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In mammals, dietary vitamin A intake is essential for the maintenance of adequate retinoid (vitamin A and
metabolites) supply of tissues and organs. Retinoids are taken up from animal or plant sources and subsequently
stored in form of hydrophobic, biologically inactive retinyl esters (REs). Accessibility of these REs in the intestine,
the circulation, and their mobilization from intracellular lipid droplets depends on the hydrolytic action of RE
hydrolases (REHs). In particular, the mobilization of hepatic RE stores requires REHs to maintain steady plasma
retinol levels thereby assuring constant vitamin A supply in times of food deprivation or inadequate vitamin A
intake. In this review, we focus on the roles of extracellular and intracellular REHs in vitamin A metabolism.
Furthermore, we will discuss the tissue-specific function of REHs and highlight major gaps in the understanding
of RE catabolism. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.
AT, acyl-CoA:retinol acyltrans-
triglyceride lipase; BBB, blood-
cholesteryl ester; CEL, carboxyl
e gene identification 58; CM,
GAT1, acyl-CoA:diacylglycerol
erase 2; Es3, esterase 3; Es4,
y acid; GPIHBP1, glycosylpho-
inding protein 1; GS2, gene
cell; HSL, hormone-sensitive
k-out; LD, lipid droplet; LRAT,
rotein-receptor protein 1; LPL,
lyceride lipase; NREH, neutral
eatic lipase-related protein 2;
; PTL, pancreatic triglyceride
tor alpha/beta; RBP4, retinol-
XRα/β/γ, retinoid X receptor
drolase; STRA6, stimulated by
lycerol; TIP47, tail-interacting
t, wild-type
d and Lipid Metabolism.
: +43 316 380 9016.

-NC-ND license.
© 2011 Elsevier B.V. Open access under CC BY-NC-ND license.
1. Introduction

Retinoids (vitaminA andmetabolites) belong to the class of essential
dietary lipids because they are vital for a variety of physiological
processes including someof themost fascinating and barely understood
phenomena—growth and development [1–3]. Vitamin A is primarily
transported as retinol bound to its specific transport protein, retinol-
binding protein 4 (RBP4) and retinyl esters (REs), contained in
lipoproteins. Intracellularly, vitaminA is stored asREs in large quantities
in specialized cells of the liver. These transport and storage forms of
vitamin A are as such biologically inactive. Themajor bioactive forms of
vitamin A are (i) retinoic acid(s) (RAs), which bind to nuclear receptors
thereby regulating gene expression and (ii) retinaldehyde, which
represents the photoactive component of rhodopsin. Furthermore,
retinol and retinaldehyde have also been recognized as signaling
molecule(s) and transcriptional regulators [4–7].

Mammals take up retinoids mostly from plants as pro-vitamin
beta-carotene and from animal tissues as REs. Within the body,
excessive retinoids are stored as REs mainly in the liver and to a lesser
extent in adipose tissue [8–12]. Accessibility and distribution of
dietary REs as well as the mobilization of intracellular RE stores
requires enzymatic activities from RE hydrolases (REHs). The
accessibility of dietary REs necessitates extracellular REHs in the
intestine [13]. After uptake in enterocytes, retinol is re-esterified to
REs and packed into nascent chylomicrons (CMs) together with other
dietary lipids such as triacylglycerols (TGs) [14,15]. In the circulation,
these CMs are depleted from lipids by lipoprotein lipase (LPL)
mediated hydrolysis providing fatty acids (FAs) and retinol for
peripheral tissues [16–18]. In liver, RE-rich CM remnants are mainly
taken up by hepatocytes. Intracellularly, these REs are hydrolyzed and
either released into the circulation, or re-esterified and stored in
cytosolic lipid droplets (LDs) [19,20]. Yet, the vast majority of REs is
stored in cytosolic LDs of specialized liver cells, designated as hepatic
stellate cells (HSCs), Ito cells, or vitamin A storage cells [21]. These
hepatic RE stores are mobilized by REHs to ensure constant supply of
peripheral tissues with retinol, also under conditions where dietary
retinoids are not available. Despite the pivotal role of vitamin A in
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many physiological processes, surprisingly little is known about the
enzymes andmechanisms how RE stores aremobilized and how these
processes are regulated.

2. Extracellular retinyl ester hydrolases

2.1. Intestinal retinyl ester hydrolases

Dietary lipids constitute a complex mixture of lipid species, some of
which are highly water insoluble in nature. This hydrophobicity
necessitates a breakdown into more hydrophilic lipid species prior to
their uptake by the intestine. The bile-salt activated carboxyl ester lipase
(CEL; EC 3.1.1.13) has long been known to exhibit broad substrate
specificity (reviewed in [22]) and was considered as key enzyme in
intestinal retinol uptake. CEL shows activities against TGs, cholesteryl
esters (CEs), phospholipids (PLs), and REs in vitro [23–27] and requires
the presence of trihydroxy bile acids for full enzymatic activity [28]. In
mammals, CEL is predominantly synthesized in the pancreas and
secreted into the intestinal lumen [22]. Studies in mutant mice lacking
CEL (CEL-ko) revealed unaltered intestinal dietary retinol uptake [29].
On the other hand, the uptake of a non-cleavable retinyl ether substrate
was completely blunted [29] confirming earlier studies and indicating
that the hydrolysis of REs is an essential step prior to uptake by
enterocytes [30,31]. Analysis of REH activities in homogenates of
pancreas showed similar activities in CEL-ko mice compared to wild-
type (wt) controls [32,33]. Importantly, pancreatic REH activities were
stimulated in the presence of di- and trihydroxy bile-salts in both
genotypes [32]. Together, these data imply that at least one additional
bile-salt dependent REH must exist in the murine intestine.

