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A New Algorithm for Idealizing Single Ion Channel Data Containing
Multiple Unknown Conductance Levels

Antonius M. J. VanDongen
Department of Pharmacology, Duke University Medical Center, Durham, North Carolina 27710 USA

ABSTRACT A new algorithm is presented for idealizing single channel data containing any number of conductance levels.
The number of levels and their amplitudes do not have to be known a priori. No assumption has to be made about the
behavior of the channel, other than that transitions between conductance levels are fast. The algorithm is relatively insensitive
to the complexity of the underlying single channel behavior. Idealization may be reliable with signal-to-noise ratios as low as
3.5. The idealization algorithm uses a slope detector to localize transitions between levels and a relative amplitude criterion
to remove spurious transitions. After estimating the number of conductances and their amplitudes, conductance states can
be assigned to the idealized levels. In addition to improving the quality of the idealization, this "interpretation" allows a
statistical analysis of individual (sub)conductance states.

INTRODUCTION

Ion channels are large integral membrane proteins that
regulate the flux of ions across the plasma membrane. Early
patch clamp recordings of single ion channel behavior
(Neher and Sakmann, 1976) seemed to confirm the "unitary
conductance" paradigm (Neher and Stevens, 1977), which
suggests that channels switch stochastically between only
two distinct permeability states: open and closed. Improve-
ments in the resolution of patch clamp recordings (Hamill
et al., 1981) have resulted in the observation of multiple
open conformations for a large number of channels. In
addition to a main conductance level, there appear to be sub-
or superconductance states (Auerbach and Sachs, 1983;
Hamill et al., 1983; Geletyuk and Kazachenko, 1985; Nagy,
1987; Matsuda, 1988; Nilius et al., 1989; Ferguson et al.,
1993; Root and Mackinnon, 1994). Often there are direct
transitions between the different conductance levels, result-
ing in complex opening patterns.
The analysis of single channel data usually starts with an

"idealization" step, in which the behavior of the channel is
extracted from the noisy data as a sequential list of ampli-
tudes and durations of all levels. This event list can be used
to graphically reconstruct a noiseless single channel record,
while it also serves as the input for subsequent statistical
analyses. Thus far, idealization of single channel behavior
has been dominated by the classical 50% amplitude thresh-
old algorithm (Sachs et al., 1982; Sachs, 1983; Colquhoun
and Sigworth, 1983), which employs an amplitude detector
set at half the unitary current to detect transitions between
the open and closed states. However, this algorithm is not
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suitable for analyzing single channel data containing mul-
tiple, unknown, possibly non-equidistant amplitude levels.
A new algorithm was designed that does not suffer from

this limitation. The algorithm, TRANSIT, uses a slope de-
tector to localize transitions between levels and a relative
amplitude criterion to remove spurious transitions. It can be
seen as an extension of the approach used in Sigworth's
CATCH program (Sigworth, 1983). Part of the algorithm has
been published previously in abstract form (VanDongen,
1992). Design objectives included the following desirable
properties: 1) no a priori information about the number of
conductance levels or their amplitudes is required; 2) no un-
derlying model has to be assumed; 3) there is no intrinsic
minimum duration requirement for the levels; 4) objectivity is
maximized; and 5) the idealization is perfect in the absence of
noise and filtering, no matter how complex the data.

DESIGN OF THE ALGORITHM

Single channel data, no matter how complex, consist of two
basic components: transitions and levels. The objective of
an idealization algorithm is to accurately estimate the du-
ration and amplitude of all levels from noisy data. If it were
possible to localize the time points at which transitions
occur, then idealization would be straightforward. The du-
ration of a level could be determined by the time interval
separating neighboring transitions, while the amplitude
could be estimated by averaging the data points between
two transitions.

Transitions can be distinguished from levels by their
slope or first order time derivative. In the theoretical case of
noise-free single channel data the slope of a level equals
zero, while the slope of a transition is very large (Fig. 1). In
this ideal case, all transitions are readily detected by differ-
entiation. The duration and amplitude of each level can be
found, and an idealized trace can be reconstructed. The
idealization obtained with this approach will be perfect. No
matter how complex the data, all levels will be found and
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FIGURE 1 Use of a slope detector to localize transitions. (A) A simulated ideal opening containing six transitions between five levels. (B) Slope or first
derivative of A. The slope is zero, except at time points where transitions occur. (C) Idealization using the transitions localized in B. (D) Same record as

in A, after addition of white noise. (E) Slope of the record in D. Levels have a non-zero slope due to current fluctuations. Slope threshold detects transitions
2-6, but transition I does not exceed the threshold. (F) Idealization using the transitions detected in E. The first level is missing because the first transition
was not detected. (G) Same record as in D, after low-pass filtering. (H) Slope of G. All six transitions now exceed the slope threshold, but noise fluctuation
in second level causes spurious transition. (1) Idealization using transitions detected in H. Spurious transition split the second level into two artificial levels.

their amplitudes and durations will be correct. Furthermore,
it should be noted that no information about the number of
levels or their amplitudes is required.

