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Abstract

The problem of finding the correct asymptotic rate of approximation by polynomial loops in dependence
of the smoothness of the elements of a loop group seems not well-understood in general. For matrix
Lie groups such as SU(N ), it can be viewed as a problem of nonlinearly constrained trigonometric
approximation. Motivated by applications to optical FIR filter design and control, we present some initial
results for the case of SU(N )-loops, N ≥ 2. In particular, using representations via the exponential map
and first order splitting methods, we prove that the best approximation of an SU(N )-loop belonging to
a Hölder–Zygmund class Lipα , α > 1/2, by a polynomial SU(N )-loop of degree ≤ n is of the order
O(n−α/(1+α)) as n →∞. Although this approximation rate is not considered final, to our knowledge it is
the first general, nontrivial result of this type.
c© 2008 Elsevier Inc. All rights reserved.

1. Introduction

The study of classes of periodic functions with values in a Lie group G (so-called loops)
is of theoretical importance as a simple example of infinite-dimensional Lie groups [8],
but also occurs in a more practical context. For example, polarization mode dispersion in
fiber-optical communication systems is studied using SU(2)-valued functions [7], lossless
multi-port communication involves para-unitary transfer matrices (in other words, SU(N )-
valued functions) [13], the theory of orthogonal wavelet constructions involves polyphase
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symbol representations that are SU(N )-valued Laurent polynomials [1,10]. In all these areas,
approximation problems by trigonometric polynomials with values in these matrix Lie groups
arise in a natural way—they are, e.g., the key to constructing and operating optical FIR filter
architectures for polarization mode dispersion compensation [7].

The classical Jackson–Bernstein theory of approximation by trigonometric polynomials gives
a quantitative answer to the connection between approximation rates and smoothness properties
of periodic functions: A function f belongs to the Hölder–Zygmund class Lipα(T→ C), α > 0,
if and only if its best approximations En( f ) by complex trigonometric polynomials of degree
≤ n satisfy En( f ) = O(n−α) as n → ∞. After searching in the literature, we did not find
a similar result on quantitative approximation for general loop groups. The only reference is
to [8] where the density of the subgroup of polynomial loops in the loop group C∞(T→ G) is
proved for any compact semi-simple Lie group G. In particular, the polynomial loops are dense
in C∞(T→ SU(N )) for all N ≥ 2, see also [4,5] for detailed proofs.

In the present note we provide a Jackson-type estimate for SU(N ) loops.

Theorem 1. Let U (t) ∈ Lipα(T → SU(N )), where α > 1/2 and N ≥ 2. Then there exists a
sequence of polynomial loops Un(t) ∈ Πn(T→ SU(N )) of degree ≤ n such that

‖U −Un‖C ≤ Cα,N ,U (n + 1)−α/(1+α), n ≥ 0.

The approach for establishing this result is straightforward. By suitable factorization, we reduce
the problem to studying the special case N = 2 and U (t) = eA(t), where A(t) ∈ Lipα(T →
su(2)). Next we approximate A(t) componentwise by linear methods, and then use the splitting
method for the exponential map to obtain a polynomial SU(2)-valued loop. The proof is carried
out in detail in Section 3, and uses preliminary facts collected in a separate Section 2.

We do not consider the approximation rate obtained in Theorem 1 final in any respect.
Rather we think that by publishing a result of possibly only temporary value we will
attract further attention to a widely open and challenging area of nonlinear approximation:
constructive approximation of manifold-valued functions. This field is currently fueled by several
communities (symplectic integration of dynamical systems [3,6], manifold subdivision [9,14],
etc.) where mostly local approximation schemes are developed. We add another angle by
focusing on traditional polynomial approximations (here for periodic functions, i.e., loops). Note
that the approximation problem for SU(2)-valued functions is a partial case (d = 4) of the
problem of approximating loops on the unit sphere Sd−1

⊂ Rd by trigonometric loops. This, and
the closely related question of SO(N )-loop approximation for N ≥ 3 are other simple test cases
of manifold-valued periodic functions that await treatment.

