w, = 

then we start by eliminating b, in the second row, i.e. 

W, = G;W, = 

For i = 2,. . . , n - 1 let 

W.” = 

ei ui vi fi 

gi wi hi 
bi ai+1 bi+l 

(38) 

(39) 

(40) 
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then we apply the following two Givens rotations: 

1. A Givens rotation to eliminate bi, 

x I 

ej ui q fi 
Wi I = G;i_,Wi, = * * * 

I 

(41) 
gi+1 wi+l hzt, ' 

2. A Givens rotation to eliminate ui, 

x I 

ei+l ‘i+l fJif1 f;+1 

Wi2=G;iWi1= * * * * * . (42) 
gi+l wi+l hi+l 1 

We denote the resulting two extreme rows by 

wi+l = 

i 

ei+l ui+l vi+1 _A+1 

gi+ 1 1 wi+l hi+1 ’ 

and proceed as above. 
We denote the resulting two extreme rows of each block by 

(43) 

T ie  = 4 4 ! go 
i=l ,...,p - 1. (44) 

Note that processor 1 does not perform rotation 2 above, that <w,“, hy) = (i,, 
ijn>, and that the other elements in T,O are null. Moreover, processor 1 
completes the QR transformation of its block at the same time. We further 
note that the above process requires only O(1) additional space, as we are 
interested in the two extreme rows only. 

4.2. A Bottom-Up Sweep 
For s = l,..., k - 1, let 

s-1 
e2i-1 

s- 1 
uZi-l v;;-l, fi”i-‘1 

s-1 
gZi-1 w;;_$ h;;$ 

s-1 
e2i 

s-l 
u2i v;;’ f&l 

s-1 
g2i w2i ‘-’ G? 

(45) 

/ 
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for i = l,..., p/2”. Then apply the following sequence of Givens rotations: 

1. A Givens rotation to eliminate hi;_‘,, 

TF1 = 
* * 
* * 

r-l 
g4i 

* 
* * 

2. A Givens rotation to eliminate g& ‘, 

1 P- 1 
ezipl 

d - 1 
uZi- 1 

s-1 
'Pi- 1 

Tis2 = * 

’ I * s’ 

* 
* 

3. A Givens rotation to eliminate f;,L’,, 

T1”3 = 

* * AS-1 
u2i-1 

* * 

* * * 

gs 

s-1 
w2i 

fi”,‘l 

* 

4. A Givens rotations to eliminate 6iF_ll, 

* 

* 

* 
* 

w” 
I 

q 

* 

* 

W; 

We finally denote the two extreme rows of Tis4 by 

* 
* 

WS 

* 

* 

;,; 

fi 

* 
1 

* 

h;;’ 

\ 

* 

lz;, 

\ 

(46) 

I 

(47) 

(48) 

(49) 

(50) 

Note that for i = 1 we do not apply rotations 3 and 4 above, since the 
elements in the first row and column of Tf,) are all null. 
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LEMMA 4.1. By the end of step s, above, s = 1,. . . , k - 1, we can 
choose 

Proof. Let Bf = Al;;;&+ ‘I, and consider the rotations applied to the 
rows of Bi in the diagonalization stage and in the first s steps of the 
bottom-up sweep. Denote by Cf the corresponding transformed matrix. 
Then we observe that the last row of Ci is just the last row of T,“, which is 
similar to the last row of C,, in (13). The rest now follows from Corollary 3.2. 

H 

We will denote hereafter the last row of T,” by 

(52) 

4.3. A Top-Down Sweep 
For s = k - 2,. . . ,O let 

\ 

I$ f,” ) i = 2j + 1, (53) 
w; hf 

for j = 1,. . . , p/2”+’ - 1. Then we apply the following two Givens rota- 
tions: 

1. A Givens rotation to eliminate yy+r, 

2. A Givens rotation to eliminate gf: 

(54) 

(55) 
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Finally, we denote the last row of R;, by Ri; = (x:, yf), and let Rs = RI;,’ 
for even i. 

COROLLARY 4.2 By the end of step s ahozje, s = k - 2, . . . , 0, we can 
choose 

(&2’,1 = Xf, ijL2Sn = Zj:), i = 2j + 1, (56) 

forj = 0,. . . , p/2”+’ - 1. 

