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Abstract

In this article we investigate the expected time for Herman’s probabilistic self-stabilizing algorithm in distributed systems: suppose
that the number of identical processes in a unidirectional ring, say n, is odd and n�3. If the initial configuration of the ring is not
“legitimate”, that is, the number of tokens differs from one, then execution of the algorithm made up of synchronous probabilistic
procedures with a local parameter 0 < r < 1 results in convergence to a legitimate configuration with a unique token (Herman’s
algorithm). We then show that the expected time of the convergence is less than ((�2 − 8)/8r(1 − r))n2. Note that if r = 1

2 then it

is bounded by 0.936n2. Moreover, there exists a configuration whose expected time is �(n2). The method of the proof is based on
the analysis of coalescing random walks.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Distributed systems based on self-stabilizing algorithms were introduced by Dijkstra [7]. The algorithms propose
an elegant way of solving the problem of fault-tolerance (see also [8,17]). In general, the algorithms have the property
that arbitrary configuration reaches “legitimate” configuration satisfying desired property in finite time. Moreover,
probabilistic methods are often studied as solutions to problems for distributed computing in order to improve the
efficiency of deterministic algorithms. For example, the methods are used in many symmetric distribution to break
symmetry (see [8]). So there are some good probabilistic self-stabilizing algorithms [16,14,3]. Especially one of
the simple and useful probabilistic self-stabilizing algorithms was proposed by Herman [14]. The basic setting is
the following: suppose that the number of identical processes in a unidirectional ring, say n, is odd and n�3. If
the initial configuration of the ring is not legitimate, that is, the number of tokens differs from one, then execution of
the algorithm made up of synchronous probabilistic procedures with a local parameter 0 < r < 1 results in convergence
to a legitimate configuration with a unique token (Herman’s algorithm).
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For the algorithm in this article we show that the expected time of the convergence is less than ((�2 −8)/8r(1−r))n2.
Note that if r = 1

2 then it is bounded by 0.936n2. Moreover, we also give a configuration whose expected time is �(n2).
The method of the proof is based on the analysis of the expected time of coalescing random walks.

Related works and our method: A model of coalescing random walks was proposed by Aldous and Fill [2, Chapter
14]. They formalized them using continuized chains with 1-exponential distributions. Note that many quantities are
unchanged by the passage from the discrete time chain to the continuized chain. Their setting is the following: fix a
connected graph G with order n. Consider independent random walks starting from each vertex. When some of them
meet, they coalesce into a new random walk. What is the expected time that all walks coalesce into a single random
walk? They showed that the time is less than e(log n + 2)TG, where TG is the maximal (in the meaning of start and
goal points) expected hitting time of G. On the other hand, Brightwell and Winkler [4] showed that TG is bounded
by (4/27 + o(1))n3, which is attained by some lollipop graphs. Moreover Coppersmith et al. [6], Tetali and Winkler
[19] studied the meeting time, which is the expected number of steps that two independent random walks collide on a
connected graph. They proved that MG �(4/27 + o(1))n3, where MG is the maximal (in the meaning of start points)
meeting time on a connected graph G with order n. Furthermore, Hassin and Peleg [13] applied the results of meeting
times to an analysis of the expected absorption time in distributed probabilistic polling. In their setting they pointed out
that the time is equivalent to the expected time of coalescing random walks. They showed that the time is O(MG log n).
Their key idea of the estimate is the following: since MG is the maximal meeting time, at least n/2 random walks have
to meet after the time MG. By repetition, the results can be obtained. Recently, Adler et al. [1] showed good estimates
of expected coalescing times for independently and identically distributed random variables without considering graph
structures. They noted applications to population biology.

For expected time of Herman’s self-stabilizing algorithm we also apply the method of coalescing random walks. We
regard tokens in the ring as independent random walks. Though in our case random walks do not coalesce but disappear
when two random walks collide, we can see that the expected times do not change essentially. Noting that both Mn-ring
and Tn-ring are �(n2), we can drop log n term for Aldous and Fill’s/Hassin and Peleg’s results. Moreover, Aldous and
Fill [2, Chapter 14, Section 3] conjectured that there exists an absolute constant K such that for any graph G the expected
time of coalescing random walks is bounded by KTG. Hence our estimate would be one of the positive example for their
conjecture. To estimate the expected time of coalescing random walks, we are aiming at not the maximal meeting time
but the minimal meeting time on the ring. It was used by Herman himself to prove the probabilistic self-stabilization
with probability 1.