Real data usually contain generous amounts of noise (Fig.
1 D), which forces the use of a slope threshold (Fig. 1 E).
This results in two kinds of problems: 1) transitions with
small slopes are not detected, and 2) spurious transitions
may appear when the fluctuating slope of a level exceeds
the threshold. Missed transitions may be recovered by ap-

propriate low-pass filtering, which increases the amplitude
resolution at the expense of time resolution (Fig. 1, G-f).
Spurious transitions are a fundamental problem associated
with this approach. They make the idealization unreliable
by introducing artificial levels (Fig. 1 1).

If the problem of spurious transitions could be resolved,
then the slope threshold could be made relatively small and
very few real transitions would be missed. A spurious
transition originates from the noise that is superimposed on

a level. Because the two artificial levels that a spurious
transition introduces are actually two parts of the same

original level, their amplitudes will be very similar. There-
fore, the difference in amplitude between any two consec-

utive levels is compared with a relative amplitude threshold.
If the difference does not exceed the threshold, then the
transition that separates them is probably spurious and the
levels are concatenated. The final algorithm therefore em-

ploys two thresholds: a slope threshold to detect transitions
and a relative amplitude threshold to eliminate spurious
transitions.
To maximize objectivity, the threshold values are derived

from the data. Fig. 2 illustrates how a record is analyzed to
estimate the mean and standard deviation for both the am-

plitude (o-,p) and the slope (qslope). A detailed description
of the algorithm is given in Fig. 3.

IMPLEMENTATION OF THE ALGORITHM

The idealization algorithm can be applied to real single
channel data after filtering and digitization of the current
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FIGURE 2 Analysis of baseline noise to estimate standard deviations. (A) Simulated single channel record showing baseline noise interspersed with
openings. (B) Phase plane representation of the record in A. The current amplitude 1(t) is plotted against the slope dI(t)/dt, estimated using the central
difference (CDIF in Eq. 1). Levels have a relatively small slope, indicated by the large rectangular box. A bold box surrounding the closed level indicates
+ 3 SD of the amplitude and the slope, estimated as described below. (C) Amplitude probability density function (pdf) estimated from the current amplitudes
using a Gaussian kernel estimator (Silverman, 1986). It is shown as a projection of the phase plane to its y axis. The open and closed levels give rise to
two peaks. The mean and standard deviation of the amplitude can be estimated by fitting a Gaussian curve to the most negative peak, which corresponds
to noise in the baseline. All of the negative limb can be used, but only the top part of the positive limb (arrow) should be used, since it can become
contaminated with noise from the open state(s) when the S/N ratio is poor. (D) Slope pdf estimated using CDIF. The large peak results from the levels that
have a mean slope of 0 and follow a Gaussian distribution. Positive and negative transitions give rise to small tails. The standard deviation of the slope
distribution can be estimated by fitting a Gaussian curve to the part of the peak that is not contaminated by the tails (in between the arrows).

record. This produces a discrete time series It (t = 1,.. ..
N), sampled at N time points with equidistant spacing At.
Implementing the algorithm is straightforward. A number of
issues deserve elaboration, however.

Estimation of the first derivative

The time series It needs to be differentiated in order to
estimate the first derivative (slope). Different advantages
and disadvantages are associated with the two basic estima-
tors for the first derivative at Ij (the current at time pointj):
the forward difference (FDIFj) and central difference
(CDIFj), which are defined as follows:

FDIFJ = (Ij+1 - Ij)/At CDIFj = (Ij+ X-Ij_-)/2A t (1)

First we will consider the standard deviations U-FDIF and
%CDIF' estimated from the baseline noise. When this noise is

"white," 0CDIF is half the size of C0FDIF. A slope threshold
that employs CDIF is therefore twice as sensitive for de-
tecting real transitions, while being equally sensitive to
spurious transitions arising from the noise. Filtering intro-
duces correlation between neighboring points, and the dif-
ference in standard deviations becomes smaller than a factor

of two. In the limiting case of severe low-pass filtering,
FDIF equals CDIF, and their standard deviations become
identical. Simulations showed that for filter frequencies
between 1/3 and l/lo of the sample frequency, (TFDIF was

between 1.9 and 1.1 times as large as (TCDIF (data not
shown). CDIF is therefore superior to FDIF, because it has
better noise-rejection properties.

Unfortunately, this increased sensitivity comes at a price.
A slope detector that uses CDIF is "blind" to patterns of fast
switching containing consecutive levels of one or two sam-

ple points, as illustrated in Fig. 4. Other estimators for the
first derivative with even better noise rejection properties
(e.g., polynomial approximations (Savitsky and Golay,
1964; Steinler et al., 1972)) suffer from the same problem as

the central difference.
To construct a slope detector that is relatively insensitive

to fluctuations and has no minimal duration requirement, a

combination of forward and central difference estimators
has to be used. First, transitions are detected using CDIF
and stored. Then, stretches of fast activity are localized
using FDIF. For these segments, transition time points de-
tected by FDIF override the previous central difference
analysis. This strategy of combining forward and central
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FIGURE 3 The TRANSIT idealization
algorithm. (A) A simulated, noisy, low-pass
filtered complex opening containing six
transitions between five levels. Same
record as Fig. 1 G. (B) Slope of record in A,
estimated by CDIF. Slope thresholds are