The pancreatic triglyceride lipase (PTL; EC 3.1.1.21) has been
identified as intestinal REH inmouse and in rat [32]. PTL preferentially
hydrolyzes TGs and its catalytic activity depends on the presence of a
co-lipase and millimolar concentrations of dihydroxy bile acids such
as deoxycholate or taurodeoxycholate (reviewed in [34]). The
characteristics of in vitro activities of PTL and CEL allow distinguishing
between these enzymes. Under optimal assay conditions for PTL
(dihydroxy bile-salt) and CEL (trihydroxy bile-salt) a substantial co-
lipase-dependent REH activity was detected in pancreatic homoge-
nates of wt and CEL-ko mice suggesting a role of PTL as intestinal REH
[32]. The in vivo roles of PTL and CEL in RE catabolism were
investigated in mice lacking PTL (PTL-ko) and lacking both enzymes,
PTL and CEL (PTL-ko/CEL-ko) [35]. These mice were fed a high-fat/
high-cholesterol diet and received radiolabeled retinyl palmitate.
Subsequently, the appearance of the radiolabel in the circulation was
monitored. PTL-ko mice exhibited a ~30% reduction in RE clearance
[35]. This defect was exacerbated to ~50% when mice lacked PTL and
CEL suggesting that both enzymes are involved in intestinal retinoid
hydrolysis. Notably, RE absorption was ~6 times higher in wt, PTL-ko,
CEL-ko, and PTL-ko/CEL-ko mice when retinyl palmitate was
administered in PL-vesicles as compared to olive oil emulsion
implicating that dietary TG content has a great impact on intestinal
RE catabolism [35]. Moreover, the absorption pattern of retinyl
palmitate and TGs was similar in all four genotypes investigated
suggesting that efficient RE clearance may depend on TG absorption.
In contrast to TG and RE catabolism, CE absorption was normal in PTL-
ko animals whereas it was almost completely blunted in CEL-ko mice
[35]. Thus, CEL is the major CE hydrolase in the intestinal lumen.
Taken together, these in vivo studies clearly demonstrate that PTL and
CEL affect intestinal retinol uptake.

However, the rate of RE absorption in double ko mice was still
around ~50% of that of wt mice [35] implicating the existence of other
yet uncharacterized intestinal REHs. One possible candidate for this
catalytic activity is pancreatic lipase-related protein 2 (PLRP2, EC
3.1.1.26). This protein belongs to the lipase family and shares high
sequence similarity to PTL [36]. PLRP2 is expressed in newborns of
various species and its expression persists into adulthood [34]. PLRP2
cleaves various substrates such as TGs, PLs, galactolipids, and REs, but
substrate specificity strongly depends on the species investigated
[34,37–40]. PLRP2 hydrolyzes REs in mixed micelles independent of a
co-lipase, whereas REs present in TG-rich LDs are not catalyzed [40].
Interestingly, PLRP2-mediated RE hydrolysis was more efficient in the
presence of PTL, probably due to better substrate presentation for
PLRP2 through PTL activity. Notably, suckling PLRP2-deficient mice
displayed severe fat malabsorption resulting in steatorrhea and
reduced weight gain [41]. These data confirm that PLRP2 plays a key
role in dietary lipid absorption in the absence of PTL, which is
expressed close to the end of the suckling period [34]. Yet, the in vivo
role of PLRP2 in intestinal RE catabolism has not been studied so far.

Brush-border phospholipase B (BPL-B) has also been identified as
an REH in rats [13] and in humans [42]. This enzyme exhibits highest
activity toward naturally occurring long-chain REs and is stimulated
by di- and trihydroxy bile-salts. Interestingly, BPL-B is expressed and
active at the distal end of the intestine, where enzymatic activities
derived from pancreas are declining [43] implying that this enzyme
ensures efficient hydrolysis and absorption of vitamin A. However, its
in vivo function has not been elucidated to date.

2.2. Retinyl ester hydrolases in the circulation

Once dietary retinol enters enterocytes, it is re-esterified to REs
and packed together with TGs and CEs into nascent CMs, which are
finally released into circulation. Two thirds of CM associated REs are
cleared by the liver, where retinol is subsequently stored primarily in
LDs of HSCs [44,45]. The remaining third of CM associated REs is taken
up by peripheral tissues such as adipose tissue, skeletal muscle,
cardiac muscle, and kidney [44]. Thus, peripheral tissues are directly
supplied by dietary vitamin A although the majority of retinoids is
acquired from circulating retinol, complexed to serum RBP4
(reviewed in [46]).

In liver, CM remnants are rapidly sequestered in the space of Disse,
where several proteins are involved in their remodeling, capturing,
and internalization. Acquisition of apoE [47], surface PL alteration
[48], low-density lipoprotein-receptor protein 1 (LRP-1) [49–51], LPL-
anchor glycosylphosphatidylinositol-anchored high-density lipopro-
tein binding protein 1 (GPIHBP1) [52], the recently discovered
primary hepatocyte heparan sulphate proteoglycan (HSPG) synde-
can-1 [53], and also the degree of sulfation of HSPGs [54] are major
determinants of CM remnant removal and hence also of CM-
associated REs clearance (recently reviewed in [55,56]). LPL (EC
3.1.1.34) and hepatic lipase (HL, EC 3.1.1.3), abundant proteins in the
space of Disse, bind to HSPGs, GPIHBP1, and LRP-1 and exhibit an
important non-enzymatic bridging function in the removal of CM
remnants [47,56]. In contrast, hydrolytic activities which are involved
in CM-associated RE clearance are not equally understood. HL is
primarily involved in enzymatic remodeling of very low-density
lipoprotein (VLDL) and high-density lipoprotein, but an REH activity
for HL has not been demonstrated so far. In contrast to HL, LPL has
been shown to exhibit REH activity against artificial lipid emulsions
and its physiologically relevant substrate CMs [17]. Like for its TG
hydrolytic activity, REH activity of LPL is also activated several-fold by
its co-activator apolipoprotein CII and heparin [17]. But, LPL primarily
hydrolyzes TGs and hydrolyzes REs only after the majority of TGs has
been cleaved [17]. A study in perfused rat liver showed that not only
the lipolytic activity of LPL but also of other TG hydrolases is important
for removal of 3H-REs and 14C-TGs [57]. An in vitro study performed in
hepatocytes using CM-associated 3H-REs revealed that the uptake of
the radiolabel is increased in the presence of LPL [58]. However, and in
contradiction to previous findings [17], the uptake of 3H-label is
decreased in the presence of heparin, a glycosaminoglycane which is
known to stabilize LPL but prevents its binding to cell surface. These
findings indicate that both hydrolytic activity and non-enzymatic
bridging of LPL are important for the uptake of CM-associated REs.
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In adipocytes, REH activity of LPL is necessary for retinol uptake
[17]. Accumulation of retinol was increased 2-fold in the presence of
LPL, when retinyl palmitate was present in a TG emulsion. This
increase was even higher when heparin was added. Hence, in
adipocytes enzymatic LPL activity rather than a non-enzymatic
bridging function is important for retinoid uptake. This is supported
by in vivo data using 14C-labeled non-cleavable retinyl ether along
with 3H-retinyl palmitate [18]. An increased 3H-label was observed in
adipose tissue indicating that CM-associated RE hydrolysis is
important prior to retinoid uptake. Furthermore, retinoid uptake
was strongly influenced by genetically and nutritionally altered levels
of LPL expression [18]. This is in line with its well-known regulation at
transcriptional and post-transcriptional level: LPL mRNA levels are
up-regulated by insulin in differentiating and mature adipocytes and
LPL activity is high in adipose tissue after feeding and low during
fasting (recently reviewed in [59]).

