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a b s t r a c t

Let T be a tree withm edges. A well-known conjecture of Ringel states that T decomposes
the complete graph K2m+1. Graham and Häggkvist conjectured that T also decomposes the
complete bipartite graph Km,m. In this paper we show that there exists an integer n with
n ≤ d(3m− 1)/2e and a tree T1 with n edges such that T1 decomposes K2n+1 and contains
T . We also show that there exists an integer n′ with n′ ≥ 2m−1 and a tree T2 with n′ edges
such that T2 decomposes Kn′,n′ and contains T . In the latter case, we can improve the bound
if there exists a prime p such that d3m/2e ≤ p < 2m− 1.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A decomposition of a graph G is a partitionP of its set of edges. When the graph induced by each part ofP is isomorphic
to a graph H , we say that H decomposes G and write H|G.
A famous conjecture of Ringel from 1963 states that every tree withm edges decomposes the complete graph K2m+1 [13].

In spite of the hundreds of papers that have appeared in the literature on the subject (see the dynamic survey of Gallian [5]),
Ringel’s conjecture is still wide open. Graham and Häggkvist proposed the following generalization of Ringel’s conjecture;
see, e.g., [6]:

Conjecture 1 (Graham and Häggkvist). Every tree with m edges decomposes every 2m-regular graph and every bipartite
m-regular graph.

Conjecture 1 in particular asserts that every tree with m edges decomposes the complete bipartite graph Km,m. In the
sequel we will refer to this particularization of Conjecture 1.
Both conjectures are known to hold for caterpillars, for trees of diameter at most five and for various particular families

of trees.
In one of the early papers on the subject, Kotzig [10] showed that the substitution of an edge by a sufficiently large path

in an arbitrary tree results in a tree T for which Ringel’s conjecture holds. Thus every tree is homeomorphic to a tree for
which the conjecture holds. On the other hand Kézdy [8] showed that the addition of an unspecified number of leaves to a
vertex of a tree results in a tree with n edges that decomposes K2n+1. An analogous result for the decomposition of Kn,n was
proved in [11]. Therefore, every tree contains the base tree of some tree for which both conjectures hold (the base tree of a
tree is obtained by removing all its leaves). However, neither result gives a quantitative estimate of the number of additional
vertices that will suffice to make a tree decompose the appropriate complete graph.
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In this paper we consider an approximation to both conjectures and prove that every tree is a large subtree of two trees
for which the conjectures hold respectively. We prove:

Theorem 1. Let T be a tree with m edges.
(i) For every odd n ≥ 2m− 1, there exists a tree T ′ with n edges that decomposes Kn,n and contains T .
(ii) For every prime p ≥ d3m/2e, there exists a tree T ′ with p edges that decomposes Kp,p and contains T .

Theorem 2. Let T be a tree with m edges. For every n ≤ d(3m−1)/2e, there exists a tree T ′ with n edges that decomposes K2n+1
and contains T .

2. The tools

The classical approach to the decomposition problem of graphs uses labeling techniques that aim to find cyclic
decompositions. A tree T with m edges cyclically decomposes K2m+1 if there is an injection φ : V (T ) → [0, 2m] such
that the translations φ(v)+ k(mod 2m+ 1) give 2m+ 1 edge-disjoint copies of T . Similarly, T cyclically decomposes Km,m
if there is a map φ : V (T )→ [0,m− 1] that is injective on each partite set of T such that the translations φ(v)+ k(mod m)
producem edge-disjoint copies of T .
A ρ-valuation of a graph H on m edges is an injection ρ : V (H) → Z2m+1 such that the induced edge labels

ρE(uv) := ρ(u)− ρ(v), for uv ∈ E(H), satisfy

ρE(e) 6= ±ρE(f ) (mod 2m+ 1),

for all distinct pairs of edges e, f ∈ E(H). Rosa [14] proved that a graph H withm edges cyclically decomposes K2m+1 if and
only if it admits a ρ-valuation.
Similarly, a modular bigraceful labeling of a bipartite graph H withm edges and partite sets A and B is a map f : V (H)→

Zm that is injective in each stable set and has the property that the values f (v)− f (u)with u ∈ A and v ∈ B are different for
distinct edges. It is shown by Lladó and López [11] that if H admits a modular bigraceful map then it cyclically decomposes
Km,m.
To prove Theorems 1 and 2 we shall show that a tree T with m edges can be embedded in a tree of the stated size that

admits either a modular bigraceful labeling or a ρ-valuation. One of the ingredients of our proofs is the polynomial method
of Alon [1]. In particular we shall use the following theorem of Alon:

Theorem 3 ([1]). Let F be an arbitrary field, and let f = f (x1, . . . , xn) be a polynomial in F [x1, . . . , xn]. Suppose the degree
deg(f ) of f is

∑n
i=1 ti, where each ti is a nonnegative integer, and suppose the coefficient of

∏n
i=1 x

ti
i in f is nonzero. Then, if

S1, . . . , Sn are subsets of F with |Si| > ti, there exist s1 ∈ S1, s2 ∈ S2, . . . , sn ∈ Sn such that

f (s1, . . . , sn) 6= 0.