set at plus and minus 2rCDIF estimated
from the baseline noise as described in Fig.
2. The threshold is exceeded seven times,
resulting in the detection of six real and one

spurious (*) transition. (C) Same record as

in A. Parts of the record for which the slope
exceeded the threshold are marked as "tran-
sition," as indicated by a bold line. All
other segments are "levels." (D) Ampli-
tudes and durations of levels are estimated
as described. Segments marked as levels
have been replaced by a horizontal line
with the estimated amplitude and duration.
Segments marked as transitions have been
replaced by lines connecting the levels. An
arrow indicates the spurious transition. (E)
Transitions in D have a finite duration be-
cause of low-pass filtering, which results in
the durations of the levels being underesti-
mated. The duration of each level is re-

stored by adding half of the duration of
each flanking transition. (F) In the final
phase spurious transitions are removed by
comparing the amplitudes of neighboring
levels. Levels whose amplitude difference
does not exceed the relative amplitude
threshold set at three times the amplitude
standard deviation (Camp) are concatenated.

difference estimators in the slope detector utilizes the pos-

itive aspects of each, without incorporating their respective
limitations.

Unresolved levels

When the duration of a level does not exceed the rise time
of the low-pass filter it will not be completely resolved.
Such unresolved levels may be detected, if they cause the
slope to change sign without going through a level. Two
consecutive transitions with opposite sign is therefore an

indication of an unresolved level. Both the amplitude and
duration of such levels are unreliable, and they are flagged
as such.

The relative amplitude threshold

The probability that a spurious transition will survive the
relative amplitude test depends on the duration of the two
levels it creates. Since the amplitude of a level is obtained
by averaging, the difference between the amplitudes of two
levels containing NI and N2 points corresponds to the
difference between two means of sample size NI and N2,
drawn from the same Gaussian distribution. The probability
that a relative amplitude difference exceeds three standard
deviations vanishes very quickly with increasing NI and

N2. However, low-pass filtering introduces correlation be-
tween neighboring points, increasing the probability that a

spurious transition will survive the relative amplitude test.
Simulations using filtered noise were used to empirically
determine these probabilities. When one of the levels has a

short duration (one to three sample points), then the prob-
ability of accepting a spurious transition becomes signifi-
cant. This can be counteracted by increasing the relative
amplitude threshold, whenever one of the two levels has a

duration of three sample points or less. The effect of this
will be further explored in the Results section.
The first and last point of a level may have been used by

CDIF to estimate the flanking slopes. If they are used for
amplitude estimation as well, then the amplitude and slope
criteria are not statistically independent. Therefore, these
points are omitted from the amplitude estimation for levels
with a duration longer than three sample points.

Concatenating levels

Neighboring levels are concatenated when their amplitude
difference does not exceed the relative amplitude threshold.
The amplitude of the new level becomes the average of the
amplitudes of the two initial levels, weighted by their du-
rations. Concatenation is an iterative process, the outcome
of which depends on the order in which levels are concat-

I I
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FIGURE 4 Detection of fast switching activity:
forward versus central difference. (A) Sampled
ideal current segment I, (top), its central difference
CDIF (middle) and idealization (bottom). Open and
closed levels with a duration of one sample point
are flanked by longer levels. The central difference
detects two transitions, (0), instead of three, result-
ing in an incorrect idealization. (B) The same eight
sample points as in A are correctly handled by the
forward difference FDIF, which detects three tran-
sitions, resulting in a correct idealization. (C) A
second pattern of activity that CDIF cannot handle:
a two-point intermediate-size opening flanked by a
longer closed level and full-size opening. The cen-
tral difference only detects a single transition with a
duration of three points. (D) Again, the forward
difference detects two transitions and produces a
correct idealization.
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enated. In TRANSIT, the order is determined by the mag-
nitude of the difference: the smallest difference, which is
most likely to be spurious, is concatenated first. The flank-
ing differences are then recalculated. This is repeated until
all differences exceed the threshold.

INTERPRETATION

The TRANSIT algorithm as described thus far produces a
sequential list of amplitude-duration pairs. The amplitudes
and durations can now be used as input for statistical anal-
ysis (Fig. 5 A). All statistics that are generally computed
from idealized data can be evaluated at this point. However,
dwell time distributions for open and closed levels could be
affected by unresolved closures. Also, spurious transitions
that escaped the relative amplitude criterion will have pro-
duced artificial levels that could affect the dwell time sta-
tistics. The idealization can be further improved by using
information about the number of current levels and their
amplitudes. These parameters can be estimated by analyz-
ing an amplitude histograms constructed from the idealized
data or from the raw data (Fig. 5). Once the number of
current levels is determined, the result of the idealization
can be used in the INTERPRET phase of the TRANSIT
analysis (Fig. 5, F and G).
INTERPRET assumes the existence of a closed level with

