
Journal of Computational and Applied Mathematics 235 (2011) 2715–2730

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

An algorithm for addressing the real interval eigenvalue problem
Milan Hladík a,b,∗, David Daney b, Elias P. Tsigaridas b

a Charles University, Faculty of Mathematics and Physics, Department of Applied Mathematics, Malostranské nám. 25, 118 00, Prague, Czech Republic
b INRIA Sophia-Antipolis Méditerranée, 2004 route des Lucioles, BP 93, 06902 Sophia-Antipolis Cedex, France

a r t i c l e i n f o

Article history:
Received 20 October 2008
Received in revised form 28 June 2010

MSC:
65G40
65F15
15A18

Keywords:
Interval matrix
Real eigenvalue
Eigenvalue bounds
Regularity
Interval analysis

a b s t r a c t

In this paper we present an algorithm for approximating the range of the real eigenvalues
of interval matrices. Such matrices could be used to model real-life problems, where data
sets suffer from bounded variations such as uncertainties (e.g. tolerances on parameters,
measurement errors), or to study problems for given states.

The algorithm that we propose is a subdivision algorithm that exploits sophisticated
techniques from interval analysis. The quality of the computed approximation and the
running time of the algorithm depend on a given input accuracy. We also present an
efficient C++ implementation and illustrate its efficiency on various data sets. In most of
the cases we manage to compute efficiently the exact boundary points (limited by floating
point representation).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Computation of real eigenvalues is a ubiquitous operation in applied mathematics, not only because it is an important
mathematical problem, but also due to the fact that such computations lie at the core of almost all engineering problems.
However, in these problems, which are real-life problems, precise data are very rare, since the input data are influenced by
diverse uncertainties.

We study these problems throughmodels that reflect the real-life situations as well as possible. A modern approach is to
consider that the parameters to be defined are not exact values, but a set of possible values. The nature of these variations
is not physically homogeneous, mainly due to measurement uncertainties, or due to tolerances that come from fabrication
and identification, or simply because we want to study the system in a set of continuous states.

Contrary to adopting a statistical approach, which, we have to note, is not always possible, it may be more simple or
realistic to bound the variations of the parameters by intervals. Interval analysis turns out to be a very powerful technique
for studying the variations of a system and for understanding its properties. One of the most important properties of this
approach is the fact that it is possible to certify the results of all the states of a system.

Such an approach motivates us to look for an algorithm that computes rigorous bounds on eigenvalues of an interval
matrix. Interval-based problems have been studied intensively in the past few decades, for example in control in order to
analyse the stability of interval matrices [1]. The interval eigenvalue problem, in particular, also has a variety of applications
throughout diverse fields of science. Let us mention automobile suspension systems [2], vibrating systems [3], principal
component analysis [4], and robotics [5], for instance.

∗ Corresponding author at: Charles University, Faculty of Mathematics and Physics, Department of Applied Mathematics, Malostranské nám. 25, 118 00,
Prague, Czech Republic.

E-mail addresses: milan.hladik@matfyz.cz (M. Hladík), david.daney@sophia.inria.fr (D. Daney), elias.tsigaridas@sophia.inria.fr (E.P. Tsigaridas).

0377-0427/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2010.11.022

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82795622?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1016/j.cam.2010.11.022
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:milan.hladik@matfyz.cz
mailto:david.daney@sophia.inria.fr
mailto:elias.tsigaridas@sophia.inria.fr
http://dx.doi.org/10.1016/j.cam.2010.11.022

2716 M. Hladík et al. / Journal of Computational and Applied Mathematics 235 (2011) 2715–2730

1.1. Motivation

As a motivating example, let us mention the following problem from robotics, that usually appears in experimental
planning, e.g. [6].We consider the following simple roboticmechanism. Let X = (x, y) be a point in the plane,which is linked
to two points, M = (a, b) and N = (c, d), using two prismatic joints, r1 and r2 respectively. In this case, the end-effector C
has two degrees of freedom for moving in the plane. The joints r1 and r2 are measured in a range [min{rk},max{rk}], where
k = 1, 2. The range of the joints is obtained due to mechanical constraints and describes the workspace of the mechanism.

If we are given r1 and r2 andwewant to estimate the coordinates of X , thenwe solve the polynomial system F1 = F2 = 0,
where F1 = |X − S|2 − r21 and F2 = |X − T |

2
− r22 , which describes the kinematics problem. For the calibration problem

things are quite different [7,8]. In this casewewant to compute, or estimate, the coordinatesM andN as a function of several
measurements of X , that is X1 = (x1, y1), X2 = (x2, y2), X3 = (x3, y3), This is so becauseM andN are not known exactly,
due to manufacturing tolerances. We have four unknowns, a, b, c and d, expressed as a function of the measurements Xi,
where 1 ≤ i ≤ n. If n ≥ 2, then we can compute a, b, c , and d using the classical approach of the least squares method.
However, we have to take into account the noise in the measurements l1,i and l2,i. To get a robust solution, we choose the
position of the measurements by also selecting the values of l1,i, l2,i in [min{lk},max{lk}], where k = 1, 2.

Weestimate the several criteria of selection using the eigenvalues of the observabilitymatrix [8], that is the eigenvalues of
JT J , where elements of J are partial derivatives of Fk with respect to kinematic parameters. Such an approach requires bounds
on the eigenvalues of the observability matrix, which is what we propose in this paper. We present a detailed example in
Example 5.

Furthermotivation comes frompolynomial system real solving. Consider a systemof polynomials inR[x1, . . . , xn] and let
I be the ideal that they define. The coordinates of the solutions of the system can be obtained as eigenvalues of the so called
multiplication tables, e.g. [9]. That is for each variable xi we can construct (using Gröbner basis or normal form algorithms) a
matrix Mxi that corresponds to the operator of multiplication by xi in the quotient algebra R[x1, . . . , xn]/I . The eigenvalues
of these matrices are the coordinates of the solutions; thus the real eigenvalues are the coordinates of the real solutions. If
the coefficients of the polynomials are not known exactly, then we can consider the multiplications as interval matrices. For
an algorithm for solving bivariate polynomial systems that is based on the eigenvalues and eigenvectors of the Bézoutian
matrix, the reader may refer to [10]. For the great importance of eigenvalue computations in polynomial systems solving
with inexact coefficients we refer the reader to [11].

