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An m-dimensional matrix of order n over a field F is an array A = [a,,, ah,..., ,,,,J; 
1~ i, < n; 1 < j < m, of nm elements of F. This definition coincides with the notion of 
an m-fold tensor over F”, and also of an n x n matrix when m = 2. In this paper two 
multiplications on such objects are examined. The first is nonassociative and is 
motivated by a generalization of a Markov chain. The second is associative, and 
related to the first by a certain generalized transpose operator. Spectral and unitary 
properties of the associative multiplication are discussed, as well as connections 
with block-diagonal matrix multiplication. A connection between graphs and the 
nonassociative multiplication is exhibited. @? 1987 Academic Press, Inc. 

1. INTRODUCTION 

Let F” denote the space of n-tuples over a field F. By an m-dimensional 
matrix of order n over F, we mean an array 

where 

A = Ca,l; a,EF, 

YET(m, n)= {y=(y(l),..., y(m))\ 1 <y(i)<n, all i>. 

We will let M:(F) denote the set of such objects, which is a vector space 
of dimension nn’ over F with respect to the obvious addition and scalar 
multiplication. When m = 2 and 3, these arrays are square or cubic. For 
any m, the space of such objects may be regarded as: 

(i) the mth tensor or Kronecker product of F”, 0” F”; 

(ii) the dual space of the space of m-linear functionals on YF”; or 
(iii) the mth homogeneous component of F[xI,..., x,], where the x;s 

are noncommuting indeterminates over F. 
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In the case m = 2, these objects are n x n matrices, which are afforde 
several other interpretations. The interpretation of n x n matrices as linear 
transformations on F affords an associative multiplication on such objects 
(and vice versa). 

The question arises whether there is some “na al” way to define a mul- 
tiplication on m-dimensional matrices for m > 2. [9], Yamada is able to 
motivate a multiplication from probabilistic co derations. In this paper 
we motivate a quite different multiplication on m-dimensional matrices by 
also resorting to probability theory. In doing this a generalization of 
idea of a Markov chain is developed which is of independent interest. 
also point out that though this multiplication is nonassociative when 
M > 3, it is canonically related to a certain associative multipli 
is different from the associative multiplication of Yamada. 
both the multiplications turn out to be usual matrix multiplication and so 
are both valid generalizations. We relate the associative muIti~licat~o~ to 
usual matrix multiplication and exploit this relation to prove various 
algebraic properties of the associative multiplication. The nonassociative 
multiplication is given a graph theoretic interpretation ch serves as a 
further motivation for the nonassociative multiplication. conclude with 
suggestions for further work. 

2. A GENERALIZATION OF MARKOV CHAINS 

We begin by motivating and defining the stochastic m-dimensional real 
matrices. For a system that may be in any one of n distinct states at any 
time I = 1, 2,..., we define, for each y E r(m, n); k = 1, 2 ,..., the 

k-step transition probabilities: 

pff = the probability that state y(m) occurs at t = m + k + j - 1 

given that state y(i) occurred at t = i + j, for all 
i = 1, 2,..., m- 1, andallj=O, l,.... 

For each k, we define an m-dimensional matrix of order n referred to as 
the k-step transition matrix via: 

P = [pa-j. 

Tt is clear that these matrices have nonnegative entries and satisfy 

;:I p”(y(l),..., y(m - l), s) = 1 all YE r((m, n). (1) 

481!109,1-2 



16 ROBERTGRONE 

We will refer to any m-dimensional matrix with nonnegative entries which 
satisfies (1) as stochastic. 

If we examine the coefficients of I’(l) and I’(*), we find from probabilistic 
considerations that 

(P’),= i P’W) 2”‘) Y(m- 1),4%(2) ?...> Yb- l), & y(m)) 
s=l 

all y. This generalization of Markov chains motivates the multiplication 
defined via: 

(A . B):, = .i %(,I . . . y(nl - 1, .s, bt;.c2, . . . . . ;(n?v 1 ).S,?(f,,))’ (2) 

Straightforward computations yield the following: 

THEOREM 1. The multiplication on m-dimensional matrices defined via 
(2): 

(i) satisfies A.(B+C)=A.B+A.C; 

(ii) satisfies (A+B).C=A.C+B.C; 

(iii) has a unique right multiplicative identity E = [?i.;(,,, ~ 1 ,,7cmj]; 

(iv) is non-associative when m > 2, n > 1, even on powers (i.e., 
(A . A) . A # A . (A . A) in general); 

(v) satisfies Pkl = PC’). P+ ‘I, all k = 2, 3,... for the previously 
defined transition matrices. 