zero amplitude (C) and allows one or more open levels

(01-On) to be specified. INTERPRET compares the am-
plitude of each level with the defined amplitudes and as-
signs a number (0 for closed, 1 through n for 0 1-On) for the
amplitude closest to that level. If the amplitude of a level
exceeds the largest open amplitude (On), then more than
one channel could be open simultaneously. In this case, the
number of simultaneously open channels is estimated and
assigned to the level as well. After all levels have been
assigned a number, neighboring levels with identical num-
bers are concatenated: the dwell times are summed and the
amplitudes averaged using dwell times as weights. The end
result is a sequential list of levels, with four parameters for
each level: the duration, the amplitude, the number indicat-
ing the conductance state (C, 01-On) and the number of
simultaneously open channels. This data set may be used as
input for the same statistical analysis as the original ideal-
ization. However, some of the previously mentioned prob-
lems arising from unresolved closures may have been rem-
edied. Because every level now has a state number as well
as the number of overlapping channels associated with it,
new statistics become available. For instance, the probabil-
ity of being in a particular conductance state as a function of
time can be calculated. For channels with more than one
open conductance state, a state transition diagram can be
constructed that tabulates the probability of moving from
each state to any other state.
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A Rawdata (B) I IDEALIZATION Idealized data(C)

Amplitude histogram (D+E)
n INTERPRETATION

Fit with sum of Gausslans (D)
or find mod! of pdf (E)

Number of levels
and their amplitudes Interpreted data (F+G)

ANALYSIS

FIGURE 5 Idealization, level estimation and interpretation. (A) Diagram illustrating data flow during TRANSIT analysis. (B) Raw data, which are

subjected to baseline analysis and idealization as described. (C) The result of idealization, which can be used for statistical analysis. Alternatively, the
idealized data can be fed into the INTERPRET module, after the number of open levels and their amplitudes have been determined. Two different
approaches are illustrated in D and E. (D) An all-point histogram obtained from the raw data was fitted with sums of 1-5 Gaussians. The sum of 4 Gaussians
shown here minimized AIC. (E) An amplitude histogram from idealized levels and a kernel estimate of the pdf. Because the pdf is a continuous smooth
curve, modi can be determined. (F and G) The result of two interpretations of the same idealization (C) assuming one open state of 10 pA (F) or three open
states of 2, 8, and 10 pA (G).

METHODS

Simulations

Single channel behavior was simulated using continuous time, discrete
state Markov models. The mean dwell time in any given state was calcu-
lated by inverting the sum of the rates leaving that state. During the
simulation, the actual dwell time in a state is found by random drawing
from an exponential distribution with a mean as calculated. This dwell time
together with the associated current amplitude is stored. The channel then
moves to a new state which is selected randomly, using the rate constants

associated with each move as weights. This process is repeated iteratively.
The result is a consecutive series of duration-amplitude pairs. This time
series is oversampled (8-12X), white noise is added, the record is filtered
using a Gaussian filter (Colquhoun and Sigworth, 1983), and the result is
resampled at the desired sample frequency.

Maximum likelihood estimation

Parameters of dwell time distributions (time constants, areas) were

estimated by a maximum likelihood procedure, using unbinned dwell

Amplitude histogram (raw data)
fitted with sum of 4 Gaussians

mean area ,!

81.93 0.03
8.14 0.06

-1 9.97 0.35 IMMI

E Amplitude histogram and pdf
from idealized levels

Modi
2.1 pA
8.2 pA
9.9pA

I0 pA 10I

I
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times. The likelihood was optimized using the variable metric Davidon-
Fletcher-Powell method (Rao, 1984). The minimal number of exponen-
tial components required to describe the data was determined using the
likelihood ratio test (Cox and Hinkley, 1974) at a p value of 0.05.

Curve-fitting amplitude histograms

Amplitude histograms were fitted with a sum of Gaussians by minimizing
the sum of squared differences (residuals) between the model and the data,
using the variable metric method mentioned above. The number of
Gaussian components was increased until a minimum in the asymptotic
information criterion (AIC) was reached (Akaike, 1981).

RESULTS

To test various aspects of TRANSIT, current records were
simulated using continuous-time, discrete-state Markov
models, as described in Methods.

Noise sensitivity: rejection of spurious transitions

The role of the relative amplitude criterion in TRANSIT is
to reject spurious transitions caused by noise. To evaluate

TABLE I Probability Pspurtous (%) as a function of threshold
values

(Jslope 2Q(iope 3Qslope sOp20oIope 310iope

cramp 4.7 0.61 0.002 o.amp 18.7 1.91 0.030
2o-,mp 0.13 0.065 0.001 2ouap 2.95 0.98 0.026
3oamp 0.010 0.006 0.001 3oamnp 0.12 0.089 0.009

(use 4 * o-jmp if NI, N2 < 3)
Five data sets of 200 records containing 2048 points were constructed. The
total number of data points per data set was 409,600. The filter frequency
(5 kHz) was 1/4 the sample frequency (20 kHz). A DC offset was added
to simulate an open channel, from which transition in both directions
are possible. Pspurious is the probability (in %) that TRANSIT fails to
reject a spurious transition. p values <0. S% are printed in bold: in those
cases the probability for a spurious transition to occur is <1 per 1000
sample points.

how the two thresholds affect the probability of a spurious
transition contaminating the idealization, current records
containing only pink noise were simulated. Baseline analy-
sis was performed to obtain the required standard devia-
tions. Thresholds were set at 1, 2, and 3 times the standard