Proof. The proof follows the same lines as the proof of Lemma 4.1. By 
the end of the bottom-up sweep, the formula (56) holds for s = k - 1. We 
will now prove by induction that being true for s + 1, it is also true for s. Let 
Bf = A[ci - 1)2Sn + l:i2sn], and consider the rotations applied to B/ in the diago- 
nalization stage and in the first s steps of the bottom-up sweep. Denote by 
C;F the transformed matrix. Then the extreme two rows of Cp are just the 
extreme two rows of Ti” in (53), and by induction, the formula (56) holds for 
IV+ ‘. Hence, the next two rotations in the top-down sweep transform the last 
row of Cp to a form similar to that of the last row of Ci,, in (13). The rest 
now follows from Corollary 3.2 as before. ??

4.4. Complexity Analysis 
We carry out a complexity analysis of our method, assuming a model of 

computation as described in the introduction to this paper. We say that two 
processors are adjacent if they are directly connected to each other, and we 
assume that the connection is bidirectional. We then assume that each step of 
the bottom-up sweep as well as of the top-down sweep can be implemented 
by exchanging O(1) data between adjacent processors. Such an assumption 
amount in practice to having an interconnection network that allows embed- 
ding of a tree structure; see for example Bar-On and Munk [6] for an 
implementation of a similar problem on the hypercube. We then conclude 
that the computational cost of each iteration is given by O(N/p + 
log p> = OW/p), since log p -=z N/p. We further note that in practice, the 
running time behaves like 

q,(N) = Cln + c2( P7) log2 P, II = N/p, (57) 

where c1 is a constant, and cl(p) depends on the communication network 
and the number of processors. A reasonable criterion for choosing the 
number of processors is then 

c1n > 2c,( p> log, p, log, P G n/4 P)> (58) 
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and practical consideration should dictate the value of c(p). For example, 

c( p) i 4 log, ( p) - p < 26’2; (59) 

then taking n = 4096, we may solve a problem of order N = 244 using 
p = Z3’ processors in seconds. 

5. STABILITY ANALYSIS 

We will consider in this section the rounding error properties of the 
parallel QR algorithm presented in this paper. We assume that the matrix 
elements are given in finite precision, their order of magnitude does not vary 
widely, and they are normalized so that ]I Al12 - 1. Balancing (see Parlett and 
Reinsch [14]) or the implicit QR method (see Francis [8, 91 and Dubrulle, 
Martin, and Wilkinson [7]) may be more appropriate for some special cases, 
but their parallel implementation is beyond the scope of the current paper. 
We further assume that the off diagonal elements are in absolute value above 
some threshold related to the accuracy of the computation. Otherwise the 
matrix is split into separate, independent blocks which can be dealt with in 
parallel. The criterion for such a threshold is not related to the parallel 
implementation of the algorithm and thus will not be considered here. Let A 
be an N x N tridiagonal symmetric matrix whose elements are represented 
in finite precision, say 8, = 2-t, and let the calculations be performed in a 
slightly high er p recision than e2 < 8i. Consider a single QR transformation; 
then 

A = fl( Q"AQ) = Q"AQ + E, II-m G 81, (60) 

where 8, < +9,/(2N); see Corollary A.l. The elements of A are actually 
truncated to 8i precision, and the overall accuracy of the algorithm in the 
general case seems to be reasonable. However, in many cases the rounding 
errors do not accumulate, as can be seen from the discussion at the end of 
Section A.l, so that a much lower precision can be used in the computation. 

5.1. A Poster-ion’ Em-or Bounds 
Let A denote an N X N unreduced symmetric tridiagonal matrix, and let 

i be the transformed matrix as in Theorem 3.5. We will assume in what 
follows that computation is performed on all the elements of the matrix. 
Hence, the computed transformed matrix x is upper Hessenberg, but its 
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lower subdiagonal and main diagonal are the same; see the related discussion 
in Section A.l. 

We begin with a discus_sion of the case of two processors; the general one 
follows by induction. Let Z’,, T,, i = 1, 2, denote the corresponding blocks of 
the modified transformation, and let P, R be their respective QR transfor- 
mations, i.e. 