Mechanisms for RE uptake as observed in adipose tissue were also
described in skeletalmuscle andheart [18]. Furthermore, LPL expression
levels and activities differ depending on the energy status of the
organism. In times of high energy demand, such as fasting periods, LPL
activities are elevated in skeletal and cardiacmuscle. These elevated LPL
activity levels facilitate adequate FA supply to ensure tissue's energy
requirements. In addition, LPL-mediated clearance of CMs also provides
tissues with cholesterol and retinol, which are necessary for normal
tissue function under conditions of nutritional deprivation. In skeletal
muscle, the retinoid uptake from CMs was increased when levels of LPL
expressionwere high. Strikingly, experimentswith 3H-retinyl palmitate
and non-cleavable 14C-retinyl ether revealed a tremendous accumula-
tion of 3H-label in skeletal muscle compared to adipose tissue and heart
[18]. Ratios of 3H- to 14C-label were 19:1 for skeletal muscle, 3:1 for
adipose tissue, and 1:52 for heart. These results imply that the REH
activity of LPL is more important for retinoid supply in skeletal muscle
than in adipose tissue and heart. Yet, retinoid content in skeletalmuscle
did not correlate with postprandial uptake, which would be expected if
dietary retinoid internalization was the major determinant for skeletal
muscle retinoid homeostasis [18]. This suggests that retinoids are
continuously mobilized from skeletal muscle and transported to the
liver or other tissues. In cardiac muscle the dual label experiment with
3H-retinyl palmitate and non-cleavable 14C-retinyl ether resulted in a
3H:14C ratio of 1:52 [18]. This indicates that LPL REH activity in heart is
less important than in skeletal muscle (ratio 19:1) and adipose tissue
(ratio 3:1). Recently, it was shown that in the absence of LPL, specifically
in the heart, the uptake of TG and also of RE from CMs was drastically
reduced [60]. This was not the case in mice lacking the FA transporter
CD36. CE uptake fromVLDLwas also affected by the loss of heart LPL but
not CD36 [60]. Hence, next to the hydrolytic function of LPL for cardiac
retinoid uptake, these data strongly support that non-enzymatic LPL
bridging facilitates the internalization of the core lipids REs and CEs
[18,60]. Authors suggest various possiblemechanisms: a)whole particle
uptake, b) remnant uptake, or c) core lipid shedding during LPL-
mediated lipolysis resulting in a selective lipid uptake. Yet, retinoid
concentrations aswell as retinoid-modulatedgene expression in cardiac
muscle were not altered, confirming that alternative mechanism(s)
compensate for the loss of LPL in order to ensure tissue retinoid supply
[60].

Such a compensatory mechanism for retinoid supply, in addition
to circulating RBP4, was confirmed by an in vivo study on retinoid
delivery to milk [61]. Milk from serum RBP4-deficient (RBP4-ko) mice
showed drastically reduced long chain and poly-unsaturated FAs, but
no differences in retinoid concentrations. Using a lipase inhibitor, the
authors demonstrated that postprandial delivery of retinoids by the
enzymatic action of LPL fully ensured retinoid supply to milk and
hence to the offspring. Taken the importance of FAs, CEs, and REs for
growth and development, it is conceptual that multiple mechanisms
have evolved to facilitate delivery of these essential lipid classes to the
newborn.
In kidney, lung, and spleen, the dual label experiment using 14C-
labeled non-hydrolyzable retinyl ether along with 3H-retinyl palmi-
tate [18] showed that these tissues took up equal amounts of 14C- and
3H-label indicating that REH activity of LPL is not essential for retinoid
uptake in these tissues. Yet, it is not known to which extent the
bridging function of LPL accounts for internalization of non-cleavable
14C-retinyl ether.

The question whether CM-associated REs can act directly as
precursors for RAs is currently not known. Essentially all tissues have
the capability to store retinol prior to its oxidation to metabolic active
RAs [61–64]. Hence, it can be speculated that CM-associated REs must
first be hydrolyzed, re-esterified, and then stored within cytosolic LDs
in order to be released upon demand. Considering the importance of
retinoids, a futile cycle as known for intracellular TG metabolism [65]
would enable tissues to respond quickly to changing physiological
demands, in addition to the continuous cycling of retinoids between
liver and extra-hepatic tissues [66].

In conclusion, in vivo data provide compelling evidence for PTL,
CEL and LPL as important REHs in the intestine and in the circulation,
respectively. Yet, further investigations are needed to delineate
retinoid hydrolysis in the extracellular space. In vivo studies are
important to understand the physiological relevance of participating
enzymes and animal models lacking specific REHs will help to clarify
these lipolytic processes.