2. Definitions and auxiliary results

Throughout this paper, we consider various loop spaces X (T → M), where M ⊂ Rd or
M ⊂ Cd is some manifold, and the topology is induced from the coordinate spaces X (T→ Rd)

via a topology on M. In particular, if M = G is one of the complex matrix Lie groups of
dimension N , we have G ⊂ CN 2

, and will use the topology induced by the Frobenius norm
‖ · ‖F (i.e., by the Euclidean norm in CN 2

) or the spectral norm ‖ · ‖2 (i.e., the operator norm
for linear maps induced by the Euclidean norm in CN ). We will drop the subscript in the norm
whenever it does not matter which one we use. The Lie algebra associated with a Lie group G
will be denoted by g.
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We define the class of continuous loops U (t) ∈ C(T→ G) by requiring that U (t) : T→ G
is continuous, and set

distC (U1,U2) := ‖U1 −U2‖C := max
t∈T
‖U1(t)−U2(t)‖2.

Similarly, the function classes Ck(T → G) are introduced. The Hölder–Zygmund classes
Lipα(T→ G) ⊂ C(T→ G), α > 0, are defined by the finiteness of the semi-norm

|U |Lipα :=


sup
h>0

h−α‖U (· + h)−U (·)‖C , 0 < α < 1,

sup
h>0

h−1
‖U (· + h)− 2U (·)+U (· − h)‖C , α = 1,

and by recursion for α > 1 by requiring U ∈ C1(T → G) and U ′(t) ∈ Lipα−1(T → G) and
setting

|U |Lipα := |U
′
|Lipα−1

.

Obviously, Ck(T→ G) ⊂ Lipα(T→ G). For further use we introduce the notation

‖U‖Lipα := ‖U‖C + |U |Lipα .

We note that for the matrix groups considered in this paper, the above introduced
Hölder–Zygmund classes of loops form algebras, i.e., the Lipα property is preserved under
multiplication. This fact will be used below without further mentioning.

We are mostly interested in G-valued trigonometric polynomials (also called polynomial
loops in G), and their g-valued cousins. I.e., we specifically consider loops Pn(t) : T → G
of degree ≤ n whose entries belong to

Πn(T→ C) :=

{
pn(t) =

∑
|k|≤n

ck zk

}
, z ≡ eit .

The nonlinear set of all these Pn(t) is denoted by Πn(T → G). An analogous definition holds
for Πn(T→ g), which is obviously a linear set.

Most of the paper deals with SU(2) and su(2) loops. The following simple result about
Πn(T→ su(2)) will be used below.

Lemma 1. The space Πn(T → su(2)) of polynomial loops of degree ≤ n in su(2) possesses a
basis Bn over R given by the 3(2n + 1) elements

B1,k(t) :=

(
0 zk

−z−k 0

)
, B3,k(t) :=

(
0 izk

iz−k 0

)
, k = 0, . . . , n, (1)

B2,k(t) :=

(
0 z−k

−zk 0

)
, B4,k(t) :=

(
0 iz−k

izk 0

)
, k = 1, . . . , n, (2)

B5,k(t) :=

(
i cos kt − sin kt
sin kt −i cos kt

)
, k = 0, . . . , n, (3)

and

B6,k(t) :=

(
i sin kt cos kt
− cos kt −i sin kt

)
, k = 1, . . . , n, (4)
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with the following properties: ‖Bl,k(t)‖F =
√

2‖Bl,k(t)‖2 =
√

2, and

ecBl,k (t) = cos c · I + sin c · Bl,k(t) ∈ Πk(T→ SU(2)) (5)

for all c ∈ R, l = 1, . . . , 6, and all k. Moreover,

J∏
j=1

ec j Bl,k j (t) ∈ Πn(T→ SU(2)), l = 1, . . . , 6, (6)

for any product of this form with 0 ≤ k1 < k2 < · · · < kJ ≤ n.

Proof. Evidently, since A ∈ su(2) is equivalent to A∗ = −A and tr(A) = 0, we can always
write

A =

(
i · β γ + i · δ

−γ + i · δ −i · β

)
, β, γ, δ ∈ R.

Moreover, A2
= −φ2

· I and one easily verifies by definition of the matrix exponential that

eA
= cosφ · I +

sinφ
φ
· A, φ :=

√
β2 + γ 2 + δ2 =

‖A‖F
√

2
. (7)

For all three loop types, we have φ(t) ≡ 1 and (7) implies for real c

ecBl,k (t) = cos c · I + sin c · Bl,k(t).