A
50 100

50 1 00

FIGURE 6 The importance of the relative amplitude
criterion. (A) Single channel behavior was simulated
using the linear Markov model shown. (B) Example of
a noise-free, unfiltered current trace simulated from the
model. The record length is 400 ms (2048 points sam-
pled at 5.12 kHz). There are 47 transitions between 48
levels. (C) The simulated time series was oversampled
10 times (51.2 kHz), and white noise was added; the
data were low-pass filtered at 1 kHz and resampled at
5.12 kHz. This resulted in baseline noise with a standard
deviation of 1.0 pA. S/N ratios are therefore 3, 4, and 10
for the three jump heights. (D) Slope detection pro-
duced 140 transitions, most of which are spurious. The
idealization at this point is shown. (E) The relative
amplitude criterion removes all but two spurious tran-
sitions (*), while one transition (arrow) is missing.

100

100

01 = 10 pA

o 02 =7pA
3

03=3pA

C Noise added and filtered

E Relative amplitude criterion 48 transitions

ULI LL
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deviation for both amplitude and slope criterion, giving a
total of nine combinations. Since these records contain only
noise, all transitions are spurious. Table 1 tabulates the
probability that fluctuations in the baseline will result in a
spurious transition, for the nine different threshold settings.
The effect of using a higher threshold of 4Oamp for transi-
tions involving short durations was also evaluated. Table 1
shows that if the slope threshold is at least 2aope and the
amplitude threshold is at least 3cramp, then the probability of
a noise fluctuation giving rise to a spurious transitions is <1
in 1000 sample points (Pspurious< 0.1%). This probability
goes down 10-fold by using the more stringent amplitude
test for short durations.

Detection of real transitions: importance of the
relative amplitude criterion

The ability of TRANSIT to detect transitions between mul-
tiple current levels in the presence of noise was tested next.
A four-state Markov model with three open states (Fig. 6 A)
was used to generate the same single channel data with and
without noise. A typical noise-free record is shown in Fig.
6 B, which contains 48 transitions, most of which are 3 or 4

pA jumps. After addition of noise and filtering (Fig. 6 C),
the record was idealized. Fig. 6 D shows the result of the
slope detection phase of the algorithm; 140 transitions were
detected, the majority of which are spurious. The relative
amplitude criterion removes all but two spurious transitions
(Fig. 6 E*), while 1 real transition (Fig. 6 E, arrow) is
missing.

Comparison of TRANSIT with the 50% amplitude
threshold detector

The above analysis suggests that the TRANSIT algorithm
can produce a reasonable idealization from data for which
the signal-to-noise (S/N) ratio is as low as 3 or 4. The 50%
amplitude threshold detector does not work reliably under
such conditions. This point is illustrated in Fig. 7 using a
two-state (closed-open) model. The single channel ampli-
tude is 3.5 pA, while the standard deviation of the noise
(after filtering) is 1.0 pA, yielding an S/N ratio of 3.5 (Fig.
7 A). Under these extremely noisy conditions, TRANSIT is
still able to extract the underlying single channel behavior
(Fig. 7, B and E), whereas the 50% amplitude threshold

D
SIMULATION

VLKTJIr

L1L

E F
TRANSIT 50% THRESHOLD

[RJ7IISU

FIGURE 7 Comparison of TRANSIT with 50% amplitude threshold algorithm. (A) Single channel data were simulated using a two-state (C-O) model
with both rate constants being 100 s -'. The open state had an amplitude of 3.5 pA. Records were 100 ms long (2048 points sampled at 20.48 kHz) and
filtered at 5.12 kHz. The standard deviation of the baseline noise was 1 pA resulting an S/N ratio of 3.5. (B) Idealization by TRANSIT of the record shown
in A. The relative amplitude threshold was raised to 4oamp for transitions involving levels with a duration '3 sample points. (C) Idealization of record A

by the 50% amplitude threshold algorithm. Noise fluctuations cause many spurious transitions both from the baseline and the open state. (D-F) Idealization
of five more traces with the same amount of noise superimposed (raw traces not shown) by TRANSIT (E) and the 50% amplitude threshold algorithm (F).
The noise-free simulations are shown in D for comparison.
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detector produces a large number of spurious transitions
(Fig. 7, C and F), as expected.
The TRANSIT algorithm has also been tested on more

realistic models containing multiple closed states, some of
which are very brief. At a noise level where the 50%
threshold detector works reliably (SAN = 6), TRANSIT
correctly idealizes all resolved levels, but also detects many
unresolved closures (flickers) that do not reach the 50%
amplitude threshold (data not shown).

TRANSIT performance and noise

A desirable property of an idealization algorithm is that in
the absence of noise and filtering, the idealization is perfect.
This was tested using a six-state Markov model, which
produced complex single channel records (Fig. 8). Idealiza-
tion by TRANSIT correctly detected all transitions and
accurately estimated the dwell times and amplitudes of all
levels. Degradation of the performance resulted from in-
creasing amounts of noise and filtering (Fig. 9 and 10). The
idealizations can be seen to deteriorate progressively; in-
creased noise results in an increase in the number of spuri-
ous transitions. Increased filtering results in short levels
being lost.