1.2. Notation and preliminaries

In what follows we will use the following notation:

sgn(r) The sign of a real number r , i.e., sgn(r) = 1 if r ≥ 0, and sgn(r) = −1 if r < 0
sgn(z) The sign of a vector z, i.e., sgn(z) = (sgn(z1), . . . , sgn(zn))T

e A vector of all ones (with convenient dimension)
diag(z) The diagonal matrix with entries z1, . . . , zn
ρ(A) The spectral radius of a matrix A
A•,i The ith column of a matrix A
∂S The boundary of a set S

|S| The cardinality of a set S

For basic interval arithmetic the reader may refer to e.g. [12–14]. A square interval matrix is defined as
A := [A, A] = {A ∈ Rn×n

; A ≤ A ≤ A},

where A, A ∈ Rn×n and A ≤ A are given matrices and the inequalities are considered elementwise. By

Ac ≡
1
2
(A + A), A∆ ≡

1
2
(A − A),

we denote the midpoint and radius of A, respectively. We use analogous notation for interval vectors. An interval linear
system of equations

Ax = b,
is a short form for a set of systems

Ax = b, A ∈ A, b ∈ b.
The set of all real eigenvalues of A is defined as

Λ := {λ ∈ R; Ax = λx, x ≠ 0, A ∈ A},

and is compact set. It seems that Λ is always composed of at most n compact real intervals, but this conjecture has not been
proven yet and is proposed as an open problem.

In general, computing Λ is a difficult problem. Even checking whether 0 ∈ Λ is an NP-hard problem, since the problem
is equivalent to checking regularity of the interval matrix A, which is known to be NP-hard [15]. An inner approximation of
Λ is any subset of Λ, and an outer approximation of Λ is a set containing Λ as a subset.

M. Hladík et al. / Journal of Computational and Applied Mathematics 235 (2011) 2715–2730 2717

1.3. Previous work and our contribution

The problem of computing (the intervals of) the eigenvalues of interval matrices has been studied since the nineties. The
first results were due to Deif [16] and Rohn and Deif [17]. They proposed formulae for calculating exact bounds; the former
case bounds real and imaginary parts for complex eigenvalues, while the latter case bounds the real eigenvalues. However,
these results apply only under certain assumptions on the sign pattern invariance of the corresponding eigenvectors; such
assumptions are not easy to verify (cf. [18]). Otherworks by Rohn concern theorems for the real eigenvalues [19] and bounds
of the eigenvalue set Λ [20]. An approximate method was given in [2]. The related topic of finding verified intervals of
eigenvalues for real matrices is studied in [21].

If A has a special structure, then it is possible to develop stronger results, that is to compute tighter intervals for the
eigenvalue set. This is particularly true when A is symmetric; we postpone this discussion to a forthcoming communication.
Our aim is to consider the general case, and to propose an algorithm for the eigenvalue problem, when the input is a generic
interval matrix, without any special property.

Several methods are known for computing the eigenvalues of scalar (non-interval) matrices. It is not possible to directly
apply them to interval matrices, since this causes enormous overestimation of the computed eigenvalue intervals. For the
same reason, algorithms that are based on the characteristic polynomial of A are rarely, if at all, used. Even though interval-
valued polynomials can be handled efficiently [22], this approach cannot yield sharp bounds, due to the overestimation of
the intervals that correspond to the coefficients of the characteristic polynomial.

A natural way of computing the set of the eigenvalue intervals Λ, is to try to solve directly the interval nonlinear
system

Ax = λx, ‖x‖ = 1, A ∈ A, λ ∈ λ0, (1)

where λ0
⊇ Λ is some initial outer estimation of the eigenvalue set, and ‖ · ‖ is any vector norm. Interval analysis

techniques for solving nonlinear systems of equationswith interval parameters are very developed nowadays [23,14]. Using
filtering, diverse consistency checking, and sophisticated box splitting they achieve excellent results. However, the curse of
dimensionality implies that these techniques are applicable only to problems of relative small size. Recall that the curse of
dimensionality refers to the exponential increase of the volume, when additional dimensions are added to a problem. For
the eigenvalue problem (1), this is particularly the case (cf. Section 4).

We present an efficient algorithm for approximating the set of intervals of the real eigenvalues of a (generic) interval
matrix, Λ, within a given accuracy. Our approach is based on a branch and prune scheme. We use several interval analysis
techniques to provide efficient tests for inner and outer approximations of the intervals in Λ.

The rest of the paper is structured as follows. In Section 2 we present the main algorithm, the performance of which
depends on checking intervals for being outer (containing no eigenvalue) or inner (containing only eigenvalues). These tests
are discussed in Sections 2.3 and 2.4, respectively. Using some known theoretical assertions we can achieve in most cases
the exact bounds of the eigenvalue set. This is considered in Section 3. In Section 4 we present an efficient implementation
of the algorithm and experiments on various data sets.

2. The general algorithm

The algorithm that we present is a subdivision algorithm, based on a branch and prune method [23]. The pseudo-code of
the algorithm is presented in Algorithm 1. The input consists of an interval matrix A and a precision rate ε > 0. Notice that
ε is not a direct measure of the approximation accuracy.

The output of the algorithm consists of two lists of intervals: Linn which comprises intervals lying insideΛ, and Lunc which
consists of intervals where we cannot decide whether they are contained in Λ or not, with the given required precision ε.
The union of these two lists is an outer approximation of Λ.

The idea behind our approach is to subdivide a given interval that initially contains Λ until either we can certify that an
interval is an inner or an outer one, or its length is smaller than the input precision ε. In the latter case, the interval is placed
in the list Lunc.

The (practical) performance of the algorithm depends on the efficiency of its subroutines and more specifically on the
subroutines that implement the inner and outer tests. This is discussed in detail in Sections 2.3 and 2.4.

2.1. Branching in detail

Wemay consider the process of the Algorithm 1 as a binary tree in which the root corresponds to the initial interval that
contains Λ. At each step of the algorithm the inner and outer tests are applied to the tested interval. If both are unsuccessful
and the length of the interval is greater than ε, thenwe split the interval into two equal intervals and the algorithm is applied
to each of them.

There are two basic ways to traverse this binary tree, either depth-first or breadth-first. Even though from a theoretical
point of view the two ways are equivalent, this is not the case from a practical point of view. The actual running time of an
implementation of Algorithm 1 depends closely on the way that we traverse the binary tree. This is of no surprise. Exactly
the same behavior is noticed in the problem of real root isolation of integer polynomials [24–26].