The properties ‖Bl,k(t)‖2 = 1 resp. ‖Bl,k(t)‖F =
√

2 are obvious from (1)–(4).
Due to (5), the property (6) follows if we can show that

J∏
j=1

Bl,k j (t), 0 < k1 < · · · < kJ ≤ n, J > 0,

is a matrix polynomial of degree ≤ n for each l = 1, . . . , 6. Since(
0 ρ1zk′

−ρ∗1 z−k′ 0

)(
0 ρ2zk

−ρ∗2 z−k 0

)
= −

(
ρ1ρ
∗

2 zk′−k 0
0 ρ∗1ρ2zk−k′

)
,

setting ρ1 = ρ2 = 1 we obtain for even J = 2J ′ ≥ 2

J∏
j=1

B1,k j (t) =
J ′∏

j=1

(B1,k2 j−1(t)B1,k2 j (t)) = (−1)J ′
(

z−m 0
0 zm

)
,

where 0 < J ′ ≤ m =
∑J ′

j=1(k2 j − k2 j−1) ≤ kJ − k1 < n. For odd J = 2J ′ + 1, we obtain a
similar result since

J∏
j=1

B1,k j (t) = (−1)J ′
(

z−m 0
0 zm

)
B1,k2J ′+1

(t) = (−1)J ′
(

0 z−m+kJ

−zm−kJ 0

)
leads to 0 ≤ |m − kJ | ≤ n. I.e., in either case the result is a matrix polynomial of degree ≤ n.
This settles the case l = 1.

The case l = 2 is quite similar (just replace m by −m). Repeating the argument with
ρ1 = ρ2 = i gives the cases l = 3, 4. To treat l = 5, 6, observe that

B5,k(t) = U B1,k(t)U
−1, k ≥ 0, B6,k(t) = U B3,k(t)U

−1, k > 0,
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where

U =
1
√

2

(
1 1
−1 1

)
∈ SU(2).

This, e.g., implies

J∏
j=1

B5,k j (t) = U

(
J∏

j=1

B1,k j (t)

)
U−1 (k j > 0),

and the reduction to the previous cases is achieved, similarly for products of B6,k j , k j > 0.
Finally, the basis property follows from observing that an arbitrary loop An(t) ∈ Πn(T →

su(2)) can be written in the form

An(t) =

(
iβn(t) γn(t)+ iδn(t)

−γn(t)+ iδn(t) −iβn(t)

)
=

(
iβn(t) β̃n(t)
−β̃n(t) −iβn(t)

)
+

(
0 pn(t)

−p∗n(t) 0

)
where

βn(t) =
n∑

k=0

ak cos kt +
n∑

k=1

bk sin kt, β̃n(t) =
n∑

k=1

bk cos kt − ak sin kt

are a real-valued trigonometric polynomial βn(t) and its conjugate β̃n(t) associated with
the diagonal entries of An(t) (similarly, γn(t), γ̃n(t), δn(t), δ̃n(t) are real-valued trigonometric
polynomials and their conjugates corresponding to the off-diagonal entries), and

pn(t) =
∑
|k|≤n

ck zk
≡

∑
|k|≤n

(a′k + i · b′k)z
k, ck ∈ C, a′k, b′k ∈ R

is some complex-valued trigonometric polynomial of degree ≤ n. Thus, by setting c1,k = a′k ,
c3,k = b′k , c5,k = ak for k = 0, . . . , n, and c2,k = a′

−k , c4,k = b′
−k , c6,k = bk for k = 1, . . . , n,

we obtain

An(t) =
3∑

l ′=1

(
n∑

k=0

c2l ′−1,k B2l ′−1,k(t)+
n∑

k=1

c2l ′,k B2l ′,k(t)

)
≡

6∑
l=1

An,l(t) (8)

with cl,k ∈ R. Since An(t) was arbitrarily chosen from Πn(T → su(2)), and the number of
elements in Bn coincides with the dimension of Πn(T → su(2)), this proves the basis property
and Lemma 1 as a whole.