On the other hand, very recently, Fribourg et al. [12] also studied the expected times for Herman’s algorithm
independent of this article. They used the refined method of path coupling introduced by Bubley and Dyer [5]. Actually,
they used the convenient version of it studied by Dyer and Greenhill [10]. They showed that the expected times are
bounded by 2n2 if r = 1

2 in our setting. Moreover, they gave general good results between coupling and self-stabilization.
Indeed, they applied their arguments to self-stabilizing algorithms including Iterated Prisoner’s Dilemma problems
studied by Dyer et al. [9] as well as Herman’s one.

Plan of the paper: After some preliminary about Herman’s algorithm (Section 2), we state an estimate of the expected
time of Herman’s algorithm in Section 3.1. The proof is given in Section 3.2. Moreover, showing future works, we
conclude in Section 4. The rough scenario of the estimate in Section 3.2 is the following:

(i) We formalize tokens in the ring as independent random walks (Lemma 3.2).
(ii) Noting the minimal meeting time of random walks of Item (i), we investigate correspondent one-dimensional

random walks (Lemma 3.3).
(iii) To estimate hitting times of one-dimensional random walks of Item (ii), we use the dominating random walk

whose expected time can be gotten by some difference equations (Lemmas 3.4 and 3.5).
(iv) Using the hitting time of Item (iii), we estimate the desirable expected time. Moreover, we give a simple example

satisfying Eq. (9).

2. Herman’s algorithm

Let L = {0, . . . , n − 1} � Z/nZ be a process ring, where n is an integer satisfying n�3. Henceforth any index is
defined for any integer subscript with modulo n. The state of each process is a single bit in {0, 1}, so that we denote by
Xn = {0, 1}n the configuration space whose element is represented by a vector of n bits x = (x0, . . . , xn−1) ∈ Xn. For
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a given 0 < r < 1, a random procedure f : Xn → Xn is defined by

f (x) = fr(x) = y = (y0, . . . , yn−1) ∈ Xn, yi =
{

xi−1 if xi �= xi−1,

�i if xi = xi−1,
(1)

where �i , (i = 0, . . . , n − 1) are {0, 1}-valued independent random variables with each distribution

Pr(�i = xi) = 1 − Pr(�i = 1 − xi) = r for i = 0, . . . , n − 1. (2)

For a given x = (x0, . . . , xn−1) ∈ Xn, we define a local state to be any consecutive pair (xi−1, xi):
• if xi = xi−1, then there is a token at process i. (We will also say that xi is a token.)
• if xi �= xi−1, then there is a shift at process i. (We will also say that xi is a shift.)
Note that if n is odd, the number of tokens is also odd, that is,

‖x‖ mod 2 ≡ n mod 2 for x ∈ Xn, (3)

where ‖ · ‖ is the number of tokens in the ring. For each x = (x0, . . . , xn−1) ∈ Xn define the set of tokens/shifts as
follows:

LT = LT (x) = {1� i�n : xi = xi−1},
LS = LS(x) = L \ LT = {1� i�n : xi �= xi−1}. (4)

Moreover, we also define X k
n = {x ∈ Xn : |LT (x)| = k} = {x ∈ Xn : ‖x‖ = k}. We call the element of X 1

n a
legitimate configuration. Use notation f t (x) = f (f t−1(x)) for t �1, where f 0(x) = x. Herman proved the following
theorem:

Theorem 2.1 (Herman). For the random procedure f defined by Eq. (1), the following statements hold:
(i) The number of tokens does not increase:

Pr(‖x‖�‖f (x)‖) = 1. (5)

(ii) If there exists a unique token at i, then the token is eventually at i + 1: for each x ∈ X 1
n with xi = xi−1

Pr(∃k > 0 s.t. y = f k(x) ∈ X 1
n , yi = yi+1) = 1. (6)

(iii) If there are more than two tokens, the number of tokens is eventually strictly decreasing:

Pr(∃k > 0 s.t. ‖f k(x)‖ < ‖x‖) = 1 for ‖x‖�2. (7)

Remark 2.1. (i) Suppose that n is odd. Then by Eq. (3), the number of tokens is also odd. Moreover, by Eqs. (5) and
(7) we see that the number of decreasing tokens is even (including 0) for an arbitrary configuration, and at last there
will hereafter become a unique token.