2718 M. Hladík et al. / Journal of Computational and Applied Mathematics 235 (2011) 2715–2730

Algorithm 1 (Approximation of Λ)

1: compute initial bounds λ0, λ
0
such that Λ ⊆ λ0

:= [λ0, λ
0
];

2: L := {λ0
}, Linn := ∅, Lunc := ∅;

3: while L ≠ ∅ do
4: choose and remove some λ from L;
5: if λ ∩ Λ = ∅ then
6: {nothing};
7: else if λ ⊆ Λ then
8: Linn := Linn ∪ {λ};
9: else if λ∆ < ε then

10: Lunc := Lunc ∪ {λ};
11: else
12: λ1

:= [λ, λc], λ2
:= [λc, λ], L := L ∪ {λ1, λ2

};
13: end if
14: end while
15: return Linn and Lunc;

A closely related issue is the data structure that we use to implement the various lists of the algorithm and in particular
L. Our experience suggests that we should implement L as a stack, so that the last inserted element to be chosen at step 4 is
the next candidate interval λ. Hereby, at step 12 we insert λ2 first, and λ1 afterwards.

Note that, in essence, the stack implementation of L closely relates to the depth-first search algorithm for traversing a
binary tree. In this case, nodes correspond to intervals handled. Each node is a leaf if it is recognized as an outer or inner
interval, or if it is small enough. Otherwise, it has two descendants: the left one is for the left part of the interval and the
right one is for the right part.

Themain advantage of the depth-first exploration of the tree, and consequently of the choice to use a stack to implement
L, in stack implementation, is that it allows us to exhibit some useful properties of the tested intervals. For example, if a
tested interval λ is an inner interval, then the next interval in the stack, which is adjacent to it, cannot be an outer interval.
Thus, for this interval we can omit steps 5–6 of the algorithm. Similarly, when a tested interval is an outer interval, then the
next in the stack cannot be inner. These kinds of properties allow us to avoid many needless computations in a lot of cases,
and turn out to be very efficient in practice.

Another important consequence of the choice of traversing the tree depth-first is that it allows us to improve the time
complexity of the inner tests. This is discussed in Section 2.4.

2.2. Initial bounds

During the first step of Algorithm 1 we compute an initial outer approximation of the eigenvalue set Λ, i.e. an interval
that is guaranteed to contain the eigenvalue set. For this computation we use a method proposed in [20, Theorem 2]:

Theorem 1. Let

Sc :=
1
2

Ac + AT

c

,

S∆ :=
1
2

A∆ + AT

∆

.

Then Λ ⊆ λ0
:= [λ0, λ

0
], where

λ0
= λmin(Sc) − ρ(S∆),

λ
0

= λmax(Sc) + ρ(S∆),

and λmin(Sc), λmax(Sc) denote the minimal and maximal eigenvalue of Sc , respectively.

The aforementioned bounds are usually very tight, especially for symmetric interval matrices. Moreover, it turns out,
as we will discuss in Section 4, that λ0 is an excellent starting point for our subdivision algorithm. Other bounds can be
developed if we use Gerschgorin discs or Cassini ovals. None of these bounds, however, provide in practice approximations
as sharp as the ones of Theorem 1.

2.3. The outer test

In this section, we propose several outer tests, which can be used in step 5 of Algorithm 1. Even though their theoretical
(worst-case) complexities are the same, their performances in practice differ substantially.

Consider an interval matrix A and a real closed interval λ. We want to decide whether λ ∩ Λ = ∅, that is, there is no
matrix A ∈ A that has a real eigenvalue inside λ. In this case, we say that λ is an outer interval.

M. Hladík et al. / Journal of Computational and Applied Mathematics 235 (2011) 2715–2730 2719

The natural idea is to transform the problem to the problem of checking regularity of intervalmatrices. An intervalmatrix
M is regular if every M ∈ M is nonsingular.

Proposition 1. If the interval matrix A − λI is regular, then λ is an outer interval.

Proof. Let λ ∈ λ and A ∈ A. The real number λ is not an eigenvalue of A if and only if the matrix A−λI is nonsingular. Thus,
if A − λI is regular, then for every λ ∈ λ and A ∈ A we have that A − λI is nonsingular (not conversely), and hence λ is not
an eigenvalue. �

In general, Proposition 1 gives a sufficient but not necessary condition for checking the outer property (due to the
dependences caused by multiple appearances of λ). Nevertheless, the smaller the radius of λ, the stronger the condition.

We now review some of the applicable conditions and methods. Recall that testing regularity of an interval matrix is an
NP-hard problem [15]; therefore we exhibit a sufficient condition as well.

2.3.1. A sufficient regularity condition
There are diverse sufficient conditions for an interval matrix to be regular [27]. The very strong one, which turned out to

very useful (cf. Section 4), is formulated below.

Proposition 2. An interval matrixM is regular if Mc is nonsingular and ρ(|M−1
c |M∆) < 1.

Proof. See e.g. [27, Corollary 3.2.]. �

2.3.2. The Jansson and Rohn method
Herein we recall the Jansson and Rohn method [28] for testing regularity of an interval matrixM . Its great benefit is that

the time complexity is not a priori exponential. Its modification is also is very useful for the inner test (Section 2.4). That is
why we describe the method here in more detail.

Choose an arbitrary vector b ∈ Rn and consider the interval system of equationsMx = b. The solution set

X = {x ∈ Rn
;Mx = b,M ∈ M}

is described by

|Mcx − b| ≤ M∆|x|.

This solution set is formed by a union of convex polyhedra, since a restriction of X on an orthant is characterized by a linear
system of inequalities

(Mc − M∆diag(z))x ≤ b, (Mc + M∆diag(z))x ≥ b, diag(z)x ≥ 0, (2)

where z ∈ {±1}n is a vector of signs corresponding to the orthant.
Regularity ofM closely relates to unboundedness of X . Indeed, Jansson and Rohn [28] obtained the following result.

Theorem 2. Let C be a component (maximal connected set) of X. ThenM is regular if and only if C is bounded.

The algorithm starts by selecting an appropriate vector b. The component C is chosen so that it includes the pointM−1
c b.

We check the unboundedness of C by checking the unboundedness of (2), for each orthant that C intersects. The list L
comprises the sign vectors (orthants) to be inspected, and V consists of the already visited orthants.

To speed up the process, we notice that there is no need to inspect all the neighboring orthants. It suffices to inspect only
that orthants possibly connected to the actual one. Thus we can skip the ones that are certainly disconnected. Jansson and
Rohn proposed an improvement in this way; we refer the reader to [28] for more details.