Applications of the polynomial method to other related graph labeling problems can be found in [4,7–9].
We also use a well-known theorem of Kneser. Recall that the stabilizer H(C) of a nonempty subset C in an abelian group

G is defined by H(C) = {g ∈ G : C + g = C}. In other words, H(C) is the largest subgroup of G that has the property
H(C)+ C = C . If G is finite, then |H(C)| divides both |G| and |C |, since H(C) is a subgroup of G and C is a union of cosets of
this subgroup.

Theorem 4 (Kneser; see, e.g., [12]). If A and B are finite nonempty subsets of an abelian group satisfying |A+B| ≤ |A|+ |B|−1,
and H is the stabilizer of A+ B, then

|A+ B| = |A+ H| + |B+ H| − |H|.

The next lemma, which is based on Kneser’s Theorem, will be used later to prove the existence of appropriate labelings.

Lemma 1. Let r be a positive integer and let X1, X2, Y be nonempty subsets of Zr with |X1| ≥ |X2| and |Y | > 1. If the following
condition holds:

r − |X1| − |X2| = |Y | − 1, (1)

then |X1 + Y | > |X2|.

Proof. If |X1 + Y | ≤ |X2|, then we must have |X1 + Y | = |X2| = |X1| < |X1| + |Y | − 1. By Kneser’s Theorem,

|X1 + Y | = |X1 + H| + |Y + H| − |H|,

where H is the stabilizer of X1 + Y . From this relation and |X1 + Y | = |X1| we deduce that |Y + H| = |H| and therefore
|Y | ≤ |H|.
Now, since |H| divides the left hand side of (1), |H|must also divide |Y | − 1. Finally, |Y | > 1 implies that |H| ≤ |Y | − 1,

contradicting |Y | ≤ |H|. �
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3. Proof of Theorem 1

Here we consider an extension of themodular bigraceful labeling defined by Cámara, Lladó andMoragas [4], which takes
values in an arbitrary abelian group. Let H be a bipartite graph with partite sets A and B, and let (G,+) be an abelian group.
A map f : A ∪ B → G is G-bigraceful if the restrictions of f to each stable set are injective maps and the induced values of
f over the edges of H are distinct, where the induced value on an edge uv with u ∈ A and v ∈ B is f (v) − f (u). Note that a
modular bigraceful labeling of a tree withm edges is a Zm-bigraceful labeling.
We first show that a tree that admits a Zn-bigraceful map can be embedded in a tree with n edges that decomposes Kn,n.

Lemma 2. Every tree T that admits a Zn-bigraceful map with n odd is a subtree of a tree T ′ with n edges that admits a modular
bigraceful labeling.

Proof. Let m be the number of edges of T . Let f be a Zn-bigraceful map of T . Clearly n ≥ m. We define a sequence of trees
Tm, Tm+1, . . . , Tn, with Tm = T and Tn = T ′, by adding one leaf at each step, and extend f on T ′ as a modular bigraceful map.
Suppose we have defined Ti and aZn-bigraceful map f on Ti for some i such thatm ≤ i < n. Let Ai and Bi be the two stable

sets of Ti with |Ai| ≥ |Bi| (we may assume this by exchanging f for fr = n + 1 − f if necessary). Let A′i = f (Ai), B
′

i = f (Bi),
and Ci = {f (y) − f (x) : xy ∈ E(Ti), x ∈ Ai, y ∈ Bi}, and let Di = Zn \ Ci. Since Ti is a tree, we have the following relation
among these sets:

|Ai| + |Bi| = n− |Di| + 1. (2)