(ii) By Eq. (6), the algorithm progresses in a legitimate configuration, that is, the token circulates in the ring.

3. Expected times for Herman’s algorithm

3.1. Main results

Fix an odd integer n�3. Then by Item (i) in Remark 2.1, we see that for x ∈ Xn there exists t = t (x) < ∞ with
probability 1 such that

‖x‖�‖f (x)‖� · · · �‖f t−1(x)‖ > ‖f t (x)‖ = ‖f t+1(x)‖ = · · · = 1.

Now we analyze the above random time t for any x ∈ Xn.
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Theorem 3.1. Let n�3 be an odd integer. Then for any parameter 0 < r < 1 of Eq. (2), the expected time to become
a legitimate configuration on the n-ring is less than ((�2 − 8)/8r(1 − r))n2, that is,

max
x∈Xn

E
[
inf{t �0 : f t (x) ∈ X 1

n }
]

<
�2 − 8

8r(1 − r)
n2. (8)

Moreover, there exists x ∈ Xn such that

E
[
inf{t �0 : f t (x) ∈ X 1

n }
]

= �(n2). (9)

The notation an = �(bn) denotes that there exist c, C > 0 and n0 such that cbn �an �Cbn for n�n0.

3.2. Proof of Theorem 3.1

Now we consider a configuration with k tokens xk ∈ X k
n for k�n. Then we define the first decreasing time for

xk ∈ X k
n :

T (xk) = inf{t > 0 : f t (xk) /∈ X k
n }. (10)

To investigate the time, we define the minimum token distance: for xk ∈ Xn
k , remembering Eq. (4),

D(xk) =
{

min{d(i, j) : i �= j ∈ LT (xk)} if k�2,

0 if k = 1,

where d(i, j) denotes the minimum distance between i and j, that is,

d(i, j) = min{(i − j) mod n, (j − i) mod n}. (11)

Then it is easy to see that

D(xk)�
n/k� for xk ∈ X k
n . (12)

In fact if D(xk) > 
n/k� then any distance of two tokens is greater than n/k then the sum of these distance is
greater than n. Now the repetition of a random procedure f implies a stochastic chain D(f t (xk)) for t = 0, 1, 2, . . . on
{0, 1, . . . , 
n/k�}. Lemma 3.3 will claim the statistical property of D(f (xk)). Defining

�k = max
xk∈X k

n

E[T (xk)], (13)

we investigate the expected time that configuration xk will be legitimate, which is defined by

Tk = max
xk∈X k

n

E
[
inf{t �0 : f t (xk) ∈ X 1

n }
]

= max
xk∈X k

n

E
[
inf{t �0 : D(f t (xk)) = 0}

]
.

Noting Item (i) in Remark 2.1, we see that Tk can be bounded by {�k}nk=1 as follows:

Lemma 3.1. For an odd integer n�3, assume that there exist 3�k�n tokens in an n-ring. Then we have

Tk �
(k−1)/2∑

l=1
�2l+1. (14)

Proof. Since n is odd, k is also odd by Theorem 2.1. Now suppose that the number of tokens will be k1 at the
first decreasing time T (xk). Putting k = k0, similarly we suppose that the number of ki tokens will be ki+1 at
T (xki ) for i = 0, . . . , l, and kl+1 = 1. Note that k = k0 > k1 > · · · > kl > kl+1 = 1 are well-defined
by Item (i) in Remark 2.1. It is clear that ki depends on xk for i = 1, . . . , l. By the definition of Tk , we have
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Tk = maxxk∈X k
n

E[T (xk0) + T (xk1) + · · · + T (xkl )]. Since ki is odd for i = 0, 1, . . . , l and kl �3, we obtain

Tk � max
xk∈X k

n

E[T (xk)] + max
xk−2∈X k−2

n

E[T (xk−2)] + · · · + max
x3∈X 3

n

E[T (x3)]
= �k + �k−2 + · · · + �3. �

Computing local probability of the position of each token, we will estimate �i for i = 3, 5, . . . , k. The movement of
each token in the ring is characterized by the following random walks:

Lemma 3.2. For an odd integer n�3, assume that there exist 3�k�n tokens in an n-ring. Putting each position of k
tokens of xk as

S1
0 , . . . , Sk

0 ∈ LT (xk) sequentially, (15)

we consider independent k random walks S1
t , . . . , Sk

t defined by Eq. (15) and

Pr(Sl
t = i + 1|Sl

t−1 = i) = 1 − Pr(Sl
t = i|Sl

t−1 = i) = r for l = 1, . . . , k, 1� t � t∗, (16)

where t∗ is the first coalescing time of {Sl
t }ki=1, that is,

t∗ = t∗(xk) = inf{t > 0 : Si
t = S

j
t for some 1� i < j �k}. (17)

Then the process of the position of tokens is equivalent to the process of S1
t , . . . , Sk

t for 0� t � t∗ − 1. Moreover, the
distribution for t∗ is equivalent to the one of T (xk) defined by Eq. (10).

Proof. For xk = x = (x0, . . . , xn−1) ∈ X k
n , we will show this lemma with either D(x)�2 or D(x) = 1.

Assume that D(x)�2, that is, if i ∈ LT (x) then i − 1, i + 1 ∈ LS(x). By the definition of the shift/token, we have
that xi−1 = xi, xi−2 �= xi−1 and xi �= xi+1. Therefore, we obtain that

Pr({i ∈ LS(f (x))} ∩ {i + 1 ∈ LT (f (x))})
= 1 − Pr({i ∈ LT (f (x))} ∩ {i + 1 ∈ LS(f (x))}) = r

by Eqs. (1) and (2). Hence we see that

Pr(‖f (x)‖ = ‖x‖) = 1 for D(x)�2, (18)

and the local transition probability of the position of the token is equivalent to Eq. (16) for D(x)�2.
Next suppose that D(x) = 1, that is, there exists 2�m�k satisfying that

i, i + 1, . . . , i + m − 1 ∈ LT (x), i − 1, i + m ∈ LS(x).

Then we see that xi−1 = xi = xi+1 = · · · = xi+m−1 and xi−2 �= xi−1, xi+m−1 �= xi+m. Putting y = (y0, . . . , yn−1) =
f (x), we have that yi−1 �= yi+m. On the other hand, assume that continual m particles at time t − 1, that is, S1

t−1 =
i, S2

t−1 = i + 1, . . . , Sm
t−1 = i + m − 1, so that we regard these particles as tokens. At the next step, consider that there

is a token (resp. shift) if the number of particles of {Sl
t }l=1,...,m on each position i�j � i +m is one (resp. zero or two).

Noting that yj is a token if yj−1 = yj for j = i, . . . , i + m, we have that the distribution of process for continual m

are equivalent to the distribution of S1
t , . . . , Sm

t for 0� t � t∗ − 1. It is clear that the equivalence of the law of T (x) and
the first collision time t∗(x). �
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Fig. 1. Illustration of the transition probabilities of D(f t (x)) in Lemma 3.3. Each suffix of the axis denotes not f t (x) ∈ Xn but
D(f t (x)) ∈ {0, 1, . . . , 
n/k�}. Therefore, for example the probability pi presents px in Lemma 3.3 for some D(x) = i. Hence we see that
0 < pi � r(1 − r)�qi < 1 for i = 1, . . . , 
n/k�.

By Lemma 3.2 we see that the process of each token is simulated by the random walk defined by Eq. (16). We will
give some estimate of the transition probability for D(f (x)) as the following lemma:

Lemma 3.3. For an odd integer n�3, assume that there exist 3�k�n tokens in an n-ring. Then the following
statements hold:

(i) If a configuration x ∈ X k
n satisfies D(x) = 1 then there exist px , qx such that px �r(1 − r)�qx < 1 − px and

Pr({D(f (x)) = 2} ∩ {‖f (x)‖ = k}) = px, Pr(‖f (x)‖ < k) = qx,

Pr({D(f (x)) = 1} ∩ {‖f (x)‖ = k}) = 1 − px − qx.

(ii) If a configuration x ∈ X k
n satisfies D(x)�2, then f (x) ∈ X k

n .
(a) If 2�D(x)�
n/k� − 1 then there exist px , qx such that px �r(1 − r)�qx < 1 − px and

Pr(D(f (x)) = D(x) + 1) = px, Pr(D(f (x)) = D(x) − 1) = qx,

Pr(D(f (x)) = D(x)) = 1 − px − qx.