T, = fl(P’f,P) = P’f,P + E,, IIE,IIF G (71 + 1)&t, 

7, = fl(R’f&) = R”f2R + E,, IIE,IIF < (n + 1)8,. 
(61) 

Let Fi, i = 2,..., n + 1, be the sequence of Givens rotations applied to fr, 
and let Pi j = F, *-. q, denote any consecutive subxquence of these rota- 
tions. We then divide the transformations applied to T, as follows: 

llE:ll~ < (n - 1)8,, 

c.2 = fl(F,t,+,,T,,,F,F,,+,,) = F~“+$,,,F,~“+I) 
(62) 

+E,2, llE:ll~ < 28,. 

Similarly, let Hi, i = 1,. . . , n, be the sequence of Givens rotations applied to 
T2, and let Ri j = Hi -0. Hj denote any consecutive subsequence of these 
rotations. We then divide the transformations applied to T, as follows: 

Tz,r = fl( H; H;f2 H1) = H; H$ H, + E;, llE;ll~ < 28,, 

c,z = fq %~2,,%“) = %,,;i;,,,~,,” + EL 
(63) 

IlEill~ G (n - I)$. 

THEO:EM 5.1. Consider the last three rows of T,,,, and the first three 
rows of T2 as in (19). Let 

(L !?J = +(x”(l + E>, yj” + rl), l&,771 G 8. (64) 

Then there exists an orthogonal transformation Q that simulates these two 
parallel transformutions and satisfies 

K’ - Q’AQ = E, IlElla = O(Ne, + e), (65) 

where A*’ is an equivalent transformation to A-. 
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Proof. Let i;l,r denote the same matrix as T,,,, but with (r,, y,J 
replaced by 

(-L ii”) = (a + &I> Yn + 71). (66) 
_ 

Let F(,+ r) be the Givens rotations that should now be applied to Yr,r instead 
of &+ I)> and let G be the corresponding rotation that simulates the action 
of qn+n, H, as in Lemma 3.4, i.e. G = F(,+r), or 

r 

G’ = S(n + 1) S(n+l) 

Cl 
- I - 1 

C(n+ 1) 

(67) 

We will prove in what follows that Q = P2,(,_ I,GR,,,. Let B = Pl,, AP2,(,_ 1j, 
and let E be the matrix B modified so that 

(68) 

Then 

B=B+X,+X,, IIXJIF < llE:lh Q (n - 1)8,, IIX,IIF G fie. 

(69) 

We next consider the matrix C = HiGtgF,,G, and denote by c the matrix C 
modified so that 

C[n:(n+,3)1 
[(n+l).(n+2)] = (T )ILz41 2.1 [2:3]’ (71) 

Here, by = we mean an equivalence relation, that is, we allow the 
subdiagonal elements in positions (n, n - l), (n + 1, n) to change sign. We 
then conclude from Theorem 3.5, and from Lemma A.2, that we can set 

c=c+x,+x,i-x,, (72) 
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where 

Finally, let D = Ri,,CR2,,,, and denote by D the matrix D modified so that 

jj[(n+l):N] = (T, 
[(n+ 1):X] 

fZ:(n+l) 
2.2 [2:(rr+ I)]’ (74 

Then 

D=D+X,, llX,IIF G (n - 1)8,. (75) 

Collecting the different terms above, we conclude that 

itj = Q”AQ + X, IIXIIF < (N + 2)8, + 88. (76) 

Finally, D is upper Hessenberg, with the same lower subdiagonal and main 
diagonal as in x The conclusion of the theorem now follows. ??

COROLLARY 5.2. Consider the case of p processors, and let 

(2in, ijin) = +(“i,(l + &i)> Yin + Vi), l’iT77il G 4i, (77) 

for i = l,..., p - 1, and let &?=, c#+ < 4. Then there exists an orthogonal 
transformation Q that simulates the corresponding p parallel transformations 
and satisfies 

A, - Q”AQ = E, IlEIh = O( NO, + 4), 

where A-’ is an equizjalent transformation to A*. 

(78) 

However, as observed before for the sequential QR transformation, the 
term A@, is most pessimistic, and the second term, which can be easily 
computed in the course of the algorithm, may give a better estimate of the 
accuracy of the algorithm. 

5.2. A Priori Error Analysis 
The analysis in the previous section shows that the stability of the 

algorithm is closely related to what we shall term the forward stability of the 
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shifted matrix. The pair (x”, yn) corresponds to the exact pair of one small 
perturbation of the matrix, and the pair (1cI,, 9”) to another one. The shifted 
matrix is forward stable if these pairs do not differ by much, and in this case 
the parallel algorithm is stable as a result of Corollary 5.2. We now proceed to 
elaborate on this point. 