The performance of Algorithm 2 depends strongly on the choice of b. It is convenient to select b so that the solution set
X intersects a (possibly) small number of orthants. The selection procedure of b, proposed by Jansson and Rohn, consists of
a local search.

2.3.3. The ILS method
The ILS (interval linear system) method is a simple but efficient approach for testing regularity of an interval matrix M .

It is based on transforming the problem to solving an interval linear system and using an ILS solver. The more effective the
ILS solver is, the more effective the ILS method.

Proposition 3. The interval matrixM is regular if and only if the interval linear system

Mx = 0, x ≠ 0 (5)

has no solution.

2720 M. Hladík et al. / Journal of Computational and Applied Mathematics 235 (2011) 2715–2730

Algorithm 2 (Jansson and Rohn method checking regularity ofM)
1: ifMc is singular then
2: return ‘‘M is not regular’’;
3: end if
4: select b;
5: z := sgn(A−1

c b);
6: L := {z}, V := ∅;
7: while L ≠ ∅ do
8: choose and remove some z from L;
9: V := V ∪ {z};

10: solve the linear program

max

zT x; (Mc − M∆diag(z))x ≤ b, (Mc + M∆diag(z))x ≥ b, diag(z)x ≥ 0

; (3)

11: if (3) is unbounded then
12: return ‘‘M is not regular’’;
13: else if (3) is feasible then
14: L := L ∪

N(z) \ (L ∪ V)

}, where

N(z) = {(z1, . . . , zi−1, −zi, zi+1, . . . , zn)T ; 1 ≤ i ≤ n, }; (4)

15: end if
16: end while
17: return ‘‘M is regular’’;

Algorithm 3 (ILS method)
1: for i = 1, . . . , n do
2: b := M•,i {the ith column ofM};
3: M ′

:=

M•,1, . . . ,M•,i−1,M•,i+1, . . . ,M•,n

{the matrixM without the ith column};

4: solve (approximately) the interval linear system

M ′x′
= −b, −e ≤ x′

≤ e; (7)

5: if (7) has possibly a solution then
6: return ‘‘λ needn’t be outer’’;
7: end if
8: end for
9: return ‘‘λ is an outer interval’’;

As x can be normalized, we replace the inequation x ≠ 0 by ‖x‖∞ = 1, where the maximum norm is defined as ‖x‖∞ :=

max{|x|i; i = 1, . . . , n}. Moreover, since both x and −x satisfy (5), we derive the following equivalent formulation of (5):

Mx = 0, ‖x‖∞ = 1, xi = 1 for some i ∈ {1, . . . , n}, (6)

the solvability of which can be tested using Algorithm 3.
The efficiency of the ILS method depends greatly on the selection of an appropriate ILS solver. It is not necessary to

solve (7) exactly, as this is time-consuming. In fact, checking solvability is known to be NP-hard [29]. It suffices to exploit
a (preferably fast) algorithm to produce an outer approximation of (6); that is, an approximation that contains the whole
solution set. Experience shows that the algorithmproposed in [30]modified so as towork for overconstrained linear systems
is a preferable choice. It is sufficiently fast and produces a good approximation of the solution set of (7).

2.3.4. Direct enumeration
The ILS method benefits us even whenM is not recognized as a regular matrix. In this case, we have an approximation of

the solution set of (7), at each iteration of step 4. By embedding them into n-dimensional space and joining them together,
we get an outer approximation of the solution set of (6). This is widely usable; see also Section 3.Wewill present somemore
details of this procedure.

Let v ⊆ Rn be an interval vector. We consider the sign vector set sgn(v), that is the set of vectors z ∈ {±1}n with
components

zi =

+1, vi ≥ 0,
−1, vi < 0, vi ≤ 0,
±1, otherwise (vi < 0 < vi).

(8)

M. Hladík et al. / Journal of Computational and Applied Mathematics 235 (2011) 2715–2730 2721

Clearly, the cardinality of sgn(v) is always a power of 2. Notice that this set does not always consist of the sign vectors of all
v ∈ v; the difference is caused when vi < 0, vi = 0 holds for some i = 1, . . . , n.

Let x be an outer approximation of the solution set of (6), and let Z := sgn(x). As long as Z has reasonably small cardinality
we can check the regularity ofM by inspecting all the corresponding orthants and solving the linear programs of Eq. (3) with
b = 0. There is no need to check the other orthants, since x is a solution of (6) if and only if it is a feasible solution of (3) with
b = 0, z = sgn(x) and zT x > 0. Algorithm 4 gives a formal description of this procedure.

Algorithm 4 (Direct enumeration via Z)
1: for all z ∈ Z do
2: solve the linear program (3) with b = 0;
3: if (3) is unbounded then
4: return ‘‘M is not regular’’;
5: end if
6: end for
7: return ‘‘M is regular’’;

2.3.5. Practical implementation
Our implementation exhibits and combines all the methods mentioned in this section. We propose the following

procedure (Algorithm 5) for the outer test of Algorithm 1:

Algorithm 5 (Outer test)
1: M := A − λI;
2: ifMc is singular then
3: return ‘‘λ is not an outer interval’’;
4: end if
5: if ρ(|M−1

c |M∆) < 1 then
6: return ‘‘λ is an outer interval’’;
7: end if
8: call Algorithm 2 (Jansson and Rohn) with the number of iterations limited by a constant K3;
9: if the number of iteration does not exceed K3 then

10: return its output;
11: end if
12: call Algorithm 3 (ILS method);
13: if Algorithm 3 recognize λ as an outer interval then
14: return ‘‘λ is an outer interval’’;
15: end if
16: use the obtained approximation x to define Z;
17: if |Z | < K4 then
18: call Algorithm 4;
19: return its output;
20: end if
21: return ‘‘no decision on λ’’;

Jansson and Rohn method is very fast as long as radii of M are small and λ is not close to the border of Λ. If this is not
the case, then it can be time-consuming. We limit the number of iterations of this procedure to K3, where K3 := n3. If after
this number of iterations the result is not conclusive, then we call the ILS method. Finally, if ILS does not succeed, then we
compute Z , and if its cardinality is less than K4, then we call Algorithm 4. Otherwise, we cannot reach a conclusion about λ.
We empirically choose K4 := 2α with α := 2 log(K3 + 200) − 8.