It suffices to prove that |Di + A′i| > |Bi|. In this case there exists d ∈ Di and some a ∈ A
′

i such that d + a ∈ Zn \ B′i . Define
Ti+1 = Ti+ ei+1, where ei+1 joins the vertex in Ai labeled a to a new vertex vi+1 and f (vi+1) = d+ a; this gives the extension
of f to Ti+1.
Since |Di| = n − |Ci| = n − i ≥ 1, either |Di| = 1 or |Di| > 1. In the former case (i = n − 1), since n (which equals

|An−1| + |Bn−1|) is odd, |Dn−1 + A′n−1| = |An−1| > |Bn−1|. In the latter case, we apply Lemma 1 with r = n, X1 = A
′

i , X2 = B
′

i
and Y = Di. The condition (1) of the lemma holds by (2). �

In view of Lemma 2, and using the cyclic decomposition from [11], to prove the statement (i) of Theorem 1 it suffices to
show that every tree T withm edges admits a Zn-bigraceful labeling for every odd n ≥ 2m− 1. The next lemma shows that
this is indeed the case.

Lemma 3. Every tree T with m edges admits a Zn-bigraceful map for every n such that n ≥ m+max{|A|, |B|} − 1, where A and
B are the partite sets of T .

Proof. The proof is by induction on m, the result being obvious for m = 1. Let u be a leaf of T with neighbor v, let
T ′ = T − u, choose an integer n such that n ≥ m + max{|A|, |B|} − 1, and let f be a Zn-bigraceful map on T ′. Let
C = {f (y) − f (x) : xy ∈ E(T ′), x ∈ A, y ∈ B} and D = Zn \ C . Since |f (v) − D| = |D| = n − m + 1 ≥ |A|, there
exists d ∈ D such that f (v)− d 6∈ f (A \ {u}). Extending f to T by defining f (u) = f (v)− d produces a Zn-bigraceful labeling
of T . �

Statement (ii) of Theorem 1 may give a better upper bound for the minimum n for which we can ensure that there is
a tree T ′ with n edges containing a given tree T with the property that T ′ decomposes Kn,n. We use the following simple
lemma.

Lemma 4. A tree T with partite sets A and B such that |A| ≥ |B| has at least |A| − |B| + 1 leaves in A.

Proof. Let A′ ⊂ A be the set of nonleaves in A, and let T ′ = T − (A \ A′). Then |A′| + |B| − 1 = |E(T ′)| =
∑
x∈A′ d(x) ≥ 2|A

′
|.

Hence |A′| ≤ |B| − 1, and T has at least |A| − |A′| ≥ |A| − |B| + 1 leaves in A. �

Lemma 5. Let T be a tree with m edges. If p is a prime such that p ≥ d3m/2e, then there is a Zp-bigraceful map of T .

Proof. Let A and B be the partite sets of T , labeled so that |A| ≥ |B|. By Lemma 4 there is a set A0 ⊂ A of leaves such that
|A′| = |A \ A0| = |B|. Let T ′ = T − A0. Since |B| ≤ dm/2e and p ≥ m + |B|, it follows from Lemma 3 that there is a
Zp-bigraceful map f ′ of T ′. If A0 = ∅ then T ′ = T and we are done. Otherwise, let C ′ denote the set of edge values of f ′. Thus
C ′ is a subset of Zp of cardinality 2|A′| − 1.
Let A0 = {a1, . . . , ak}. Let bσ(i) be the vertex in B adjacent to ai, for 1 ≤ i ≤ k. Consider the polynomial P ∈ Zp[z1, . . . , zk]

defined as

P(z1, . . . , zk) =
∏

1≤i<j≤k

(zi − zj)
∏

1≤i<j≤k

(b′σ(i) − zi − (b
′

σ(j) − zj))
∏
1≤i≤k

∏
a∈A′
(b′σ(i) − zi − a

′),

where b′σ(i) = f
′(bσ(i)) and a′ = f ′(a). We can write

P = (−1)k(k−1)/2+|A
′
|
∏

1≤i<j≤k

(zi − zj)2
∏
1≤i≤k

z|A
′
|

i + terms of lower degree.
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It is known that the coefficient of the monomial
∏k
i=1 z

k−1
i in the expansion of

∏
1≤i<j≤k(zi− zj)

2 is (−1)
(
k
2

)
k! (see, e.g., [2]),

which is nonzero modulo p. Therefore P has a monomial

zk+|A
′
|−1

1 · · · zk+|A
′
|−1

k

of maximum degree with nonzero coefficient. Let D = Zp \C ′. Note that |D| = p−|C ′| ≥ d3(2|A′|+ k−1)/2e−2|A′|+1 ≥
|A′| + k. By Alon’s Theorem, there exist d1, . . . , dk ∈ D such that P(d1, . . . , dk) 6= 0. Extend f ′ on T ′ to f on T by defining
f (ai) = f ′(bσ(i))− di. Since