We consider the errors made in computing the corresponding pairs 

(xin, yin), (gin. Gin), i = ~,-.*PP - 1, (79) 

of Theorem 3.5. We consider, for simplicity, any given such pairs. Referring 
to Proposition A.4, we conclude that they are derived from the same matrix, 
say B EJ((~~ + 1) X (n, + 2)), where na < n + 2 log(p/2). The compu- 
tation of the two different pairs then proceeds as follows: 

ci = fl( P$) = Pi”( E + E,) = (: E: ;:)- 
X E,%(n,), v,w E RnB, i = 1,2, (80) 

where we may assume that lIEi = O(n0,) as in Proposition A.4. Let B and 
Ci, Ei, i = 1, 2, denote the respective square submatrices corresponding to 
the first ng + 1 columns, and let us assume that B is nonsingular; then 

Ci = P,‘( B + Ei)( B-‘B) = I’,“(’ + E,B-l)B = QfB, i = 1,2, (81) 

where Qi is not necessarily orthogonal. Let B = QR be the unique QR 
factorization of B: then 

Qf = Z;Q’, Z;=(“o. zj), QtB=(i ;). (82) 

Hence, xi = q x, and (Y;’ can be obtained from 

Z;“Z;’ = Q'Q;"Q;'Q = Qt[( Z + B-tEf)(Z + E,B-‘)I-lQ. (83) 

Let IIB-‘112 < p; then 

Z;“Z,’ = Q”( Z + Fi)-IQ, llFill!2 Q E2 + 2E (84) 

E2 + 2E 
= Z + Gj, IIGiII2 G l-•2-28’ (85) 
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where E = O( @fI,). Hence, 

(r;2 = (1 + r/J2, 

and therefore. 

a1 1 + 771 -= ------=1+n, 
ff2 1 + 772 

We further conclude from (81) that 

I-‘,’ = Q'(I + EJ-‘)-l, 

and ignoring terms of 0(8;), we have 

(x17 YA = +(%(I + 77) Y2 + 4, Id = q n/302). 

LA 

denote the sequence of eigenvalues of the shifted matrix, and 

87 

(86) 

(87) 

(88) 

(89) 

(90) 

let Pi> 
i = I,..., p - I, denote the norm of the inverse of the inth leading subma- 
trix. Then, with each iteration of the QR algorithm, 

(91) 

see Watkins [21]. Hence, /3 should be small, unless the sought-for eigenvalue 
belongs to a very large cluster of at least n eigenvalues, and for p < e,‘, 
using double precision, we bound the rounding errors of the computed x, y 
pairs by O(n0,>. In many cases this will suffice, as n c N and the errors 
usually do not accumulate. 

We finally note that in the rare cases where instability does occur, we may 
simply restart the iteration with a slightly modified shift, or change slightly 
the redistribute of rows between the processors, or deflate the matrix by the 
methods described in Bar-On [5] and in Parlett and Le [13]. 

5.3. Numerical Examples 
We have made several numerical tests of the parallel algorithm by 

simulation on a sequential computer. We have tested matrices up to the order 
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of N = 2” using single and double precision, on a variety of randomly 
created matrices, with up to 512 processors, and our results have agreed with 
those of the sequential method. We give here two examples related to the 
tridiagonal matrix A = (- 1, 2, - l), whose eigenvalues are known exactly. 
The first is a matrix of order 21g in single precision, where we have looked for 
the eigenvalues near 0.3. The nearest 10 eigenvalues are depicted in the first 
column of Table 1. All eigenvalues were found with an error of order lo-‘, 
and the error in the computed x, y pairs was of a similar size. The second is 
a matrix of order 2” in double precision, where we have looked for the 
eigenvalues near 0.0, which are rather small; see the second column of Table 
1. All eigenvalues were found with an error of order 10-15, although the error 
in the computed X, y pairs was of order 10-13. 

We further include an example of Wilkinson test matrix of order n = 128, 
using p = 4 processors. The first column in Table 2 depicts the largest 
eigenvalues computed using Matlab, and the second column depicts the 
corresponding eigenvalues computed with the sequential QR algorithm and 
with the parallel QR algorithm using p = 4 processors. The results for the 
sequential and the parallel algorithm were the same, and they agree to 14 
digits with the results of Matlab, as the precision warrants. 