Notice that in step 2 of Algorithm 5 we obtain a little more information. Not only is λ not an outer interval, but also its
half-intervals [λ, λc], [λc, λ] cannot be outer.

Remark 1. The interval Newton method [13,14] applied to the nonlinear system

Ax = λx, ‖x‖2 = 1

did not turn out to be efficient. Using the maximum norm was more promising; however, at each iteration the interval
Newton method solves an interval linear system that is a consequence of (6), and therefore cannot yield better results than
the ILS method.

2722 M. Hladík et al. / Journal of Computational and Applied Mathematics 235 (2011) 2715–2730

2.4. The inner test

This section is devoted to the inner test (step 7 in Algorithm1).We are given a real closed intervalλ and an intervalmatrix
A. The question is whether every λ ∈ λ represents an eigenvalue of some A ∈ A. If so, then λ is called an inner interval.

Using inner testing in interval-valued problems is not a common procedure. It depends greatly on the problem under
consideration, since interval parameters are usually correlated, and such correlations are, in general, hard to deal with.
However, utilization of inner testing provides two great benefits: it decreases the running time and allows us to measure
the sharpness of the approximation.

Our approach is a modification of Jansson and Rohn method.

Proposition 4. We have that λ ∈ R is an eigenvalue of some A ∈ A if the linear programming problem

max

zT x; (Ac − λI − A∆diag(z))x ≤ b, (Ac − λI + A∆diag(z))x ≥ b, diag(z)x ≥ 0

(9)

is unbounded for some z ∈ {±1}n.

Proof. It follows from [28, Theorems 5.3 and 5.4]. �

Proposition 5. We have that λ is an inner interval if the linear programming problem

max

zT x1 − zT x2; (Ac − A∆diag(z))(x1 − x2) − λx1 + λx2 ≤ b, (Ac + A∆diag(z))(x1 − x2) − λx1

+ λx2 ≥ b, diag(z)(x1 − x2) ≥ 0, x1, x2 ≥ 0

(10)

is unbounded for some z ∈ {±1}n.

Proof. Let z ∈ {±1}n and let (10) be unbounded. That is, there exists a sequence of feasible points (x1k, x
2
k), k = 1, 2, . . . ,

such that limk→∞(zT x1k − zT x2k) = ∞. We show that (9) is unbounded for every λ ∈ λ, and thereby λ is an inner interval.
Let λ ∈ λ be arbitrary. Define a sequence of points xk := (x1k − x2k), k = 1, 2, Every xk is a feasible solution to (9),

since

(Ac − λI − A∆diag(z))xk = (Ac − λI − A∆diag(z))(x1k − x2k)

≤ (Ac − A∆diag(z))(x1 − x2) − λx1 + λx2 ≤ b,

and

(Ac − λI + A∆diag(z))xk = (Ac − λI + A∆diag(z))(x1k − x2k)

≥ (Ac + A∆diag(z))(x1 − x2) − λx1 + λx2 ≥ b,

and

diag(z)xk = diag(z)(x1k − x2k) ≥ 0.

Next, limk→∞ zT xk = limk→∞ zT (x1k − x2k) = ∞. Therefore the linear program (9) is unbounded. �

Proposition 5 gives us a sufficient condition for checking whether λ is an inner interval. The condition becomes stronger
and stronger as λ becomes more narrow. The natural question is that of how to search for a sign vector z that guarantees
the unboundedness of (10). We can modify the Jansson and Rohn method and inspect all orthants intersecting a given
component. In our experience, slightly better results are obtained by the variation described by Algorithm 6.

This approach has several advantages. First, it solves the linear program (10), which has twice as many variables as (3),
at most (n + 1) times. Next, we can accelerate Algorithm 1 by means of the following properties:

• Algorithm 6 returns that λ is not an inner interval only if λc is not an eigenvalue. In this case, neither of the half-intervals
[λ, λc] and [λc, λ] can be inner.

• If (10) is unbounded for some sign vector z, then it is sometimes probable that the interval adjacent to λ is also inner
and the corresponding linear program is (10), unbounded for the same sign vector z. Therefore, the sign vector z is
worth remembering for the subsequent iterations of step 3 in Algorithm 6. This is particularly valuable when the list L is
implemented as a stack; see the discussion in Section 2.

2.5. Complexity

In this section we discuss the complexity of Algorithm 1. Recall that even testing the regularity of a matrix is an NP-hard
problem; thus we cannot expect a polynomial algorithm. By LP(m, n) we denote the (bit) complexity of solving a linear
program with O(m) inequalities and O(n) unknowns.

Our algorithm is a subdivision algorithm. Its complexity is the number of tests it performs, times the complexity of each
step. At each step we perform, in the worst case, an outer and an inner test.

M. Hladík et al. / Journal of Computational and Applied Mathematics 235 (2011) 2715–2730 2723

Algorithm 6 (Inner test)
1: call Algorithm 2 (Jansson and Rohn) withM := A − λc I;
2: ifM is regular then
3: return λ is not inner interval;
4: end if
5: let z be a sign vector for which (3) is unbounded;
6: solve (10);
7: if (10) is unbounded then
8: return ‘‘λ is an inner interval’’;
9: else if (10) is infeasible then

10: return ‘‘λ is possibly not inner’’;
11: end if
12: for all y ∈ N(z) do
13: solve (10) with y as a sign vector;
14: if (10) is unbounded then
15: return ‘‘λ is an inner interval’’;
16: end if
17: end for
18: return ‘‘λ is possibly not inner’’;

Let us first compute the number of steps of the algorithm. Letmax{Aij} := max{max{Aij},max{Aij}} ≤ 2τ , i.e. we consider
a bound on the absolute value on the numbers used to represent the interval matrix. From Section 2.2 we deduce that the
real eigenvalue set of A is contained in an interval, centered at zero and with radius bounded by the sum of the spectral
radii of SS and S∆. Evidently the bound 2τ holds for the elements of these matrices, as well. Since for an n × n matrix M
the absolute value of its (possible complex) eigenvalues is bounded by nmaxij |Mij|, we deduce that the spectral radius of SS
and S∆ is bounded by n2τ and thus the real eigenvalues of A are in the interval [−n2τ+1, n2τ+1

]. Let ε = 2−k be the input
accuracy. In this case the total number of intervals that we need to test, or in other words the total number of steps that the
algorithm performs, is n2τ+1/2−k

= n2τ+k+1.
It remains to compute the complexity of each step. At each step we perform an inner and an outer test. For each of

these tests we should solve, in the worst case, 2O(n) linear programs that consist of O(n) variables and inequalities. The
exponential number of linear programs is a consequence of the fact that we should enumerate all the vertices of a hypercube
in n dimensions (refer to Algorithm 4).