We note for later use that, by construction, the entries of the terms An,l(t) in the decomposition
(8) can be obtained from the entries of An(t) by applying elementary operations and conjugation
map f → f̃ . E.g. for l = 5, 6 this statement follows from separating even and odd parts of
βn(t),

βn(t)+ βn(−t)

2
=

n∑
k=0

ak cos kt,
βn(t)− βn(−t)

2
=

n∑
k=1

bk sin kt.
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Similarly, for l = 1, . . . , 4 we observe that as a function of t , pn(t) = (γn(t)− β̃n(t))+ iδn(t),
and use conjugation to split into k ≥ 0 and k < 0 parts,

pn(t)− i p̃n(t)

2
=

c0

2
+

n∑
k=0

ck zk,
pn(t)+ i p̃n(t)

2
=

c0

2
+

n∑
|k|≤n

ck zk,

in combination with separating ck into real and imaginary parts:

pn(t)+ pn(−t)∗

2
=

∑
|k|≤n

a′k zk,
pn(t)− pn(−t)∗

2i
=

∑
|k|≤n

b′k zk .

The next two lemmas follow by applying classical results from trigonometric approximation
theory for Lipα classes, see [2] or [15].

Lemma 2. Let A(t) ∈ Lipα(T → su(2)), α > 0. Then there exists An(t) ∈ Πn(T → su(2))
such that

‖A − An‖C ≤ Cα(n + 1)−α|A|Lipα , n ≥ 0, (9)

and

‖An‖Lipα ≤ Cα|A|Lipα , n ≥ 0. (10)

Lemma 3. Let f (t) ∼
∑

k∈Z ck zk
∈ Lipα(T→ C), α > 0. Then

‖ f − Sn f ‖C ≤ Cα
ln(n + 2)
(n + 1)α

| f |Lipα , Sn f (t) =
∑
|k|≤n

ck zk, n ≥ 0, (11)

and

|cn| ≤ Cα
1

(n + 1)α
‖ f ‖Lipα , n ≥ 0. (12)

Our strategy is to use factorization techniques and the exponential map to obtain similar
approximation estimates for arbitrary U (t) ∈ Lipα(T→ SU(N )).

Lemma 4. For any α > 1/2 and any U (t) ∈ Lipα(T→ SU(N )), there exist constant matrices
U0,l ∈ SU(N ) and loops Al(t) ∈ Lipα(T→ su(2)) such that

U (t) =
L∏

l=1

U0,le Âl (t), t ∈ T, L := N (N − 1)/2. (13)

Here, Âl(t) = Ti j Al(t) denotes the canonical extension of Al(t) to a su(N ) loop by the map

A =

(
a11 a12
a21 a22

)
7−→ Ti j A =


Ii−1 0 0 0 0

0 a11 0 a21 0
0 0 I j−i+1 0 0
0 a21 0 a22 0
0 0 0 0 IN− j


for some index pair (i, j) with 1 ≤ i < j ≤ N (Ik denotes the k × k identity matrix). Moreover,

‖Al‖Lipα ≤ C(α, N ,U )‖U‖Lipα , l = 1, . . . , L . (14)



180 P. Oswald, T. Shingel / Journal of Approximation Theory 161 (2009) 174–186

Proof. In the first step, the Q R factorization with complex Givens rotations is adapted to the
loop case. The complex Givens rotation U ∈ SU(2) of a 2 × 2 matrix X which annihilates the
sub-diagonal entry x21 is defined as follows:

U∗X ≡

(
x∗11/d x∗21/d
−x21/d x11/d

)(
x11 · · ·

x21 · · ·

)
=

(
d · · ·

0 · · ·

)
, (15)

where d :=
√
|x11|

2 + |x21|
2. This definition of U is subject to the assumption that d2

=

|x11|
2
+ |x21|

2 > 0, i.e., that the first column of X is non-degenerate.
Let us assume for a moment that the loop U (t) ∈ Lipα(T→ SU(N )) satisfies

u11(t) 6= 0, t ∈ T. (16)

Then |u11(t)|2 + |u21(t)|2 ≥ |u11(t)|2 ≥ c0 > 0 on T. Let U[1,2](t) be the complex Givens
rotation for the sub-matrix of U (t) corresponding to row/column indices 1 and 2 defined
according to (15). Then Û[1,2](t) := T12U[1,2](t) and U [1](t) := Û∗