(b) If D(x) = 
n/k��2 then there exists r(1 − r)�qx < 1 such that

Pr(D(f (x)) = 
n/k� − 1) = qx, Pr(D(f (x)) = 
n/k�) = 1 − qx.

The rough sketch of estimating transition probabilities in Lemma 3.3 is in Fig. 1.

Proof of Lemma 3.3. Fix x ∈ X k
n . By Lemma 3.2, we can regard the process of k tokens as k independent random

walks defined by Eqs. (15) and (16). For convenience, we define Lmin
T = Lmin

T (x) = {i ∈ LT (x) : i, i+D(x) ∈ LT (x)},
which is not empty. Noting that S1

0 , . . . , Sk
0 are defined by Eq. (15), we have that

Pr(d(Si
0, S

i+1
0 ) = D(x)) = 1 for any i ∈ Lmin

T . (19)

By Eq. (16), we see that

Pr(d(Si
1, S

i+1
1 ) = D(x) − 1) = r(1 − r), Pr(d(Si

1, S
i+1
1 ) = D(x)) = r2 + (1 − r)2,

Pr(d(Si
1, S

i+1
1 ) = D(x) + 1) = r(1 − r) for any i ∈ Lmin

T . (20)

(i) If D(x) = 1, then using Eq. (20) we obtain that

px = Pr({D(f (x)) = 2} ∩ {‖f (x)‖ = ‖x‖})

� Pr

⎛
⎝ ⋂

i∈Lmin
T (x)

{d(Si
1, S

i+1
1 ) = 2}

⎞
⎠ �r(1 − r). (21)

Moreover, we also have that

1 > qx = Pr(‖f (x)‖ < k) = Pr

⎛
⎝ ⋃

i∈Lmin
T (x)

{d(Si
1, S

i+1
1 ) = 0}

⎞
⎠

� r(1 − r). (22)
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The first inequality of Eq. (22) holds, because Pr(‖f (x)‖ = k)�Pr(f (x) = x) > 0. Hence Item (i) has been
proved.

(ii) Since D(x)�2, Eq. (18) holds. Using Lemma 3.2,

Pr(D(f (x)) = D(x)) + Pr(D(f (x)) = D(x) + 1) + Pr(D(f (x)) = D(x) − 1) = 1. (23)

(a) 2�D(x)�
n/k� − 1: then we can prove that

Pr(D(f (x)) = D(x) + 1)�r(1 − r)�Pr(D(f (x)) = D(x) − 1) < 1, (24)

by the same method of Eqs. (21) and (22). Hence by Eq. (23), Item (a) has been proved.
(b) D(x) = 
n/k�: using the same method of Eq. (22), we see that

Pr(D(f (x)) = 
n/k� − 1)�r(1 − r).

Since D(x)�
n/k� for x ∈ Xn, we have that Pr(D(f (x)) = 
n/k� + 1) = 0. Hence by Eq. (23), Item (b)
has been proved. �

Remark 3.1. There exist an n-ring and a configuration x ∈ Xn satisfying that the equality holds in Eqs. (21), (22) and
(24), respectively.

We will compare D(f t (xk)) to the following random walks:

Lemma 3.4. Consider the following Markov chain Xt on state space {0, 1, . . . , m} with absorbing barrier 0: for t �0
and i = 1, . . . , m − 1

Pr(Xt+1 = i|Xt = i) = r2 + (1 − r)2,

Pr(Xt+1 = i + 1|Xt = i) = Pr(Xt+1 = i − 1|Xt = i) = r(1 − r) (25)

and for t �0

Pr(Xt+1 = 0|Xt = 0) = 1, Pr(Xt+1 = m|Xt = m) = 1 − r(1 − r),

Pr(Xt+1 = m − 1|Xt = m) = r(1 − r). (26)

Then the expected hitting time of the absorbing barrier 0 is

max
1� i �m

E[inf{t �0 : Xt = 0}|X0 = i] = E[inf{t �0 : Xt = 0}|X0 = m] = m(m + 1)

2r(1 − r)
.