3. Intracellular retinyl ester hydrolases

3.1. Retinyl ester hydrolases of hepatocytes

In liver, retinoids are delivered either as free retinol bound to RBP4
or esterified as REs associated with CM remnants. Circulating retinol/
RBP4 complexes are likely to be internalized by receptor-mediated
endocytosis via the recently discovered RBP4 receptor stimulated by
retinoic acid gene 6 (STRA6) [67–69]. Yet, this pathway does not
require any hydrolytic activities. In contrast, catabolism of REs
associated with CM remnants relies on intracellular REH activities as
remnant lipoproteins are internalized as whole particles [70–72].
Early work from the mid 1970s showed that HSCs are not involved in
CM remnant clearance [73]. This was later confirmed by in vivo studies
showing that the majority of radiolabeled REs associated with CMs is
first taken up by hepatocytes and then transferred to HSCs for storage
[45,74]. In mice set on a vitamin A deficient diet, however, 3H-retinol
from CMs is not channeled from hepatocytes to HSCs for storage but
rather secreted into the circulation [45]. These findings indicate that
hepatocytes represent a first check-point in vitamin A metabolism in
the body and hence control whether retinol is re-secreted into the
circulation or transported to HSCs for storage.

Early work by Blomhoff et al. [75] using subcellular fractionation
and density gradient centrifugation showed that endocytosed CM
remnants labeled with 3H-REs first appear within early endosomes.
Subsequently, they are transferred to the endoplasmic reticulum (ER)
but not to the lysosomes. Thus, the retinoid pathway contrasts the fate
of CEs and TGs, which are degraded in lysosomes [76]. Although all of
these lipids are transported in CM remnants and internalized via
receptor-mediated endocytosis, REs are cleared already in the
endosomes. Several studies have confirmed the first step of
intracellular transport of retinoids [71,77]. It was shown that fractions
of early endosomes/plasma membranes were enriched in bile-salt
independent neutral REHs (NREHs) and acidic REHs (AREHs) activities
[27,71,77–79]. Together these data imply that CM-associated REs are
hydrolyzed within endosomes. Yet, whether hydrolysis of endocytosed
REs in endosomes is a prerequisite for transport to the ER, or if
internalized REs are transported directly to the ER for hydrolysis is not
fully understood. In any case, ER-associated REHs are thought to
represent a switch-point between retinol/RBP4 release and retinol
esterification and subsequent RE storage in cytosolic LDs.
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Much research has focused on the characterization of members of
the mammalian non-specific carboxylesterase super-gene family (EC
3.1.1.1) with regard to their involvement in hepatic RE catabolism
[80] because of several reasons: First, carboxylesterases are highly
expressed in liver as well as in some extrahepatic tissues [81]. Second,
many carboxylesterases harbor ER retention signals (HXEL) at the
C-terminus indicative for ER localization [82]. And third, carboxyles-
terases have been shown to hydrolyze REs and other lipid substrates
as well as xenobiotics [78,83]. In vitro REH activities have been shown
for four proteins of this gene family—rat esterase 2 (Es2), esterase 3
(Es3), esterase 4 (Es4), and esterase 10 (Es10) [78,84,85]. These
enzymes are the most promising candidates to date to be involved in
RE catabolism of hepatocytes. Hepatic carboxylesterases identified as
REHs and their orthologs in mouse, rat, and humans are shown in
Table 1.

A potential REH in early endosomes was identified to be Es2. Rat
Es2 is solely expressed in the liver [82] and lacks the consensus ER
retention sequence HXEL [86]. Immunoblotting experiments revealed
that Es2 is secreted by primary rat hepatocytes and into serum, which
is in line with its lack of ER retention signal and the high glycosylation
grade obtained during transport via the Golgi apparatus. Moreover, an
NREH activity catalyzing REs and also TGs but not CEs was isolated
from rat microsomes [85]. This protein was shown to be identical to
rat Es2. Together, these data imply that Es2 plays a role in RE
catabolism in early endosomes or even extracellularly in the space of
Disse.

Another possible REH in endosomes is Es10 [84]. Purified Es10
from hepatic rat microsomes exhibited highest activities versus
micellar retinyl palmitate at neutral and acidic pH, whereas TGs and
CEs were only poor or no substrate for Es10. In vitro REH activities
were neither influenced by bile-salts nor binding proteins such as
RBP4, cellular retinol-binding protein 1 (CRBP1) or albumin [85].
Interestingly, Es10 possesses an ER retention signal (HXEL) [86] and a
low glycosylation pattern indicating that the enzyme may retain at
the ER and is not transported via the Golgi apparatus [84]. Analysis of
Es10 mRNA and protein levels revealed high expression in liver, lung,
and testis. These data suggest that Es10 is involved in RE breakdown
in endosomes and/or ER.

Recently, we described a very prominent role for esterase 22
(Es22) in hepatic RE catabolism [87]. Detailed analysis of mRNA and
protein expression revealed that murine Es22 is highly expressed in
liver, specifically in hepatocytes but not in HSCs. Es22 carries a HXEL
sequence at the C-terminus and overexpression of GFP-labeled Es22
confirmed that this protein exclusively localizes to the ER. Impor-
tantly, Es22 exhibits specific activity toward REs but only low or no
activities for CEs and TGs, respectively. Most strikingly, Es22 over-
expression in Cos-7 cells attenuated RE accumulation in living cells
underpinning the pivotal role of Es22 in RE catabolism [87]. Together,
these data argue for a role of Es22 at the ER where it possibly
counteracts the esterification of retinol. Interestingly, the availability
Table 1
Potential hepatic REHs and their orthologs in mouse, rat, and humans.