[1,2](t)U (t) belong to
Lipα(T → SU(N )), with norms controlled by a constant depending on α, U (t), and N .
Note that due to (15) the leading diagonal element of U [1](t) is real and positive, and thus
automatically satisfies (16). With this in mind, we can recursively construct Û[1, j] = T1 jU[1, j](t)
and U [ j−1](t), j = 2, . . . , N such that

U (t) =

(
N∏

j=2

Û[1, j](t)

)
U [N−1](t), U [N−1](t) =

(
1 0
0 Ũ [N−1](t)

)
,

where all loops have inherited the Lipα property. In particular, we have Ũ [N−1](t) ∈ Lipα(T→
SU(N − 1)). Assuming that its leading diagonal entry satisfies again (16), it can be further
factorized using the same method. Continuing this way, we would eventually arrive at a
factorization of the form

U (t) =
L∏

l=1

Ul,0Ûl(t), (17)

where each Ûl(t) is the lift of a SU(2) loop to a SU(N ) loop by some Ti j , i.e. some Û[i, j](t) for
1 ≤ i < j ≤ N , and (under the above assumptions) U0,l = IN .

It remains to remove the assumption (16). We establish the following auxiliary fact:
For any loop U (t) ∈ Lipα(T→ SU(N )) with α > 1/2 and N ≥ 2, there is a constant matrix

U0 ∈ SU(N ) such that U∗0 U (t) satisfies (16).

Evidently, by applying this auxiliary result to the original U (t), then to Ũ [N−1](t), an so
on, we establish (17) in full generality (after this step, some of the U0,l are not identity
matrices anymore). To see the auxiliary result, consider the first column u(t) of U (t) which
is a Lipα(T → Σ N−1) loop in the unit sphere Σ N−1 of CN . Since the auxiliary statement is
equivalent to proving that the set

Σ := {u0 ∈ Σ N−1
: u∗0 · u(t) 6= 0 for all t ∈ T}

is non-empty, we are done if we establish that its complement Σ c
= Σ N−1

\Σ has zero measure
(the measure is induced from the Lebesgue measure on S2N−1 ∼= Σ N−1). For this, recall that for
any given integer n ≥ 1 the loop u(t) ∈ Lipα(T→ Σ N−1) can be covered by n spherical caps

C(r, um) :=
{

u ∈ Σ N−1
: ‖u − um‖ ≤ r

}
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of radius r ≤ Cn−α and with centers at um = u(2πm/n), m = 1, . . . , n. The constant C depends
on the Lipschitz constant of the loop. By its definition, the set

Σ c
=

{
u0 ∈ Σ N−1

: u∗0 · u(t) = 0 for some t ∈ T
}

is then contained in the union of the associated sets ΣC(r,vm ), where we define

ΣC(r,um ) :=

{
u0 ∈ Σ N−1

: u∗0 · u = 0 for some u ∈ C(r, um)
}
, m = 1, . . . , n.

The measure of these sets ΣC(r,um ) does not depend on the location of the centers um of the
associated spherical cap C(r, um) (use unitary transformation), and is bounded by ≤ Cr2 for
r → 0. Indeed, set w.l.o.g. um = e := (1, 0, . . .)T ∈ Σ N−1, and consider any u0 :=

(a1, a2, . . .)
T
∈ ΣC(r,e). Let u := (b1, b2, . . .)

T
∈ C(r, e) such that u∗0u = 0. Consequently,

|a1| =

∣∣∣∣ N∑
k=2

a∗k bk

∣∣∣∣
|b1|

≤

√
N∑

k=2
|bk |

2

|b1|
≤

r

1− r

since u ∈ C(r, e). Thus,

ΣC(r,e) ⊂ {u0 := (a1, a2, . . .)
T
∈ Σ N−1

: |a1| ≤ 2r}, r < 1/2,

but the latter set has obviously measure ≤ Cr2 as r → 0.
Putting things together, the measure of Σ c is therefore less than Cnr2

≤ C ′n1−2α which gives
the claim for n →∞ since α > 1/2 was assumed. This establishes the factorization (17) in full
generality.