∏
1≤i≤k

∏
a∈A′(b

′

σ(i) − di − a
′) 6= 0, the values of f on A0 are different from the ones on A′; since∏

1≤i<j≤k(b
′

σ(i) − di − (b
′

σ(j) − dj)) 6= 0, these values are pairwise distinct. Finally, since
∏
1≤i<j≤k(di − dj) 6= 0, the edge

values d1, . . . , dk on the edges incident to a1, . . . , ak are distinct and, since di ∈ Zp \ C ′, they are different from the ones
taken by f on T ′. Thus f is a Zp-bigraceful map of T . �

Theorem 1(ii) follows from Lemmas 5 and 2, and using the cyclic decomposition from [11].

4. Extension to ρ-valuation

Following the ideas of the proof of Theorem 1, we give an upper bound for the number of edges that have to be added to
an arbitrary tree T to obtain a tree that admits a ρ-valuation in terms of the size of T .
For our present purposes we define a relaxation in the definition of a ρ-valuation. Given a graph H with m edges and

given n ≥ m, a ρn-valuation is an injection ρn : V (H) → Z2n+1 such that the induced edge labels defined as before (but
now taking the differences modulo 2n+ 1) are distinct.

Lemma 6. Every tree T with m edges has a ρn-valuation for every n ≥ d(3m− 1)/2e.
Proof. Let T1, T2, . . . , Tm be trees such that Tm = T , T1 has one edge v0v1, and Ti+1 is obtained from Ti by adding a
leaf vi+1 adjacent to some u ∈ V (Ti). Define a ρn-valuation of T inductively as follows. Define f (v0) = x0 ∈ Z2n+1,
f (v1) = x1 ∈ Z2n+1 arbitrarily, with x0 6= x1. Suppose f is defined on Ti for 1 ≤ i < m, and let Vi = f (V (Ti)),
Ci = {±(f (x)− f (y)) : xy ∈ E(Ti)} ∪ {0}, and Di = Z2n+1 \ Ci. Since |Di + f (u)| = |Di| = 2n+ 1− 2i− 1 ≥ m+ 1 > |Vi|,
there exists d ∈ Di such that d+ f (u) ∈ Z2n+1 \Vi. Thus we can define f (vi+1) = d+ f (u). At the end, we have a ρn-valuation
of T . �

Lemma 7. Every tree T of size m that admits a ρn-valuation for n ≥ m can be embedded into a tree T ′ of size n that admits a
ρ-valuation.

Proof. If n = mwe are done. Otherwise, let f be the ρn-valuation of T . We define a sequence of trees Tm, Tm+1, . . . , Tn with
Tm = T and Tn = T ′, by adding one leaf at each step, and extend f to T ′ as a ρ-valuation.
Suppose we have defined Ti and a ρn-valuation f on Ti for some i such that m ≤ i < n. Let Vi = f (V (Ti)), Ci =

{±(f (x)− f (y)) : xy ∈ E(Ti)} ∪ {0}, and Di = Z2n+1 \ Ci.
Since Ti is a tree, we have the following relation:

2|Vi| − 1 = 2n+ 1− |Di|. (3)

Since |Di| = 2n + 1 − |Ci| = 2n − 2i ≥ 2 we can apply Lemma 1 with r = 2n + 1, X1 = X2 = Vi, and Y = Di to
obtain |Di + Vi| > |Vi|. By (3), condition (1) of Lemma 1 holds. Therefore there exists d ∈ Di and some a ∈ Vi such that
d + a ∈ Z2n+1 \ Vi. Let Ti+1 = Ti + ei+1 where ei+1 joins the vertex in Vi labeled with a to a new vertex vi+1. By defining
f (vi+1) = d+ a we extend f to a ρn-valuation of Ti+1. By iterating this procedure we eventually get a ρ-valuation of a tree
T ′ that contains T as a subtree. �

Theorem 2 is a direct consequence of Lemmas 6 and 7, and the fact that a graph with m edges cyclically decomposes
K2m+1 if and only if it admits a ρ-valuation (Rosa [14]).
Another related result is given by Van Bussel [3, Theorem 1]; it implies that every tree withm edges has a ρn-valuation,

with n = 2m− diam(T ). Since a random tree has diameter of order
√
n, this lower bound is in general worse than the one

obtained in Theorem 2 (see also Lemma 6).
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