Proof. Putting aj = E[inf{t �0 : Xt = 0}|X0 = j ], we have that
⎧⎪⎨
⎪⎩

aj+1 − 2aj + aj−1 = − 1

r(1 − r)
for j = 1, . . . , m − 1

a0 = 0, am = am−1 + 1

r(1 − r)
.

Hence aj = aj−1 + (m − j + 1)/r(1 − r) for j = 1, . . . , m. Noting a0 = 0, sum up the equations. We then obtain
am = m(m + 1)/2r(1 − r). �

To estimate �k , we use the dominating chain Xt in Lemma 3.4 which is defined in the same probability space for
D(f t (xk)).

Lemma 3.5. For an odd integer n�3, assume that there exist k tokens for 3�k�n in an n-ring. Then we have
�k �n2/r(1 − r)k2.

Proof. Putting m = 
n/k� in Lemma 3.4, we define the stochastic process Xt satisfying X0 = D(f 0(xk)) and
Eqs. (25), (26), which is defined on the state space {0, . . . , 
n/k�}. Then we see that D(f t (xk)) is stochastically
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smaller than Xt , that is, Pr(D(f t (xk)) > a)�Pr(Xt > a) for any real number a (see [18, Chapter IV]). Therefore,
putting TX = inf{t > 0 : Xt = 0}, we have

�k �E[TX|X0 = 
n/k�] = 
n/k�(
n/k� + 1)

2r(1 − r)
� 1

r(1 − r)

(n

k

)2
,

since 
n/k��1. �

Proof of Theorem 3.1. By Eq. (14) and Lemma 3.5

Tk � n2

r(1 − r)

(
1

32
+ 1

52
+ · · · + 1

k2

)
<

�2 − 8

8r(1 − r)
n2 for any k = 3, 5, . . . , n. (27)

In fact the last inequality of Eq. (27) holds because it is well-known that

∞∑
j=0

1

(2j + 1)2
= �2

8

(see e.g. [15]).
On the other hand, for a sufficiently large n, consider the token x = (x0, . . . , xn−1) ∈ X 3

n with {0, 
n/6�, 
n/2�}
= LT (x). Now set random walks S1

t , S2
t , S3

t with initial positions S1
0 = x0, S2

0 = x
n/6�, S3
0 = x
n/2�, and transition

probabilities satisfying Eq. (16), respectively. We see that D(x) = d(S1
0 , S2

0 ) = 
n/6�. Moreover, D(f t (x)) =
d(S1

t , S2
t ) for t ∈ {t : d(S1

t , S2
t )�
n/3�}. Until the time, we have

Pr(D(f t (x)) = D(f t−1(x)) + 1) = Pr(D(f t (x))=D(f t−1(x)) − 1) = r(1 − r),

Pr(D(f t (x)) = D(f t−1(x))) = r2 + (1 − r)2.

Remembering T (x) as Eq. (10), we have E[T (x)]�E[T∗|D(x) = 
n/6�], where T∗ = inf{t > 0 : D(f t (x)) ∈
{0, 
n/3�}}. Now put bi = E[T∗|D(x) = i], (i = 0, . . . , 
n/3�). Then the following difference equation holds:
bi = {r2 + (1 − r)2}bi + r(1 − r)bi+1 + r(1 − r)bi−1 + 1 for i = 1, . . . , 
n/3� − 1 with boundary conditions
b0 = b
n/3� = 0. It is easy to get the solution bi = i(
n/3� − i)/{2r(1 − r)} for i = 0, . . . , 
n/3�. Therefore, we see
that b
n/6� �n2/{100r(1 − r)}, so that T3 �E[T (x)]�n2/{100r(1 − r)}. Hence we have Eq. (9). �

Remark 3.2. By the proof of Eq. (9), we see that a few tokens with long distances make the expected time large.

4. Concluding remarks

We proved that the maximal expected time of Herman’s self-stabilizing algorithm is less than ((�2 − 8)/8r(1 − r))n2.
Especially if r = 1

2 it is bounded by 0.936n2. However, we do not know that whether r = 1
2 is optimal, which is a

future work. It would also be of future interest to apply our argument to general connected graphs.
Moreover, note that recently Fribourg et al. [11] characterized Herman’s algorithm with Gibbs fields. We should

study the self-stabilization at the viewpoint of statistical physics.
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