Thus the total complexity of the algorithm is O(n 2k+τ+1 2n LP(n, n)).

2.6. The interval hull

We can slightly modify Algorithm 1 to approximate the interval hull of Λ, i.e., the smallest interval containing Λ. Let λL

(resp. λU) be the lower (resp. upper) boundary of Λ, i.e.,

λL
:= inf{λ; λ ∈ Λ} and λU

:= sup{λ; λ ∈ Λ}.

In order to compute λL, we consider the followingmodifications of Algorithm 1.We remove all the steps that refer to the
list Linn, and we change step 8 to

...
8: return Lunc;
...

The modified algorithm returns Lunc as output. The union of all the intervals in Lunc is an approximation of the lower
boundary point λL. If the list Lunc is empty, then the eigenvalue set Λ is empty, too.

An approximation of the upper boundary point,λU , can be computed as a negative value of the lower eigenvalue boundary
point of the interval matrix (−A).

3. Exact bounds

Algorithm 1 yields an outer and an inner approximation of the set of eigenvalues Λ. In this section we show how to use
it for computing the exact boundary points of Λ. This exactness is limited by the use of floating point arithmetic. Rigorous
results would be obtained by using interval arithmetic, but this is a direct modification of the proposed algorithm and we
do not discuss it in detail.

As long as interval radii of A are small enough, we are able, in most of the cases, to determine the exact bounds in a
reasonable time. Surprisingly, sometimes computing exact bounds is faster than high precision approximation.

2724 M. Hladík et al. / Journal of Computational and Applied Mathematics 235 (2011) 2715–2730

We build on [19, Theorem 3.4]:

Theorem 3. Let λ ∈ ∂Λ. Then there exist nonzero vectors x, p ∈ Rn and vectors y, z ∈ {±1}n such that
Ac − diag(y)A∆diag(z)

x = λx, (11)

AT
c − diag(z)AT

∆diag(y)

p = λp,

diag(z)x ≥ 0,
diag(y)p ≥ 0.

Theorem 3 asserts that the boundary eigenvalues are produced by special matrices Ay,z ∈ A of the form of Ay,z :=

Ac − diag(y)A∆diag(z). Here, z is the sign vector of the right eigenvector x, and y is the sign vector of the left eigenvector p.
Recall that a right eigenvector is a nonzero vector x satisfying Ax = λx, and a left eigenvector is a nonzero vector p satisfying
ATp = λp.

In our approach, we are given an interval λ and we are trying to find outer approximations of the corresponding left and
right eigenvectors, i.e. p and x, respectively. If no component of p and x contains zero, then the sign vectors y := sgn(p) and
z := sgn(x) are uniquely determined. In this case we enumerate all the eigenvalues of Ay,z . If only one of them belongs to λ,
then we have succeeded.

If the eigenvectors in p and x are normalized according to (5), then we must inspect not only Ay,z , but also A−y,z (the
others, Ay,−z and A−y,−z , are not needed due to symmetry).

The formal description is given in Algorithm 7.

Algorithm 7 (Exact bound)
1: M := A − λI;
2: call Algorithm 3 (ILS method) with the input matrix MT to obtain an outer approximation p of the corresponding

solutions.
3: if p

i
≤ 0 ≤ pi for some i = 1, . . . , n then

4: return ‘‘bound is possibly not unique’’;
5: end if
6: y := sgn(p);
7: call Algorithm3 (ILSmethod)with the inputmatrixM to obtain an outer approximation x of the corresponding solutions.

8: if xi ≤ 0 ≤ xi for some i = 1, . . . , n then
9: return ‘‘bound is possibly not unique’’;

10: end if
11: z := sgn(x);
12: let L be a set of all eigenvalues of Ay,z and A−y,z ;
13: if L ∩ λ = ∅ then
14: return ‘‘no boundary point in λ’’;
15: else if L ∩ λ = {λ∗

} then
16: return ‘‘λ∗ is a boundary point candidate’’;
17: else
18: return ‘‘bound is possibly not unique’’;
19: end if

We now describe how to integrate this procedure into our main algorithm. Suppose that at some iteration of Algorithm
1 we have an interval λ1 recognized as outer. Suppose next that the following current interval λ2 is adjacent to λ1 (i.e.,
λ
1

= λ2); it is not recognized as outer and it fulfills the precision test (step 9). According to the result of Algorithm 7 we
distinguish three possibilities:
• If L ∩ λ2

= ∅ then there cannot be any eigenvalue boundary point in λ2, and therefore it is an outer interval.
• If L ∩ λ2

= {λ∗
} then λ∗ is the exact boundary point required, and moreover [λ∗, λ

2
] ⊆ Λ.

• If |L ∩ λ2
| > 1 then the exact boundary point is λ∗

:= min{λ; λ ∈ L ∩ λ2
}. However, we cannot say anything about the

remaining interval [λ∗, λ
2
].

A similar procedure is applied when λ1 is inner and λ2 is adjacent and narrow enough.
We can simply extend Algorithm 7 to the case where there are some zeros in the components of p and x. In this case, the

sign vectors y and z are not determined uniquely. Thus, we have to take into account the sets of all the possible sign vectors.
Let v be an interval vector and sgn′(v) be a sign vector set, that is, the set of all sign vectors z ∈ {±1}n satisfying

zi =

+1, vi > 0,
−1, vi < 0,
±1, otherwise (vi ≤ 0 ≤ vi).

M. Hladík et al. / Journal of Computational and Applied Mathematics 235 (2011) 2715–2730 2725

The definition of sgn′(v) slightly differs from that of sgn(v) in (8). Herein, we must take into account the both signs of zi
whenever vi contains zero (even on a boundary). Assume

Y := sgn′(p), Z := sgn′(x).

Instead of two matrices, Ay,z and A−y,z , we must inspect all possible combinations with y ∈ Y and z ∈ Z . In this way, step
12 of Algorithm 7 will we replaced by

...
12′: L := {λ; λ is an eigenvalue of Ay,z or of A−y,z, y ∈ Y , z ∈ Z};
...

The cardinality of Y is a power of 2, and the cardinality of Z as well. Since we have to enumerate eigenvalues of |Y | · |Z |

matrices, step 12′ is tractable for only reasonably small sets Y and Z .