6. CONCLUSION 

In this paper we have tried a first approach towards a fast and stable 
parallel implementation of the QR method for tridiagonal systems. We have 
developed an efficient algorithm whose numerical stability is similar to that 

TABLE 1 

EXACT EIGENVALJES FOR A = (- 1, 2, - 1) 

n = 21g, r = 0.3 n = 21s, r = 0.0 

0.29999747229076 0.00000000014362 
0.30000378536701 0.00000000057448 
0.29999115927556 0.00000000129258 
0.30001009850429 0.00000000229793 
0.29998484632139 0.00000000359051 
0.30001641170261 0.00000000517034 
0.29997853342827 0.00000000703741 
0.30002272496197 0.00000000919172 
0.29997222059618 0.00000001163326 
0.30002903828237 0.00000001436206 
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TABLE 2 
WILKINSON TEST MATRIX w:,, 

Matlab p = 1,4 

6.1~3952~266527E + 01 
6.100395200266536E + 01 
6.203894111930644E + 01 
6.203894111930657E + 01 
6.321067864733298E + 01 
6.321067864733305~ + 01 
6.47461941829033OE + 01 
6.474619418290337E + 01 

6.100395200266531E + 01 
6.100395200266536E + 01 
6.20389411193064OE + 01 
6.203894111930642E + 01 
6.321067864733303~ + 01 
6.321067864733303~ + 01 
6.474619418290333E + 01 
6.474619418290335E + 01 

achieved by the sequential QR method, and we believe that a similar 
approach can be used for systems of larger bandwidth. We note that the 
parallel QR algorithm can be used in conjunction with the parallel LR [3] 
and bisection [2] algorithms to improve convergence rates and execution 
time. Furthermore, the method is most useful when implemented with a 
divide and conquer approach for computing the eigenvalues of symmetric 
tridiagonal matrices; see Bar-On [4, S]. 

APPENDIX 

A.1. Sequential Error Analysis 
Let A be an N X N unreduced symmetric tridiagonal matrix, normalized 

so that I] A(]s * 1, and consider a single QR transformation, 

where A,, = A, and G, = GN+i = Z is the identity matrix. Here, the analysis 
of rounding errors is nontrivial, since we compute the elements only on the 
lower and main diagonals. We then denote a “true” sequence by 

B, = fl(G,f,+,,Bc,-,,G,) = G&+I$$-I+% + F,> n = l,..., N, (93) 

where B, = A. Here, by “true” we mean that we proceed by computing all 
the elements of the matrix as usual. However, we assume w.1.o.g. that any 
additional computation not actually performed in (92) is done in exact 
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precision. We then employ the standard error analysis properties of Givens 
rotations; see Wilkinson [22, 231. Let the matrix elements be given in 8, 
precision, and let the computations proceed in a slightly higher precision than 
8,. Then the matrix elements that contribute to the error in (93) are bounded 

bY = 1, and we may assume that ]]F,]]r < OS, where 1) * IIF is the so-called 
Frobenius norm. Hence, an overall bound for the entire process is 

Ii = fl(QfAQ) = Q”AQ + F, IIHF Q M’,, (94) 

where Q = G, **a G,. Now, < is upper Hessenberg, and its lower and main 
diagonals are the same as in A. Hence, 

/i - Q”AQ = E = E, + Ed + E;, IIE, + EJF < IIFIIF, (95) 

where E, is strictly lower triangular, and E, is diagonal. 

COROLLARY A.l. Consider the sequential QR transformation as in (92). 
Then the computed transformed matrix satisfies 

,i = Q”AQ + E, IlElla < (2N)&. (96) 

However, this bound is overpessimistic, as the following discussion will 
show. We first recall the structure of a Givens rotation. Let 

cu= ( Ts E)(i) = (;) (97) 

be the Givens rotation that annihilates b. Then we choose c, s as follows: 

t = b/x, Ibl < 1x1, c = l/d, s = t/d, 

x/b, 1x1 < lbl, c = t/d, s = l/d, 
(98) 

where d = 1 + t 4-7 see Golub and Van Loan [lo]. A close observation of 
the QR transformation reveals that in case all the Givens rotations satisfy 
Is] < 1 - q for some q < 1, then /IElla = 0(8,/q). For example, for Is] Q 1 
- 8,, that is, I XI > 2 t?f/‘I bl in (981, using double precision will suffice to 
achieve ]I E II2 = O(0,) in (96) irrespective of the matrix order. Moreover, this 
assumption is quite reasonable, since with each iteration the b’s tend to zero 
and the x’s tend to the respective eigenvalues in decreasing order. 
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A.2. A Posteriori Error Analysis 
We assume in what follows that II AlIz Q 1. 