When m = 2 this notion of a k-step transition matrix coincides with the 
usual definition of such objects in the theory of Markov chains and the 
multiplication which it motivates is the usual matrix multiplication. When 
m > 3 Theorem 1 ensures that this multiplication is not even power- 
associative. 

3. AN EXAMPLE 

Suppose that a set of teams involved in a particular sport forms a league 
which arranges games at regular intervals between its members. Also sup- 
pose that for a given team there are two possible outcomes for a game: a 
win (outcome 1 ), or a loss (outcome 2). 
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If we apply the notion of a (2-dimensional) arkov chain t5 t 

situation we arrive at a transition matrix 

where 

pI , = the probability of a win given the previous game was a win, 

p 12 = the probability of a loss given the previous game was a win, 

pZ, = the probability of a win given the previous game was a loss, 

pZZ = the probability of a loss given the previous game was a loss. 

Once the matrix P is obtained, one can calculate the k-step transition 
matrix in the usual way. This disadvantage of this approach is that the 
entries of the matrix P may all be very close to 2 ‘I in which case no% 
much information is obtained. In many sports it does seem in fact that not 
much can be said about a team’s chances of winning by looking solely at 
the outcome of the previous game. 

If we apply the generalized notion of a Markov chain we obtain an M- 
dimensional transition matrix P with entries: 

pCi, ..,, ) = the probability of a win given that the previous 
: m - I games were won, 

P(~,,..,~, = the probability of a loss given that the 

m - 1 games were lost. 

With this example in mind, it seems likely that the entries of t 
dimensional transition matrix would vary much more than the entries of 
the 2-dimensional transition matrix. In other words; a team’s performance 
can be more accurately predicted from its last m - I games than its last 
game. 

4. A RELATED ASSOCIATIVE MULTIPLICATION 

For any s = l,..., n, y E r, let 

(y :s) = (y(l),.-, y(m - 1 Is s), 

0:~) = (s, y(2),..., y(m)). 
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In an attempt to modify the multiplication defined in (2), consider the 
multiplication defined via: 

(-w, = i q,:s)b(,:,). (3) 
s=l 

The properties of this multiplication are given in the following: 

THEOREM 2. The multiplication on m-dimensional matrices defined by 
(3): 

(i) satisfies A(B + C) = AB + AC; 

(ii) satisfies (A + B)C = AC + BC; 

(iii) has a two-sided identity I= [6Y(,j,j,(,,]; 

(iv) coincides with the usual definition when m = 2; 

(v) satisfies (AB)C= A(K). 

Prooj Properties (i)-(iv) are routine, and to prove (v), we calculate 

[WWI;. = i VB)~,.:,&.v:;., 
c=l 

= i A B . C . ((:...\).I) (I.($..\)) (.\-;) 
.A.f = 1 

If G ES,, then we define the permutation operator, or generalized trans- 
pose operator afforded by o on the m-dimensional matrices in the following 
way. If 0 = (o(l),..., a(n)) and y E r(m, n), then 

and 

~0 = M41)),..., do(m))) 

(AT’“‘), = (A),,. 
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THEOREM 3. The multiplications in (2) and (3) are related in the fo~~o~~- 
ing way. If a, ES, is given by 

then 

o. = (m - 1, l,..., m - 2, m), 

5. SPECTRAL AND UNITARY PROPERTIES OF THE A~SO~IATJVE 
MULTIPLICATION 

For any fixed A E M;(F), the set 

(P(~EFLTxI I P(A)=O$ 

is an ideal in F[x]. Hence A has a unique (manic) minimal polynomial: 
ma(x), whose roots will be referred to as the characteristic values of A. This 
definition partially refutes an assertion of Barter [ 11 that no analogs of 
characteristic values exist for homogeneous vector functions of degree 
greater than one. 