4. Numerical experiments

In this section we present results of some numerical experiments. They confirm the quality of the algorithm presented.
We are able to determine the eigenvalue set exactly or at least very sharply for dimensions up to about 30. The running time
depends heavily not only on the dimension, but also on the widths of matrix intervals.

We also compared our implementation with another techniques that solve directly the interval nonlinear system (1). It
turnedout that such techniques are comparable only for very small dimensions, i.e.∼5. Results of our numerical experiments
are displayed in tables that follow and can be interpreted using the following notation:

n Problem dimension
ε Precision
R Maximal radius
‘‘Exactness’’ Indication of whether exact bounds of Λ were achieved; if not, we display the number of uncertain

intervals
‘‘Time’’ Computing time in hours, minutes and seconds
‘‘Hull time’’ Computing time of the interval hull of Λ; see Section 2.6

Note that ε refers to the precision used in the step 9 of Algorithm 1. For the additional computation of exact boundary
points we use 10−4ε precision.

Generally, better results were obtained for smaller R, as both the Jansson and Rohn method and the sufficient regularity
condition are more efficient for smaller radii of matrix intervals.

The results were carried on an Intel Pentium(R) 4, CPU 3.4 GHz, with 2 GB RAM, and the source code was written
in C++ using GLPK v.4.23 [31] for solving linear programs, CLAPACK v.3.1.1 for its linear algebraic routines, and
PROFIL/BIAS v.2.0.4 [32] for interval arithmetics. Notice, however, that routines of GLPK and CLAPACK [33] do not
produce verified solutions, and for real-life problems preferably verified software or interval arithmetic should be used.

Example 1 (Random Matrices). The entries of the midpoint matrix Ac are chosen randomly with uniform distribution in
[−20, 20]. The entries of the radius matrix A∆ are chosen randomly with uniform distribution in [0, R], where R is a positive
real number. The results are displayed in Table 1.

Example 2 (Random SymmetricMatrices). The entries ofAc andA∆ are chosen randomly in the samemanner as in Example 1;
the only difference is that both of these matrices are composed to be symmetric. See Table 2 for the results.

Example 3 (Random ATA Matrices). The entries of Ac and A∆ are chosen randomly as in Example 1, and our algorithm is
applied on the matrix generated by the product ATA. In this case, the maximal radius value R is a bit misleading, since it
refers to the original matrix A instead of the product used. The results are displayed in Table 3.

Example 4 (Random Nonnegative Matrices). The entries of Ac and A∆ are chosen randomly as in Example 1, and the
eigenvalue problem is solved for its absolute value

|A| := {|A|; A ∈ A}.

The absolute value of an interval matrix is again an interval matrix and with entries

|A|ij =

Aij Aij ≥ 0,
−Aij Aij ≤ 0,
[0,max(−Aij, Aij)] otherwise.

See Table 4 for the results.

2726 M. Hladík et al. / Journal of Computational and Applied Mathematics 235 (2011) 2715–2730

Table 1
Randommatrices.

n ε R Exactness Time Hull time

5 0.1 1 Exact 2 s 1 s
10 0.1 0.1 Exact 7 s 2 s
10 0.1 0.5 Exact 9 s 4 s
10 0.1 1 Exact 16 s 1 s
10 0.1 5 Exact 1 min 12 s 1 min 11 s
15 0.1 0.1 Exact 37 s 5 s
15 0.1 0.5 Exact 10 min 29 s 6 s
15 0.1 0.5 Exact 20 min 54 s 35 s
15 0.1 1 Exact 7 min 59 s 1 min 12 s
20 0.1 0.1 Exact 2 min 16 s 10 s
20 0.1 0.1 Exact 7 min 27 s 39 s
20 0.1 0.5 Exact 21 min 6 s 46 s
25 0.1 0.01 Exact 5 min 46 s 23 s
25 0.1 0.05 Exact 10 min 39 s 1 min 34 s
30 0.01 0.01 Exact 14 min 37 s 54 s
30 0.01 0.1 Exact 48 min 31 s 29 s
40 0.01 0.01 Exact – 2 min 20 s
40 0.01 0.05 Exact – 1 h 42 min 36 s
40 0.01 0.1 Exact – 1 h 52 min 15 s
50 0.01 0.01 Exact – 9 min 25 s
50 0.01 0.1 2 – 21 min 34 s

Table 2
Random symmetric matrices.

n ε R Exactness Time Hull time

5 0.1 1 Exact 3 s 1 s
10 0.1 0.1 Exact 11 s 1 s
10 0.1 0.5 Exact 17 s 1 s
10 0.1 1 2 2 min 18 s 1 s
10 0.1 5 2 11 s 10 s
15 0.1 0.1 Exact 3 min 51 s 1 s
15 0.1 0.5 6 31 min 43 s 4 s
20 0.1 0.01 Exact 2 min 25 s 3 s
20 0.1 0.05 Exact 6 min 39 s 4 s
20 0.1 0.1 Exact 27 min 48 s 8 s
20 0.1 0.1 10 40 min 19 s 8 s
25 0.1 0.01 Exact 7 min 51 s 12 s
25 0.1 0.05 Exact 1 h 59 min 11 s 11 s
30 0.01 0.1 Exact – 29 s
40 0.01 0.1 Exact – 6 min 15 s
50 0.01 0.01 Exact – 1 min 23 s
50 0.01 0.1 Exact – 1 h 2 min 43 s

100 0.01 0.01 Exact – 34 min 5 s

Table 3
Random ATAmatrices.

n ε R Exactness Time Hull time

5 0.1 0.1 Exact 5 s 1 s
10 0.1 0.1 Exact 37 s 3 s
10 0.1 0.1 Exact 4 min 0 s 1 s
10 0.1 0.5 Exact 1 min 35 s 7 s
10 0.1 1 Exact 1 min 3 s 56 s
15 0.1 0.001 Exact 1 min 1 s 3 s
15 0.1 0.002 Exact 40 s 2 s
15 0.1 0.01 3 3 min 38 s 17 s
15 0.1 0.02 1 1 min 58 s 13 s
15 0.1 0.1 Exact 39 min 27 s 4 min 48 s
20 0.01 0.1 Exact – 1 h 18 min 16 s

Figs. 1–4 present some examples of the eigenvalue set Λ. Intervals of Λ are colored red while the outer intervals are
yellow and green; yellow color is for the intervals recognized by the sufficient regularity condition (step 5 of Algorithm 5),
and green is for the remainder.