Estimating the number of current levels and
their amplitudes

Before a statistical analysis of individual (sub)conductance
levels can be undertaken, INTERPRET needs to assign state
numbers to al levels. A necessary step is then the estimation
of the number of current levels and their amplitudes. This
could be done from the raw data after construction of an

FIGURE 8 Idealization by TRANSIT is perfect
in the absence of noise. (A) Six-state Markov
model, containing five open states with amplitudes
1.5, 3, 6, 8, and 10 pA and jump heights of 1.5, 2,
3, and 4.5 pA. (B) Noise-free simulation of the
model in A. The record is 50.12 ms long (2048
points sampled at 40 kHz) and contains 116 tran-
sitions. (C) Idealization of record in B. All 116
transitions are detected and all 117 levels correctly
idealized.

all-points histogram, in which points with a large slope are
excluded (Tyerman and Findlay, 1992). Alternatively, an
amplitude histogram can be constructed from the idealized
levels. The two approaches are compared in Fig. 11 using
the six-state model shown in Fig. 8 A. The S/N ratio varied
between 2 and 9 for the various jump heights. All six current
levels are correctly extracted with both methods. Since
amplitudes of idealized levels are obtained by averaging,
their standard deviation is smaller than that of an individual
point. Consequently, the Gaussian components in an ideal-
ized amplitude histogram are usually much narrower than
those in an all-points histogram (compare Fig. 11, C and D),
which can help separation of peaks that are close. Also,
amplitudes of levels with a relatively short duration, which
can get lost in an all-points histogram, are better represented
in the idealized histogram since every level contributes one
observation, irrespective of its duration.

Subconductance analysis

After estimation of the number of levels and their ampli-
tudes, INTERPRET can assign state numbers to levels, as
described above. This information can then be used to
construct dwell time histograms for individual open states,
as well as state transition diagrams. This is illustrated in Fig.
12 with the use of a five-state circular Markov model with
only forward rate constants. The amplitudes and mean dwell
times of the five states are listed in Fig 12 A. The shortest
mean open time was 0.5 ms, while the time between sam-
ples was 0.05 ms. Fig. 12 B illustrates a typical idealization
of data produced by the model. Amplitude histograms of
both raw and idealized data showed well defined peaks at 1,
2, 3, and 4 pA (not shown). INTERPRET was used to assign

A

500
C - 1

500

01= 1.5 pA
02= 3.0 pA
03= 6.0 pA
04= 8.0 pA
05= 10 pA

B

C
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A Noise added

10-

pA dl

FIGURE 9 Introduction of noise re-
sults in spurious and missed transitions.
(A) Same record as in Fig. 8 B, after
addition of noise (1 pA). (B) Low-pass
filtering (10 kHz) was necessary to in-
crease the S/N ratio. The standard devi-
ation of the (filtered) baseline noise was
0.25 pA. (C) Idealization of record in B:
114 transitions are recovered (out of
1 16), and spurious transitions resulted in
the introduction of two spurious levels.

conductance states (0-4) to the levels for 100 idealized
records. The idealization produced 2632 levels, which
INTERPRET reduced to 2623. Dwell time distributions
were single exponential as shown in Fig. 12, C and E-H. In
addition, a Markov state transition diagram was constructed,
which tabulates the probabilities of going from each state to

A More n

10-

pA

0-

FIGURE 10 Increased noise further degrades per-
formance. (A) Same record as Fig. 8 B, after addition
of more noise. (B) More severe low-pass filtering was B LP filte
required (5 kHz) to reduce the standard deviation of 10-.
the baseline noise to 0.36 pA. (C) Idealization recov-

ers 96 transitions (out of 116) and introduces 2 spu- pA

rious ones.

any other state (Fig. 12 D). The circular connectivity and the
absence of reverse rate constants can be extracted from the
transition diagram, although missed transitions from 03 to
04 due to the short lifetime of 04 suggest a connection
between 03 and C, which doesn't exist in the original
model.
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A Simulated data

FIGURE 11 Estimation of the number of levels and their amplitudes. (A) Simulated current trace using the six-state model in Fig. 9 A. There are five
open states with amplitudes 1.5, 3, 6, 8, and 10 pA. Jump heights are 1.5, 2, 3, and 4.5 pA. The noise standard deviation after filtering is 0.75 pA, resulting
in S/N ratios between 2 and 6. (B) Idealization of the record in A. The relative amplitude threshold was raised to 4oaamp for transitions involving levels with
a duration '3 sample points. (C) All-points amplitude histogram constructed from 20 records similar to record A. Sample points with slopes exceeding
the threshold were discarded to prevent transitions from contaminating the histogram. Sums of Gaussians were fitted to the histogram, and six Gaussians
were found to minimize AIC. Their means were 0.06, 1.54, 3.00, 6.06, 8.05, and 9.97 pA. (E) An amplitude histogram was constructed from the idealized
levels using 100 records. Levels with durations shorter than 3 sample points were excluded, since their amplitude is unreliable. Every level contributed 1

observation to the histogram, irrespective of its duration. The smooth bold curve shows the pdf obtained by a kernel estimator, which it is 6 times more

efficient and produces a smooth curve. The modi were 1.59, 2.95, 8.04, and 9.94 pA.