]EXAMPEE. If a matrix A has O’s in the positions where the identify 
matrix has o’s, then the characteristic values of A are just the set of distinct 
elements appearing in those positions where the identity matrix has 1’s. 
Since there are P ~ 1 such positions, we can see that 

deg(m,(x)) < TP+ ’ 

with the upper bound clearly attainable. 

Since the dimension of M;(F) is nm, it is clear that the degree of the 
minimal polynomial, and hence the number of characteristic values, is at 
most nm- 1. In fact, the maximum is actually C-i, as in the previous 
example. This will be made clear by the discussion in Section 6. 

In addition to characteristic values, we may define notions of similarity, 
singularity, nilpotence, etc., in the obvious fashion, and such theorems as 
the following examples are easily proven. 

THEOREM 4. A is a left zero-divisor 

if?- A is a right zero-divisor 

ifs there exists 0 #B = p(A) such that 0 = A 

l&f 0 is a characteristic value of A. 
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THEOREM 5. If A and B are similar, then mA(x) = mB(x). 

We may also define the rank of A to be 

p(A)=fdim{ABiBEM:(F)}, 

and such facts as: 

(i) If A is nonsingular p(AB) = p(B), all B, 

(ii) ,4-W d p(B), 
(iii) p(AT(“‘) = p(A), all o E S,, 

(iv) P(A+B)~P(A)+P(B), 

are readily verifiable. Note that this definition is not the same as the 
definition of tensor rank. (See, e.g., [3, 6, 71 for a discussion of tensor 
rank.) 

If F= C, the field of complex numbers, we make the following 
definitions. 

(i) The adjoint of A, A*, is defined by 

(A*);.=[C (;(m),?(2) ,.... Y(rn - I ).j,( I)) 1 9 

(ii) A is wzitary if A* = A-‘, 

(iii) A is Hermitian if A* = A, 

(iv) A is normal if A*A = AA*, 

(v) A is unitarily diagonalizable if there exists a unitary U such that 
U*AU has O’s in all positions in which the identity matrix does. 

6. RELATIONS TO BLOCK-MATRIX MULTIPLICATION 

In this section we make two observations which greatly simplify 
problems arising concerning the associative multiplication on M;(F). 

The first observation is that the multiplication defined in (3) is “essen- 
tially 3-dimensional.” More precisely, it is possible to define a mul- 
tiplication on n x n, x n arrays by means of (3), and if we identify an m- 
dimensional matrix of order n as an n x nrn ~ 2 x n 3-dimensional matrix by 
utilizing the usual lexicographic ordering on (y(2), y(3),..., Y(m - l)), then 
the multiplication afforded by the 3-dimensional multiplication coincides 
with the multiplication in (3). 

The second observation relates the 3-dimensional multiplication on n x 
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n, x n arrays to multiplication of (usual) block matrices, Given two n x 
n, x n arrays A, B we define n x az matrices A,, 

As = Caisjl, s = I,..., n,. 

Bs = Cbisjl, S=l )...) Ml. 

If we now identify A and B with the matrices in (4) then t 
multiplication coincides with the usual multiplication of the block-diagonal 
matrices in (4) i.e., A% = A”& where 

A, 

A”= A2 
. . > B= 

A,,, 

We summarize the previous remarks as follows. For each o E r(m - 2, n) 
and A E M;(F) we define the n x y1 matrix 

We then define the n”-’ x n”-’ expanded matrix 2 as the brook-diagonal 
matrix 

a= c’ A,. 
wti-(m-2,n) 

THEQREM 6. For any A, BE M;(F), 

A%=A”B. 

The following four theorems are examples of corollaries of Theorem 6. 

THEOREM 7. p(A) is an integer. 

THEOREM 8. A is normal i f f  A is unitarily diagonalizable. 

THEOREM 9. A normal matrix is Hermitian iff its characteristic roots are 
real. 