The second step is to represent each of the Ûl(t) by the exponential map. Because Ûl(t) =
Ti, jUl(t) for some index pair (i, j) and some Ul(t) ∈ Lipα(T → SU(2)), α > 1/2, it is
enough to consider the case N = 2. It is well-known that there are continuous SU(2) loops
that cannot be represented as the exponential of a continuous su(2) loop. We will therefore prove
the desired representation only up to a constant SU(2) factor, i.e., we will show that for any
U (t) ∈ Lipα(T → SU(2)), α > 1/3, there is a A(t) ∈ Lipα(T → su(2)), and a U0 ∈ SU(2)
such that

U (t) = U0eA(t), ‖A‖Lipα ≤ C(α,U )‖U‖Lipα . (18)

We again use a covering argument for Lipschitz loops, by identifying SU(2) with the unit ball
S3 in R4. Since U (t) is Lipα , we see that the associated loop on S3 is contained in the union of
n closed spherical caps Cm of radius ≤ Cn−α on S3. Let us consider the system of the 2n caps
{Cm,−Cm,m = 1, . . . , n}. Evidently, each of these caps has S3 surface area ≤ Cn−3α . Thus, the
union of all these caps covers an area ≤ 2Cn1−3α and, since α > 1/3, we can find a finite n0
such that the open complement S3

\ ∪
n0
m=1 (Cm ∪ (−Cm)) is not empty.

By construction, this means that there is a U0 ∈ SU(2) such that U (t) does not intersect with
some ball around U0 and some ball around −U0. Equivalently, the loop V (t) := U∗0 U (t) does
not intersect with some balls around ±I . So, if we write

V (t) =

(
a(t)+ i · b(t) c(t)+ i · d(t)
−c(t)+ i · d(t) a(t)− i · b(t)

)
, a2(t)+ b2(t)+ c2(t)+ d2(t) = 1,

then these four real-valued component functions are Lipα and satisfy

|a(t)| ≤ r0 < 1, b2(t)+ c2(t)+ d2(t) ≥ 1− r2
0 > 0, t ∈ T,
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with some r0 < 1. Thus, ∆(t) := arccos(a(t)) ∈ [arccos r0, π − arccos r0] belongs to
Lipα(T→ R), and so do the three functions

β(t) :=
∆(t)b(t)
sin ∆(t)

, γ (t) :=
∆(t)c(t)
sin ∆(t)

, δ(t) :=
∆(t)d(t)
sin ∆(t)

.

It remains to verify that the element A(t) ∈ Lipα(T→ su(2)) given by

A(t) :=

(
i · β(t) γ (t)+ i · δ(t)

−γ (t)+ i · δ(t) −i · β(t)

)
,

satisfies V (t) = eA(t) as desired. Since by construction

β2(t)+ γ 2(t)+ δ2(t) =
∆2(t)

sin2(∆(t))
(b2(t)+ c2(t)+ d2(t)) =

∆2(t)

sin2(∆(t))
(1− a2(t))

=
∆2(t)

sin2(∆(t))
(1− cos2(∆(t))) = ∆(t)2,

this follows from the elementary formula (7) which proves the formula in (18). The proof of the
Lipα estimate is obvious because the transformations from U (t) to A(t) are all diffeomorphisms
preserving the Lipα property (since the transformation is nonlinear, the constant depends in
general on U ). Together with (17), this proves the statement of Lemma 4.

It should be noted that it is impossible to use the argument in the second step of the proof
with α < 1/3, due to the fact that there exist space-filling curves on S3 that are Lipα-continuous
for any such α. This is analogous to the corresponding statements for Peano and Hilbert curves
for the unit cube in Rd , where the critical Hölder exponent is 1/d. Similarly, we cannot drop
the assumption α > 1/2 in the first step of the proof. However, we believe that statements of
the type “any Lipα loop in SU(2) is, up to a simple correction, representable as the exponential
of a Lipα loop in su(2) (or by a product of a few such exponentials)” can be deduced from
the available factorization theorems for loop groups, see [8,12], and hold for more general Lie
groups. Unfortunately, we could not yet locate these statements in the literature.

To work with factorizations such as in Lemma 4, we will often use the following simple
estimate.