Species Protein Gene Alternative gene names

Mouse Es1 Ces1c Ee1, Es4, EsN, Ee-1, Es-4, Es-N, PESN, Ces-N
Rat Es2 Ces1c Es1, Es2, pI 6.1 esterase, NREH serum/liver carboxylestera
Human CES1 CES1 TGH, ACAT, CEH, CES2, HMSE, SES1, HMSE1, PCE-1, MGC1
Mouse Es22 Ces1e Eg, egasyn
Rat Es3 Ces1e Ces1, Es22, pI 5.6 esterase, MGC156521
Human CES1 CES1 as above
Mouse Ces1f Ces1fa TGH-2, CesML1, AU018778, MGC18894
Rat Es4 Ces1f Carboxylesterase pI 6.2/6.4, liver carboxylesterase Es4,
Human CES1 CES1a as above
Mouse Ces1d Ces1d CES3, TGH, FAEE synthase
Rat Es10 Ces1d Carboxylesterase pI 6.0/6.1, Ces3, ES-HVEL, FAEE synthase
Human CES1 CES1 as above

a Genes of highest sequence similarity, orthologs not yet specified.
of retinol was shown to alter RBP4 secretion [88,89]. Hence, it can be
hypothesized that Es22 REH activity promotes retinol/RBP4 secretion.
Despite promising results for a role of Es22 in RE catabolism, the
physiological role of this enzyme isunclear andawaits tobe investigated
in animal models.

Es4 from rat, pig, and human has been shown to possess REH
activity [78,90]. Differential centrifugation analysis suggested that Es4
localizes to the ER [78]. No further insights for a potential role of Es4 in
RE catabolism are available so far.

In summary, several attempts have been undertaken to under-
stand the role of carboxylesterases in hepatic RE catabolism. A
comparison of relative mRNA levels showed that Es10 is the most
abundant carboxylesterase in liver and in hepatocytes, followed by
Es4 and Es3 [84,91]. Sanghani and colleagues estimated that Es10 and
Es4 account for 60% and 40% of total NREH activities, respectively [92].
However, the physiological relevance of these enzymes is currently
unclear and remains to be investigated.

Hormone-sensitive lipase (HSL), a multifunctional enzyme exhi-
biting REH activity, has been demonstrated to be rate-limiting in the
mobilization of adipose tissue RE stores [93]. In contrast to adipose
tissues, the expression level of HSL in liver is very low [91,94].
Interestingly, a recent report has shown that HSL is particularly
enriched in hepatocytes [95]. While the authors demonstrated altered
CE metabolism in hepatocytes derived from HSL-deficient (HSL-ko)
mice, no data are available in regard to RE catabolism. Thus, the role of
HSL in liver RE metabolism and in particular in hepatocytes is
unknown and remains to be examined.
3.2. Retinyl ester hydrolases in hepatic stellate cells

HSCs (also referred to as Ito cells, fat-storing cells, or lipocytes)
play a pivotal role in retinoid metabolism and homeostasis as they
store the majority of all REs present within the entire body [11,96,97].
HSCs are scarce and small in size, representing only 5–8% of the total
number of hepatic cells and account for ~1% of total protein present in
the liver [98,99]. Stellate cells not only exist in liver but also in small
number throughout the body, in tissues such as pancreas, brain,
kidney, and others. Accordingly, extrahepatic stellate cells may as well
function as vitamin A storage sites [100].

HSCs contain distinctive cytosolic LDs [101]. A characteristic of these
organelles is their unique lipid composition: unlike LDs found in cells of
other tissues, HSC LDs comprise equal amounts of REs and TGs account-
ing together for more than 75% of total lipid content [96,102–105]. The
prominent RE species is retinyl palmitate (70–75%), followed by retinyl
stearate, retinyl oleate, and retinyl linoleate. According to the
physiological function of HSCs as major RE storage site, these cells
contain high levels of lecithin:retinol acyltransferase (LRAT) and CRBP1
which are the major proteins in liver retinol esterification and
intracellular retinoid transport, respectively [9,106,107].
Localization Tissues

ER extracellular [186] liver (kidney, testis, lung) [187,188]
se 1 ER (lumen) extracellular [86] liver [82]
17365 ER (lumen) [189] liver, lung (others) [190–193]

ER [87] liver (adipose, kidney) [87]
ER (lumen) [86] liver, kidney, intestine [92]

ER, cytosol, lipid droplet [194] liver, intestine, kidney, adipose [194]
ER [78] liver, kidney [92]

ER, cytosol, lipid droplet [194,195] liver, kidney, heart, adipose [86]
ER (lumen) [86] liver (lung, testis) [84]
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Themobilization of HSC RE stores has been demonstrated to play a
major role in the supply of retinol to extrahepatic tissues for
conversion to biologically active metabolites, particularly under
conditions of retinoid insufficiency [108,109]. Also, liver fibrosis is
directly linked toHSC RE stores: HSCs are usually inactive or quiescent,
but in case of liver injury they undergo an activation process in which
they become highly proliferative [97,110]. The resulting activated
HSCs take on a fibrogenic myofibroblast-like phenotype and lose their
RE-containing LDs [97,111,112]. Depletion of HSC RE stores is a
distinctive characteristic of activated HSCs and hepatic fibrosis.
However, it is not clear whether RE mobilization is required for HSC
activation orwhether this loss is part of the progression of fibrosis. Yet,
mice deficient of LRAT lack HSC LDs and thus RE stores, but do not
develop liver fibrosis. This suggests that the absence of LDs from HSCs
per se is not causative for pathogenesis of liver fibrosis [113]. Despite
the immense physiological importance of RE mobilization from
intracellular LDs of HSCs, the limiting enzyme(s) in this metabolic
pathway have not been identified so far.

Early work by the pioneers in vitamin Ametabolism demonstrated
that HSC-enriched fractions from rat livers contain extremely high
levels of REH activities [9,107]. In fact, using retinyl palmitate
emulsified with cholate, REH activities were ~15-fold higher than in
hepatocytes. The hepatic bile-salt activated REH has long been
considered to be CEL. Although CEL is mainly secreted to the intestine,
it is also reported to act intracellularly in the liver [114,115].
Therefore, it has been speculated that CEL may be responsible for RE
mobilization in HSCs. However, in vivo studies using CEL-komice have
convincingly demonstrated that CEL plays only a minor role in hepatic
RE catabolism [29].