DISCUSSION

The objective of this paper was to design a single channel
idealization algorithm that would have the desirable prop-

erties mentioned in the introduction. The first two are

clearly met: no a priori information about the number of
levels or their amplitudes is required by TRANSIT and no

underlying model has to be assumed. The only assumption
that TRANSIT makes is that transitions between current
levels are fast.
A level only becomes part of the idealization if both

transitions flanking the level 1) exceed the slope threshold,
and 2) survive the relative amplitude test. Consequently, a

level whose amplitude differs less than 3oamp from the level
preceding or following it will not be properly idealized.
Therefore, TRANSIT should not be used on data with S/N
ratio <3. TRANSIT has no intrinsic minimum duration
requirement; levels as short as a single sample interval will
be reliably idealized, as long as they are resolved (i.e., they

meet the detection criteria). However, short levels will be
missed by TRANSIT if their amplitude is sufficiently de-
graded by low-pass filtering. In that case, the current de-
flections caused by the transitions flanking the level have
become indistinguishable from noise fluctuations.

Objectivity was maximized by basing the two important
thresholds on standard deviations obtained from the base-
line noise. The optional INTERPRET phase is not objective,
however, since it requires the user to decide on the number
of levels and their amplitudes. This subjectivity is inevitable
when one wants to calculate statistics of subconductance
levels. Finally, it was illustrated that in the absence of noise
and filtering, idealization by the TRANSIT algorithm is
perfect even for complex single channel behavior. Gradual
degradation of performance resulted from increasing
amounts of noise and filtering.
TRANSIT differs from previously published approaches

for analyzing data containing subconductance levels. Pat-

Raw amplitude histogram
fitted with 6 Gaussians

04

C

0 2 4 6
pA

140- Idealized amplitude 'g D

histogram and pdf 4
120

100
#obs 02

80 03
60 01 q

40 1
20

0
0 2 4 6 -8 10 12 14pA
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A state i <dwell time> 01 E
C OpA 10 msec
C0 1 pA 5.0 msec =495
02 2pA 2.0 msec

03 3pA 1.Omsec
04 4pA 0.5 msec

100 200 500 1000
C -h 1- 02 ---- 03---- 04

1 2000 I X | 1llH
FIGURE 12 Subconductance analysis. (A) A
five-state circular Markov model with four open B 02 F
states (1, 2, 3, and 4 pA) and only forward rates 20

shown.

all states. (B) Example of a simulated current
record and the corresponding idealization. The
standard deviation of the baseline noise was 0.12
pA, resulting in S/N ratios of 8.3 and 33 for the
1 and 4 pA jumps, respectively. The amplitude
pdf showed well resolved peaks at 1, 2, 3, and44 L-
pA (not shown). These amplitudes were used by
INTERPRET to assign conductance state num- c Closed 03
bers to levels for 100 idealized records. Dwell
time distributions for the five states (C, 01-4) | 8.70
were best described by a single exponential, us-
ing a maximum likelihood analysis. The results
are shown in C and E-H using a log transform
(Sigworth and Sine, 1987). Time constants for
the exponential functions are shown in each
panel. (D) A Markov state transition diagram
was constructed from the interpreted data. Prob-
abilities of going from each state to any other D t H
state are tabulated. rDo c 01 02 03 04 0 H

c 97% 3% 0% 0%

01 0% 94%0|o5% 1%

02 0% 0% 90% 10%

03 14% 0% 0% 86%1Io
04 99%.401% 0% 0%

0.01 0.1 msec1 10 100

lak's mean-variance analysis (Patlak, 1988, 1993) is useful
for estimating the number of conductance levels, their am-
plitudes and kinetic properties, but it is not an idealization
algorithm, inasmuch as it does not generate a sequential list
of amplitudes and durations. The sublevel Hinkley detector
(Draber and Schultze, 1994) requires the number and am-
plitudes of all current levels and has an intrinsic minimal
duration requirement of six samples or even more for sub-
conductance levels. The hidden Markov analysis (Chung
et al., 1990, 1991) circumvents the problem of idealization
completely by directly estimating Markov model parame-
ters from the raw data. This method should be used when-
ever the objective is to estimate the parameters of a Markov
model.

Currently, TRANSIT employs a fixed relative amplitude
threshold. The optional increase in stringency for transitions
involving short (1-3 sample point) durations by raising the
amplitude threshold is a first step toward making the algo-
rithm perform at a fixed probability of accepting a spurious

transition. Additional work will be needed to further inves-
tigate this point.

In conclusion, a new algorithm has been described that
can reliably idealize single channel data, containing any
number of unknown conductance levels. The idealization
can be used to estimate the number of levels and their
amplitudes. Using this information, conductance states can
be assigned to current levels, and statistical properties of
individual (sub)conductance levels can be evaluated.

The author would like to thank Arthur M. Brown in whose lab TRANSIT
was conceived. This work was supported by a grant from the National In-
stitute of Neurological Disorders and Stroke (NS-31557 to A. M. J. V. D.).