THEOREM 10. A normal matrix is unitary iff its characteristic roots are 
of modulus one. 
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The expanded matrix A is reminiscent of the IZ x n “contracted matrix” of 
Yamada in [IS]. Using the previous notation, the contracted matrix in [9] 
is 

ctr(A)= 1 A,. 
UIEI-(m-23) 

We can also use the expanded matrix to define a determinant function on 
Wi,(F). 

det(A) = det(A) = fl det(A,). 
<‘J E I-( t-7, - 2.n ) 

Note that this definition and Theorem 6 yield that 

(6) 

det(AB) = det(A) det(B) all A, BE M;(F). 

If we use this determinant function to define the characteristic polynomial 
ofA, 

ch,(x) = det(xl- A), 

we can then prove that 

min,b) I ChAx) all A E M;(F). 

We remark that the determinant function defined by (6) is homogeneous of 
degree n n*P ’ in the entries of A and is quite different than the following 
determinant-type function which is homogeneous of degree n (see 
Sokolov [S]), 

d(A) = C 402 . . . gjn) fi a(j,~2(i),...,,,m(;)). (7) 
a....,a,, i=l 

When m = 2 the two definitions of course coincide, and so both are 
generalizations of the usual determinant. Several versions of determinants 
for m-dimensional matrices have already been studied. See, for example, 
[I23 5, 81. 

7. GRAPH THEORY 

In this section we relate the nonassociative multiplication, contractions, 
and graph theory. 

Let K, denote the complete directed graph on n vertices, including loops. 
By an m-edge we mean a directed path of length m - 1 in K,, , so that the 
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set of m-edges is identified with r(m, n). y an m-graph we mean a 
collection of m-edges or a subset 22 c r(m, n The adjacency matrix of is 
A =A(~)EM;(R) and defined by 

1 if y~9 
a, = 

i 0 if ‘/ $9, 

so that the set of m-graphs is in natural correspondence with the set 
of m-dimensional O,l-matrices of order II. By an m-route in 9’ we mean s 
directed path of length at least m - 1 in K, having the p rty that every 
consecutive subpath of length m - 1 is an m-edge of 9. say that 9 is 
m-connected if any two vertices can be joined by an m-route in 8. 

Suppose now that 9 is an m-graph with adjacency matrix A. 

A moment’s reflection yields that vertex i can be joined to vertex j by an 
m-route in of length m + k - 2 iff the (i, j)th entry of &(A(“)) is positive. 
Hence we have the following theorem, which serves as yet another 
motivation for the non-associative multiplication. 

THEOREM 11. i’s m-connected iff 

ctr(A”‘+ ... +ACk’)>O 

for some k. 

8. SUGGESTIONS FOR FURTHER WQRK 

We say that a transition matrix P has limiting transition probabilities if 

lim PCk) exists, 
k-s 

and we say that P is regular if 

PCk) > 0 for some k. 

Investigation into the structure of such matrices would seem to be of 
interest. For example, do regular transition matrices have limiting trans- 
ition probabilities? 

Assumption on the entries of a transition matrix might be useful. As an 
elementary example, if py is a function only of y(m - 1) and y(m), then P is 
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actually a 2-dimensional Markov process, which is extensively treated in 
the literature. A less trivial assumption would be that P satisfies 

p = pm), (co 

where crO is as in Theorem 3. This would include the case where P, was a 
function only of the multiplicities of l,..., n in (y(l),..., ~(m - 1)). If P does 
satisfy (8), then Theorem 3 and 6 reduce questions about Pck) to usual 
matrix multiplication. This makes it trivial to prove that a regular trans- 
ition matrix satisfying (8) has limiting transition probabilities. 

Further work could be done in areas unrelated to Markov chains. 
Manifestations and properties of the associative multiplication and the 
determinant functions in Section 6 would be of interest. Inequalities 
between p(A) and the tensor rank of A would be of interest in view of the 
relation between tensor rank and complexity theory (see, e.g., [3, 6, 71 for 
a discussion of tensor rank). Related to tensor rank and other questions it 
would be valuable to consider the structure of normal forms for A E M:(F) 
under elementary operations (the case m = 3, n = 2 has been considered by 
Kaplansky 1141). 
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