Next to bile-salt dependent REH activities, bile-salt independent
NREH and AREH activities were identified in HSC-enriched fractions
but were not preferentially enriched compared to hepatocytes [106].
In addition, AREH activity has also been described in the rat HSC-line
PAV-1 [116]. The same research group also described a lysosomal
AREH [117] catalyzing REs contained in isolated LDs from rat non-
parenchymal cells [118]. Moreover, it was shown that LDs are capable
to fuse with primary lysosomes in HSCs [119] suggesting that this
lysosomal AREH may be physiologically relevant in hepatic retinol
mobilization [118]. In any case, the identity and physiological
relevance of this AREH are not known.

In proteomic analysis of rat HSCs, Es10 was the only carboxyles-
terase associated with HSC LDs [120]. However, Es10 protein was
found to be down-regulated in activated HSCs and in hepatocytes of
fibrotic liver questioning an essential role of Es10 in RE mobilization
during HSC activation. Furthermore, recent studies by Mello et al. [91]
reported that the expression of several carboxylesterases (rat Es3,
Es4, and Es10) is not detectable in HSCs, but is rather exclusive in
hepatocytes.

Several other well described lipases such as HSL and PTL were not
found to be expressed in HSCs [91]. Interestingly, adipose triglyceride
lipase (ATGL) was found to be expressed in rat HSCs [91]. As ATGL has
been reported to specifically hydrolyze TGs but not REs or CEs [121] it
renders a role for ATGL as REH unlikely.

Despite the fact that a number of REHs have been shown to be
expressed in HSCs, the preferred localization in the extracellular space
(see CEL), in hepatocytes rather than HSCs (see Es10), and their
substrate specificities (see ATGL) challenge their potential role in RE
mobilization in HSCs. Importantly, enzyme(s) involved in intracellular
mobilization of REs from HSCs require(s) LD localization and lipid/
water interphase activation. Most likely, more sophisticated ap-
proaches are needed to identify the so far unknown REH(s) in HSCs.

3.3. Retinyl ester mobilization in adipose tissue

Early studies identified fat tissues as significant retinoid stores [12].
In fact, these stores reach levels of up to 20% of total bodies' retinoid
stores. Themajorityof these retinoids (50–70%)areREsdeposited in LDs
of adipocytes. Depending on the fat depot, those tissues also contain
RBP4 mRNA levels of up to ~1/5 of those in the liver suggesting that fat
tissues significantly contribute to retinoid metabolism [12,122].
Furthermore, adipose tissue readily takes up dietary retinoids, a process
which is dependent on LPL activity [17,18,113,123] (see also Extracel-
lular retinyl ester hydrolases). Furthermore, differentiated adipocytes
have been shown to accumulate REs and secrete RBP4 [12,124], thus
providing direct evidence that accumulation andmobilization/secretion
of REs are intrinsic properties of adipocytes. Interestingly, adipose RE
stores were found to be mobilized in times of dietary retinoid
undersupply [113]. During such periods of retinoid deficiency, adipose
RE stores are depleted faster than hepatic reserves [113] indicating that
these stores may represent a nutritionally regulated and flexible
reservoir to maintain plasma retinol/RBP4 levels.

Over a long period little was known about the enzymes which are
responsible for themobilization of adiposeRE stores. Of the three lipases
involved in the consecutive breakdownof TGs in adipocytes (ATGL, HSL,
andmonoglyceride lipase—MGL) (recently reviewed in [125]), only HSL
has been reported to exhibit REH activity [93,121,126–128]. The
important role of HSL in RE turnover in white and brown adipose tissue
has been examined using HSL-ko mice [93]. Adipose tissues of these
mice accumulate REs and exhibit only very low residual REH activity. As
a consequence and secondary to increased RE stores, retinol, RA, and
retinaldehyde levels aswell as expression levels of enzymes involved in
the oxidation of retinol and retinaldehyde such as alcohol dehydroge-
nase 1/3 and retinaldehyde dehydrogenase 1 were decreased. This
deranged retinoid metabolism in HSL-ko mice is also evident from low
expression levels of nuclear receptors—the retinoic acid receptor alpha
(RARα), retinoidX receptoralpha (RXRα), andperoxisomeproliferator-
activated receptor gamma, as well as the transcription factor sterol
regulatory element bindingprotein 1, all ofwhich are known to regulate
adipogenesis and differentiation (recently reviewed in [129–132]). The
important role of HSL in differentiation and development is also evident
from the observation that male HSL-ko mice suffer sterility caused by
oligospermia [133]. These mice show extensive vacuolization in
epithelial cells in the seminiferous tubules which might be caused by
accumulation of TGs and CEs. Thus, impaired cholesterol and/or FA
mobilizationmight cause defective spermatogenesis. However, it is also
reasonable to conclude that male sterility in HSL-ko mice arises from a
disturbance of retinoidmetabolism. This assumption is supported by the
well-established vital role of vitamin A in reproduction. For example,
rats on a vitamin A-deficient diet develop a wide variety of phenotypes
including male sterility [134]. In addition, male sterility is the major
phenotype of RARα- [135,136] and RXRβ- [137] deficient mice.

ATGL, the rate-limiting enzyme in TG catabolism, has also been
implicated in retinoid homeostasis. Mutant mice lacking ATGL exhibit
lowered plasma RBP4 levels [138] suggesting that RBP4 levels may be
directly or indirectly related to lipolysis. Interestingly, these animals
are more insulin-sensitive whereas the opposite, insulin-resistance,
has in fact been associated with elevated plasma RBP4 levels [139].
However, currently it is unknown whether ATGL is involved in RE
hydrolysis and if the reduction in RBP4 levels is directly linked to
defective lipid hydrolysis.

3.4. Retinyl ester hydrolases in skin

In skin, the bodies' largest organ, proliferation, differentiation, and
development of the epidermal permeability barrier are greatly
dependent on retinoids [140]. For example, abnormally low RA levels
lead to defective epidermal differentiation and, as a consequence, to
impaired permeability barrier function with increased water loss—a
disease state commonly known as xerosis cutis. Several studies have
established that LRAT [141] and acyl-CoA:retinol acyltransferase
(ARAT) [142] activities exist in skin which lead to the esterification
and storage of REs. Recently, a murine skin ARAT activity was found to
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be identical to the neutral lipid synthesizing enzyme acyl-CoA:
diacylglycerol acyltransferase 1 (DGAT1) [63]. In contrast to acyl-
transferases, only little information is available about the identity and
regulation of REHs in skin.