REFERENCES

Akaike, H. 1981. Modem development of statistical methods. In Trends
and Progress in System Identification. IFAC Series for Graduates, Re-



VanDongen Multilevel Idealization Algorithm 1315

search Workers and Engineers, Vol. 1. P. Eykhoff, editor. Pergamon,
Oxford. 169-184.

Auerbach, A., and F. Sachs. 1983. Flickering of a nicotinic ion channel to
a subconductance state. Biophys. J. 42:1-10.

Chung, S. H., V. Krishnamurthy, and J. B. Moore. 1991. Adaptive pro-
cessing techniques based on hidden Markov models for characterizing
very small channel currents buried in noise and deterministic interfer-
ences. Philos. Trans. R. Soc. Lond. Biol. 334:357-384.

Chung, S. H., J. B. Moore, L. Xia, L. S. Premkumar, and P. W. Gage. 1990.
Characterization of single channel currents using digital signal process-
ing techniques based on Hidden Markov models. Philos. Trans. R. Soc.
Lond. Biol. 329:265-285.

Colquhoun, D., and F. J. Sigworth. 1983. Fitting and statistical analysis of
single-channel records. In Single-Channel Recording. E. Neher and B.
Sakmann, editors. Plenum Press, New York. 191-263.

Cox, D. R., and D. V. Hinkley. 1974. Theoretical Statistics. Chapman and
Hall Ltd., London.

Draber, S., and R. Schultze. 1994. Detection of jumps in single-channel
data containing subconductance levels. Biophys. J. 67:1404-1413.

Ferguson, W. B., 0. B. McManus, and K. L. Magleby. 1993. Opening and
closing transitions for BK channels often occur in two steps via sojourns
through a brief lifetime subconductance state. Biophys. J. 65:702-714.

Geletyuk, V. I., and V. N. Kazachenko. 1985. Single Cl channels in
molluscan neurones: multiplicity of conductance states. J. Membr. Biol.
86:9-15.

Hamill, 0. P., J. Bormann, and B. Sakmann. 1983. Activation of multiple-
conductance state chloride channels in spinal neurones by glycine and
GABA. Nature. 305:805-808.

Hamill, 0. P., A. Marty, E. Neher, B. Sakmann, and F. J. Sigworth. 1981.
Improved patch-clamp techniques for high-resolution current recording
from cells and cell-free membrane patches. Pfluegers Arch. 391:85-100.

Matsuda, H. 1988. Open-state substructure of inwardly rectifying potas-
sium channels revealed by magnesium block in guinea-pig heart cells.
J. Physiol. 397:237-258.

Nagy, K. 1987. Subconductance states of single sodium channels modified
by chloramine-T and sea anemone toxin in neuroblastoma cells. Eur.
Biophys. J. 15:129-132.

Neher, E., and B. Sakmann. 1976. Single-channel currents recorded from
membrane of denervated frog muscle fibers. Nature. 260:799-802.

Neher, E., and C. F. Stevens. 1977. Conductance fluctuations and ionic
pores in membranes. Annu. Rev. Biophys. Bioeng. 6:345-381.

Nilius, B., J. Vereecke, and E. Carmeliet. 1989. Different conductance
states of the bursting Na channel in guinea-pig ventricular myocytes.
Pfluegers Arch. 413:242-248.

Patlak, J. B. 1988. Sodium channel subconductance levels measured with
a new variance-mean analysis. J. Gen. Physiol. 92:413-430.

Patlak, J. B. 1993. Measuring kinetics of complex single ion channel data
using mean-variance histograms. Biophys. J. 65:29-42.

Rao, S. S. 1984. Optimization: theory and applications. Wiley Eastern
Limited, New Delhi.

Root, M. J., and R. Mackinnon. 1994. Two identical noninteracting sites in
an ion channel revealed by proton transfer. Science. 265:1852-1856.

Sachs, F. 1983. Automated analysis of single-channel records. In Single-
Channel Recording. E. Neher and B. Sakmann, editors. Plenum Press,
New York. 265-285.

Sachs, F., J. Neil, and N. Barkakati. 1982. The automated analysis of data
from single ionic channels. Pfluegers Archiv. Eur. J. Physiol. 395:
331-340.

Savitsky, A., and M. J. E. Golay. 1964. Smoothing and differentiation of
data by simplified least squares procedures. Anal. Chem. 36:1627-1639.

Sigworth, F. J. 1983. An example of analysis. In Single-Channel Record-
ing. B. Sakmann and E. Neher, editors. Plenum Press, New York.
301-321.

Sigworth, F. J., and S. M. Sine. 1987. Data transformations for improved
display and fitting of single channel dwell-time histograms. Biophys. J.
52:1047-1054.

Silverman, B. W. 1986. Density estimation for statistics and data analysis.
Chapman and Hall, New York.

Steinler, J., Y. Termonia, and J. Deltour. 1972. Comments on smoothing
and differentiating data by simplified least square procedure. Anal.
Chem. 44:1906 -1909.

Tyerman, S. D., and G. P. Findlay. 1992. Multiple conductances in the
large K channel from Chara corallina shown by a transient analysis
method. Biophys. J. 61:736-749.

VanDongen, A. M. J. 1992. TRANSIT: a new algorithm for analyzing
single channel data containing multiple conductance levels. Biophys. J.
61 :A256.