Lemma 5. For any Uk(t), Ũk(t) ∈ C(T→ SU(N )), k = 1, . . . , K , we have∥∥∥∥∥ K∏
k=1

Ũk −

K∏
k=1

Uk

∥∥∥∥∥
C

≤

K∑
k=1

‖Ũk −Uk‖C . (19)

Proof. By definition of ‖ · ‖C , we have ‖U‖C = 1 for arbitrary U (t) ∈ C(T → SU(N )), and
‖
∏

k Xk‖C ≤
∏

k ‖Xk‖C for arbitrary Xk(t) ∈ C(T→ GL(N )). Thus,∥∥∥∥∥ K∏
k=1

Ũk −

K∏
k=1

Uk

∥∥∥∥∥
C

≤

∥∥∥∥∥(Ũ1 −U1)

K∏
k=2

Ũk

∥∥∥∥∥
C

+

∥∥∥∥∥U1

(
K∏

k=2

Ũk −

K∏
k=2

Uk

)∥∥∥∥∥
C

≤ ‖Ũ1 −U1‖C +

∥∥∥∥∥ K∏
k=2

Ũk −

K∏
k=2

Uk

∥∥∥∥∥
C. . .

≤

K∑
k=1

‖Ũk −Uk‖C .



P. Oswald, T. Shingel / Journal of Approximation Theory 161 (2009) 174–186 183

Finally, we need some technical estimates for exponentials of the form e
∑

A j which are
well-known in the theory of splitting methods. Although they hold in much more generality,
we formulate them only for su(2).

Lemma 6. (a) Let A, Ã ∈ su(2). Then

‖eA
− e Ã
‖ ≤ C(‖A‖, ‖ Ã‖)‖A − Ã‖. (20)

(b) If A j ∈ su(2), j = 1, . . . ,m, and M ≥ 1. Then∥∥∥∥∥e
λ
∑

j
A j

−

m∏
j=1

eλA j

∥∥∥∥∥
2

≤
λ2

2

m−1∑
j=1

∥∥∥∥∥
[

A j ,

m∑
l= j+1

Al

]∥∥∥∥∥
2

, (21)

where [A, Ã] := AÃ − ÃA and λ ∈ R. In particular,∥∥∥∥∥∥e

∑
j

A j

−

(
m∏

j=1

e
1
M A j

)M
∥∥∥∥∥∥

2

≤
1

2M

m−1∑
j=1

∥∥∥∥∥
[

A j ,

m∑
l= j+1

Al

]∥∥∥∥∥
2

. (22)

Inequality (20) follows from applying formula (7) while (21) and (22) can be found in [11].

3. Proof of Theorem 1

We will not follow the dependencies of the constants occuring in the estimates below, in
general, they will depend on α, N , and U . They are independent of other parameters, and in
particular, of the final degree n of the polynomial loop Un(t) to be constructed.

By Lemmas 4 and 5, it is enough to concentrate on the case U (t) = eA(t), where A(t) ∈
Lipα(T → su(2)). For such A(t), we use linear approximation methods (see Lemma 2) and
construct polynomial loops

Am(t) :=

(
i · βm(t) γm(t)+ i · δm(t)

−γm(t)+ i · δm(t) −i · βm(t)

)
∈ Πm(T→ su(2))

with the optimal approximation rate

‖A(t)− Am(t)‖ ≤ Cm−α, m →∞.

By Lemma 6 (a) this gives

‖U − Ũm‖C = ‖eA(t)
− eAm (t)‖C ≤ Cm−α, m →∞, (23)

where Ũm(t) := eAm (t).
The remaining effort goes into approximating the loop Ũm(t) := eAm (t) (which is typically

not an element of the polynomial loop group) by a suitable element Un(t) ∈ Πn(T → SU(2)).
We proceed in several steps. Using Lemma 1, we write Am(t) =

∑6
l=1 Am,l , and apply Lemma 6

(b): ∥∥∥∥∥∥eAm (t) −

(
6∏

l=1

eAm,l (t)/M

)M
∥∥∥∥∥∥

2

≤
1

2M

5∑
l=1

∥∥∥∥∥
[

Am,l(t),
6∑

j=l+1

Am, j (t)

]∥∥∥∥∥
2

.
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Now, by (10) and the remarks following the proof of Lemma 1, we have

‖Am,l‖Lipα ≤ C‖Am‖Lipα ≤ C‖A‖Lipα ≤ C‖U‖Lipα (24)

because the algebraic operations and trigonometric conjugation leading from Am(t) to
representations for Am,l(t) all preserve the Lipα property. Estimating the commutators in the
above estimate leads to∥∥∥∥∥∥Ũm(t)−