Recently, human homologs of murine non-specific carboxyles-
terases, Es1 and Es2, as well as a splice variant of HSL were shown to
be expressed in the transformed epidermal keratinocyte line SCC13
[143]. For these enzymes or their homologs, in vitro REH activities are
known [85,93]. Yet, REH activities in SCC13 homogenates were not
altered in the presence of the inhibitor bis-p-nitrophenyl-phosphate
to which carboxylesterases and HSL are sensitive, arguing against a
substantial contribution of these enzymes in keratinocyte RE
mobilization. Following a random and directional screen of keratino-
cyte cDNA library, Gao and colleagues [143] identified human gene
sequence 2 (GS2, also known as PNPLA4 or iPLA2eta) as a potential
keratinocyte REH. GS2 is a member of the “patatin-like phospholipase
domain containing” (PNPLA) family consisting of nine genes alto-
gether, with TG hydrolase ATGL being the most prominent [144]. In
humans, GS2 is ubiquitously expressed including adipose tissue, liver,
kidney, muscle, lung, placenta, and brain [145,146]. GS2 is absent in
the mouse but not in the rat genome [146]. Interestingly, human GS2
not only exhibits REH but also has ARAT activity [143]. These two
enzymatic activities are, however, inversely regulated by pH. Thus, it
can be hypothesized that the intracellular free FA concentration (pH)
in keratinocytes may be a physiological regulator switching between
anabolic and catabolic activities of human GS2. Recently, it was also
shown that REH activities of human GS2 are inhibited by LD
associated protein tail-interacting protein of 47 kDa (TIP47) [147]
suggesting that GS2 may act as REH on LDs in keratinocytes.

GS2 exhibits high structural homology to ATGL and the latter
enzyme is activated by the protein comparative gene identification 58
(CGI-58) [144,148]. Noteworthy, mutations in the CGI-58 gene in
humans [149,150] andmice [151] lead to severe skin defects. This is not
observed in humans or mice with defective ATGL function implicating
an ATGL-independent function of CGI-58 in the skin [149,152]. So far, it
has not been tested whether CGI-58 is capable of activating GS2.
However, GS2 is not expressed in mice and no phenotypic difference
exists in humanswith deletions in the GS2 gene alongwith deletions in
the steroid sulfatase (STS) gene [146] suggesting that GS2 might be
dispensable. Altogether, the physiological role of human GS2 in
keratinocyte RE mobilization remains elusive.

3.5. Retinyl ester hydrolases in the eye

In the eye, the retinal pigment epithelium (RPE), a functionally
polarized monolayer of cells located between cone and rod photore-
ceptor cells and the choriocapillaries, operates as a “reloading point”
for retinoids. At the apical side of the RPE circulating retinol and at its
basolateral side all-trans retinol released by the photoreceptor cells
are taken up and esterified by LRAT to all-trans REs (recently reviewed
in [153]). These REs are stored in ER membranes and in morpholog-
ically unique LDs, so-called retinosomes [154,155]. Thus, RE storage
depots participate in the regeneration of light sensitive visual pigment
after photoisomerization—a process termed visual cycle (recently
reviewed in [156]).

The regeneration of the chromophore requires firstly the mobili-
zation of REs from their depots, and secondly the isomerization of all-
trans retinol into 11-cis retinol. Interestingly, a single key enzyme was
considered to catalyze both processes in microsomes of RPE cells
(recently reviewed in [157]). The iron (II)-dependent isomerohydro-
lase RPE65 hydrolyzes and isomerizes all-trans REs into 11-cis retinol
and FA [158–161]. Gollapalli et al. [153] and Moiseyev et al. [154]
demonstrated independently that RPE65 uses REs as substrate. REs
accumulated in retinosomes when RPE65 was absent suggesting an
essential role of this enzyme in RE hydrolysis [62]. The importance of
RPE65 in the visual cycle was demonstrated in RPE65-deficient and
-mutant mice [162–164]. These mice showed a lack of 11-cis retinol
production and a massive accumulation of all-trans REs associated with
a slowly progressive degeneration of photoreceptor cells. In humans,
mutations in the RPE65 gene cause Leber congenital amaurosis, a rare
autosomal inheritary disease which leads to blindness (recently
reviewed in [165]). However, RPE65 is an ER enzyme and does not co-
localize with RE stores of retinosomes [154]. Radu et al. [166] observed
RE mobilization in mice lacking RPE65, which was dependent on the
presence of RPE-retinal G protein receptor–opsin and light. This
observation may indicate the existence of a distinct retinosome
associated REH, which remains to be identified.

3.6. Retinyl ester hydrolases in other tissues

Only limited information exists about potential REHs in various
tissues throughout the body. The uptake of dietary retinoids in
skeletal muscle was shown to be dependent on LPL expression levels
[18] (see also Extracellular retinyl ester hydrolases). Yet, intracellular
retinoid concentrations did not correlate with postprandial uptake
suggesting that acquired free retinol is either immediately released
into the circulation or first re-esterified and only then mobilized
again. The latter step requires action of intracellular REH(s). HSL is
known to play an important role in skeletal neutral lipid metabolism
[167] and has been shown to hydrolyze REs [93]. Hence, it may be
speculated that HSL mobilizes RE stores in skeletal muscle. However,
direct data for this hypothesis and the physiological importance of
skeletal muscle RE mobilization are lacking.