91 

LEMMA A.2. Consider the following sequence of Givens rotations: 

Al=GtA=jl -“s ;][ * i :) =i’ lr ii), (99) 

where (Y ’ = cx + sb and /3 = cy + sa. Next, let 

where e = (Y’S’ and (Y = (Y’c’. Finally, let 

where d = (YC + @s. We now consider the related sequence applied to A 
which is the same as A bwt with 

Then, 

(k 6) = (4 + e), y + 77), l&,771 < 0. ( 102) 

II4 - lell < 8, ld^ - dJ < 58. ( 103) 

Proof. Consider the first bound in (103); then 

= Ia’I(1 + q), 0 < E1 =G .5 or 0 >, c1 2 E. ( 105) 
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We can therefore conclude that 

IJe^l - IelI = ls’l(l&‘I - la’ll < ((~‘(0 < 8. 

For the second bound in (1031, note that 

( 106) 

Id - dl < Jac - &;I + Is2 - P la1 + lscy - .qI. ( 107) 

For the first term, we observe from (98) that sign(a ‘c) = sign(r), so that 

For the second term in (107), we obtain 

l~2-1’l-$-E”-$~l- (22&l - (1 + c)“I Q 28 + f32. 

( 109) 

Finally, for the last term in (107), we get 

lq - 2g < 8 + (SC - El, (110) 

and therefore, assuming w.1.o.g. that 6 > 0, we get 

1.x - &I = --y$ - xb(l + &) 

[x(1 + c)]” + b” 

+-(l+e) x2 + b2 

[x(1 + E)]~ + b2 

Now, 

x2 + b2 
l-2&< 

[x(1 + s)]” + b2 
< 1, (112) 
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and we conclude that 

93 

Isc - &?I < $1 - (1 + &)(l - 2E)I ,< ;e + 02. (113) 

Collecting the different terms, we conclude that 

I& dl < 0 + (28 + 6”) + 8 + ($0 + 0’) < 58, (114) 

from which the second bound in (103) now follows. ??

A.3. A Priori Error Analysis 

LEMMA A.3. Fors = k - l,... , 0 the corresponding pairs 

(%a YiJ, (L !?i,,), i = (2j + 1)2”, j = 1,. . . , p/2”+l - 1, 

(115) 

are derivedfrom the same set of n, + 1 rows, where n, = 2s + n, as follows: 

1. The row’ R!+ ‘. 
2. The two e&rem rows of 

T,‘, r=O ,...,. s-l, 1 = i/2’ - 1. (116) 

3. The n rows of Ti. 

Proof. The proof is straightforward, and is left for the reader. W 

We will denote the matrix corresponding to the above ith pairs by Bb. 

PROIWSITION A.4. For s = 0,. . . , k - 1 let 

A” = A[] ‘i,” + l] 
I [I Ill] ) 

i = (2j + 1)2”, j = 0,. . ., p/2’” - 1. (117) 

Then Bf is obtained from A,; by a sequence (If Givens rotations such that 

Bi’= fl((Q;)‘A;) = @,")'A,; + E;, llE:‘112 = O(n0,). (118) 
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Proof. We give only an informal proof, leaving the details for the reader. 
The corresponding rows in Lemma A.3 can be seen to be the result of 
applying only part of the Givens rotations. This partial sequence, applied to 
AT, is denoted by Qf. Moreover, the corresponding rotations are applied in 
O(log p) steps, where in each step rotations are applied to independent (or 
almost independent) blocks of the matrix. In conclusion, the rounding errors 
due to the rotations in the diagonalization stage are of order n&, and those 
due to the bottom-up and top-down sweeps are of order log p. Finally, log 
p << n for all practical purposes. ??
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