(
6∏

l=1

eAm,l (t)/M

)M
∥∥∥∥∥∥ ≤ C

M
(max

l
‖Am,l‖C )

2
≤

C

M
. (25)

The integer M will be chosen later.
The next step is to deal with approximating each of the factors

Ũm,l := eAm,l (t)/M
= exp

((
m∑

k=0

ck,l Bk,l(t)

)/
M

)
,

appearing in the left-hand side of (25) by the polynomial loop

Um,l(t) :=
m∏

k=0

e(ck,l/M)Bk,l (t)

of degree ≤ m, where c0,l = 0 is silently assumed for even l. The fact that Um,l ∈ Πm(T →
SU(2)) follows from Lemma 1. For estimating the error we rely on (21) with λ = 1/M :

‖Ũm,l(t)−Um,l(t)‖C ≤
1

2M2

m−1∑
k=0

|ck,l |

∥∥∥∥∥
[

Bk,l(t),
m∑

j=k+1

c j,l B j,l(t)

]∥∥∥∥∥
C

.

Now Lemma 3 will be used in conjunction with (24): On the one hand, |ck,l | ≤ C(k + 1)−α , on
the other∥∥∥∥∥

[
Bk,l(t),

m∑
j=k+1

c j,l B j,l(t)

]∥∥∥∥∥
C

≤ 2

∥∥∥∥∥ m∑
j=k+1

c j,l B j,l(t)

∥∥∥∥∥
C

≤ C
ln(k + 2)
(k + 1)α

,

because
∑m

j=k+1 c j,l B j,l(t) is the difference between Am,l and its k-th partial sum. Since
α > 1/2, we obtain after substitution

‖Ũm,l(t)−Um,l(t)‖C ≤
C

M2

m−1∑
k=0

ln(k + 2)

(k + 1)2α
≤

C

M2 , l = 1, . . . , 6. (26)

It remains to use (26) in conjunction with Lemma 5:∥∥∥∥∥∥
(

6∏
l=1

Ũm,l

)M

−Un

∥∥∥∥∥∥
C

≤ M
6∑

l=1

‖(Ũm,l −Um,l)‖C ≤
C

M
,

where

Un :=

(
6∏

l=1

Um,l

)M

∈ Πn(T→ SU(2)),

is a polynomial loop of degree n ≤ 6mM .
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Together with (23) and (25), this shows that we have constructed a polynomial loop Un of
degree at most 6mM such that

‖U −Un‖C ≤ C

(
1

mα
+

1
M

)
.

Choosing m as the integer part of n1/(α+1) and M as the integer part of 1
6 nα/(α+1), then the

degree of Un(t) is indeed ≤ 6mM ≤ n, and we arrive at an error estimate of the form
‖U −Un‖C ≤ Cn−α/(1+α) for large enough n. This proves Theorem 1.

Further Remarks.

• For 0 < α ≤ 1/2, some weaker results are possible. Then in the proof of (26) the estimate∑
k≤m

ln(k + 2)

(k + 1)2α
≤ C <∞

is not valid anymore, and needs to be replaced by an upper bound that depends on m. This
leads to other choices for m and M , and an overall weaker approximation rate, compared to
the result stated in Theorem 1. Such results are subject to the availability of factorizations
such as proved in Lemma 4 for α > 1/2.
• If U (t) ∈ Lipα(T → SU(2)) is diagonal and 0 < α ≤ 1 then we can establish the optimal

bound

‖U −Un‖C ≤
C

nα
, n→∞. (27)

Here is a sketch of the elementary argument. The diagonal element u(t) (of modulus 1) of the
matrix U (t) can be approximated by an appropriate polynomial pn(t) of degree n such that

‖u − pn‖C ≤
C

nα
,

and

0 ≤ 1− |pn(t)|
2
≤ Cn−2α.

The crucial fact is the upper bound for the deviation of |pn(t)| from |u(t)| = 1, which is
stronger than the trivial O(n−α) estimate following from 1 − |pn(t)|2 ≤ 2(1 − |pn(t)|) ≤
2‖u− pn‖C . With this at hand, and qn(t) determined from |qn(t)|2 = 1−|pn(t)|2 via spectral
factorization, we see that

Un =

(
pn(t) qn(t)
−q∗n (t) p∗n(t)

)
∈ Πn(T→ SU(2)),

satisfies (27).
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