Kidney has been demonstrated to contribute significantly to
retinoid metabolism [44]. Kinetic studies in vivo using 14C-labeled
CMs showed that initially 14C-retinol accumulates due to retinol
uptake from plasma which is then esterified to REs. Interestingly, RE
composition in kidney was markedly different to liver comprising
equal amounts of retinyl palmitate and stearate [44]. In addition, Nagy
et al. [100] showed that extrahepatic stellate cells exist also in kidney
which increase in size upon excess of dietary retinoids. However, LPL
is not important in dietary retinoid uptake in kidney [18]. Goodman
et al. [44] suggested that retinol uptake from plasma and subsequent
esterification reflects equilibrium between plasma and renal pools.
Moreover, kidney has been identified as a major determinant for
plasma retinol turnover and recycling [168] whichmakes intracellular
REH(s) inevitable. In fact, cholate-independent RE hydrolysis was
identified in rat kidney homogenates of which the majority was
associated with membranes and microsomes [169]. Using kidney
fractions from gel-permeation chromatography, hydrolysis of REs and
to a lesser extent TGs but not CEs was demonstratedwith an optimum
at neutral pH. More detailed analysis applying anion-exchange
chromatography revealed that at least three different REHs exist in
kidney. Yet, their identity and physiological relevance are unknown.

In mammals, lung comprises an enormous epithelial surface area
prone to infectious diseases. Hence, an intact barrier is important for
health. The fundamental work of Goodman et al. [44] in regard to
tissue distribution of CM-associated REs showed that, as described for
kidney, retinol is the dominant retinoid species within the first hour
after CM administration which is esterified thereafter. Stellate cells for
RE storage also exist in lung [100]. Interestingly, steady state retinoid
levels found in rat lung are rather high compared to other tissues [18].
Studies by Napoli et al. [169] also demonstrated considerable REH
activities in lung in the absence of cholate.

Spleen has been discussed as an interesting organ to study the
metabolism of CM associated REs [18]. Shortly after in vivo administra-
tion of an intralipid emulsion, supplemented with 3H-REs, more than
40%of internalizedREswerehydrolyzedwithin the spleenwhereasonly
~20% of internalized REs were found as retinol in the liver suggesting
that spleen is even more active in dietary RE catabolism than liver.
Spleen also expresses the RBP4-receptor STRA6 [69]. Any further
information for spleen RE catabolism is lacking.



Fig. 1. Retinoid fluxes and RE hydrolyzing enzymes. Depiction of major retinoid fluxes between tissues and organs, which are involved in the uptake, transport, storage, and
utilization of retinoids. Identified REHs of respective organs, tissues, and cell types are given in parenthesis. REH activities of unidentified proteins are indicated as “?”. Percent of total
bodies RE stores are given for major storage tissues and cell-types. Abbreviations: CEL, carboxylester lipase; Es2/3/4/10/22, esterase2/3/4/10/22; GS2, gene sequence 2; HSL,
hormone-sensitive lipase; LPL, lipoprotein lipase; PLRP2, pancreatic lipase related protein 2; PTL, pancreatic triglyceride lipase; RPE65, retinal pigment epithelium 65.
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In testis, retinoids are essential for spermatogenesis [170,171].
Sertoli cells build the blood–testis barrier and were shown to
internalize retinol via a RBP4 receptor-mediated process, which has
been identified to be STRA6 [69,172]. LRAT activities were further
demonstrated to catalyze esterification of retinol [173]. The potential
role of HSL in intracellular RE mobilization and its implication in
spermatogenesis has been discussed above (see Retinyl ester
mobilization in adipose tissue).

RAs are important modulators for neurogenesis, neuronal survival,
and neuronal plasticity in post-embryonic and adult brain [174].
Vitamin A deficiency as well as hypervitaminosis A result in neuronal
defects [175,176]. The importance of RAs became evident from
mutant mouse models lacking RARβ or RXRγ exhibiting impaired
performance in spatial learning and memory tasks [177]. The blood–
brain barrier (BBB) secludes the brain from the circulation and only
selective transport of molecules takes place. STRA6 has been shown to
be expressed in brain [69,178]. Furthermore, CRBP levels and RBP4
binding sites in epithelial cells of choroid plexus were detected
arguing for retinol transport via BBB [179]. In mice fed a vitamin A-
enriched diet, retinol and REs were found in essentially all brain
tissues [180]. Very recently, a novel enzyme 13-cis isomerohydrolase
(13cIMH) was identified and characterized in zebra fish [181].
13cIMH exhibits high sequence homology to the well-characterized
human isomerohydrolase RPE65 in the eye which generates 11-cis
retinol (see Retinyl ester hydrolases in the eye). In contrast to RPE65,
13cIMH exclusively produces 13-cis retinol from its substrate all-trans
RE. 13cIMH mRNA transcript and protein levels were detected in
human brain indicating a possible role for 13cIMH for brain RE
catabolism. Interestingly, administration of exogenous 13-cis RA
impaired cognitive function in mice [182]. Furthermore, 13-cis RA
has been related to depression in mice [183], however conflicting data
exist in humans [184,185].

4. Conclusions and perspectives

During the last decades a number of REHs has been identified,
some of which have been demonstrated to be crucial for retinoid
turnover. Fig. 1 illustrates the current model of RE mobilization,
depicting REHs, RE storage sites, and retinoid fluxes. In particular,
enzymes involved in the intestinal uptake of REs and mobilization of
CM associated REs have been well characterized. To date, PTL and CEL
are considered to be major REHs in the intestine which facilitate TG
absorption but are also required for efficient RE uptake. In the
circulation, LPL is indispensable for neutral lipid turnover and also
affects RE metabolism. Virtually all tissues have been demonstrated to
exhibit intracellular REH activities. Liver is the largest RE storage site
of the body. Numerous studies have been undertaken to elucidate the
mechanism of RE mobilization and to identify enzymes involved in
this process. Intriguingly, to date no enzyme has been identified
which is responsible for the mobilization of the largest RE stores.
However, it is inevitable that efficient catabolic mechanisms exist
which are involved in the control of plasma and cellular retinoid
levels. In fact, HSL has been shown to affect RE metabolism in adipose
tissue and in that is the only known physiologically relevant
intracellular REH. State-of-the-art techniques using knock-out and/
or overexpression/silencing systems in animal models and cultured
cells will hopefully help to identify the mechanisms and enzymes
controlling RE storage and mobilization.
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