M. Hladík et al. / Journal of Computational and Applied Mathematics 235 (2011) 2715–2730 2727

Table 4
Random nonnegative matrices.

n ε R Exactness Time Hull time

10 0.01 0.1 Exact 13 s 1 s
10 0.01 1 Exact 8 s 1 s
15 0.01 0.1 Exact 2 min 22 s 6 s
15 0.01 0.1 Exact 47 s 4 s
15 0.01 0.5 Exact 1 min 53 s 27 s
15 0.01 1 Exact 57 s 37 s
15 0.01 5 Exact – 1 h 8 min 49 s
20 0.01 0.1 Exact 3 min 55 s 9 s
20 0.01 0.5 Exact 8 min 36 s 1 min 19 s
25 0.01 0.1 Exact 51 min 58 s 12 s
30 0.01 0.01 Exact 19 min 47 s 49 s
30 0.01 0.1 Exact – 37 min 44 s
40 0.01 0.01 Exact – 2 min 41 s
40 0.01 0.05 Exact – 15 min 57 s
50 0.01 0.1 Exact – 2 h 2 min 22 s

Fig. 1. Random matrix, n = 30, R = 0.1, computing time 48 min 31 s, initial approximation [−86.888, 86.896]. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Random symmetric matrix, n = 15, R = 0.5, computing time 13 min 48 s, initial approximation [−60.614, 58.086]. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. RandomATAmatrix, n = 15, R = 0.02, computing time 1min 58 s, initial approximation [−39.620, 5679.196]. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Random nonnegative matrix, n = 15, R = 0.2, computing time 2 min 22 s, initial approximation [−27.548, 144.164]. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Example 5 (Interval Matrices in Robotics). The following problem usually appears in experimental planning, e.g. [6]. We
consider a PRRRP planar mechanism, where P stands for a prismatic and R for a rotoid joint; for further details we refer the
reader to [34].

We consider the mechanism of Fig. 5. Let X = (x, y) be a point in the plane, which is linked to two points,M and N , using
two fixed length bars so that it holds that ‖X − M‖ = r1, ‖X − N‖ = r2. We can move M (respectively N) between the
fixed points A = (0, 0) and B = (L, 0) (respectively C = (L + r3, 0) and D = (2.L + r3, 0)) using two prismatic joints, so
‖A − M‖ = l1, ‖C − N‖ = l2. In the example that we consider, Fig. 5, the points A, B, C,D are aligned.

If we control the length l1 and l2 by using two linear actuators we allow the displacement of the end-effector X to have
two degrees of freedom in a planar workspace that is limited by the articular constraints l1, l2 ∈ [0, L]. The two equations
F1(X, l1) ≡ ‖M − X‖

2
− r21 = 0 and F2(X, l2) ≡ ‖N − X‖

2
− r22 = 0 link the generalized coordinates (x, y) and the articular

coordinates l1, l2.
The calibration of such a mechanism is not an easy problem due to assembly and manufacturing errors, and because the

kinematic parameters, that is the lengths r1, r2 and r3, are not well known.
The aim is to estimate them using several measurements, k = 1, . . . , n, of the end-effector Xk and the corresponding

measurements of the articular coordinates lk,1, lk,2.
The identification procedure of r1, r2, and r3 is based on a classical least square approach for the (redundant) system

F ≡ [F1,1(X1, l1,1), F1,2(X1, l1,2), . . . , Fn,1(Xn, ln,1), Fn,2(Xn, ln,2)]T = 0.

That is, we want to compute r1, r2, and r3 that minimize the quantity F T F .
A natural question is that of how to estimate the measurements positions inside the workspace [7] to improve the

robustness of the numerical solution of a least square method. For this we can use the observability index [8], which is
a square root of the smallest eigenvalue of JT J , where J is the identification Jacobian. It is defined by the derivatives of F1k

2728 M. Hladík et al. / Journal of Computational and Applied Mathematics 235 (2011) 2715–2730

16

14

12

10

8

6

4

2

0

-2
0 5 10 15 20 25

A M B C N D

Fig. 5. PRRRP planar parallel robot.

and F2k with respect to the kinematic parameters r1, r2, and r3, that is

J =

∂F1,1(X1, l1,1)
∂r1

∂F1,1(X1, l1,1)
∂r2

∂F1,1(X1, l1,1)
∂r3

∂F1,2(X1, l1,2)
∂r1

∂F1,2(X1, l1,2)
∂r2

∂F1,2(X1, l1,2)
∂r3

...
...

...

∂Fn,1(Xn, ln,1)
∂r1

∂Fn,1(Xn, ln,1)
∂r2

∂Fn,1(Xn, ln,1)
∂r3

∂Fn,2(Xn, ln,2)
∂r1

∂Fn,2(Xn, ln,2)
∂r2

∂Fn,2(Xn, ln,2)
∂r3

.

The observability index can be equivalently defined as the third-largest eigenvalue of the matrix
0 J
JT 0

. (12)

We employ this approach since it gives rise to more accurate estimates.
Recall that due tomeasurement errors, it is not possible to obtain the actual values of the kinematic parameters. However,

if the set of measurements is chosen so as to maximize this index, the error of the end-effector positions after calibration is
minimized.

We demonstrate our approach by setting n = 2. Let r1 = r2 = 15, r3 = 5, and L = 10.
If l1,1 ∈ [0, 5], l1,2 ∈ [5, 10], l2,1 ∈ [5, 10] and l2,2 ∈ [0, 5] then

J =

[−30, −30] 0 0

0 [−30, −30] [−30, −30]
0 [15.2, 25] [5, 14.8]

,

and the third-largest eigenvalue λ3 of (12) lies in the interval [0.25, 12.53].
Similarly, if l1,1 ∈ [0, 2], l1,2 ∈ [8, 10], l2,1 ∈ [8, 10], and l2,2 ∈ [0, 2], this is workspace 1, ws1, in Fig. 6; then

λ3 = [7.56, 12.53], where

J =

[−30, −30] 0 0

0 [−30, −30] [−30, −30]
0 [21, 25] [5, 9]

.

If l1,1 ∈ [4, 7], l1,2 ∈ [9, 10], l2,1 ∈ [9, 10], and l2,2 ∈ [4, 7], this is workspace 2, ws2, in Fig. 6; then λ3 = [2.52, 7.56],
where

J =

[−30, −30] 0 0

0 [−30, −30] [−30, −30]
0 [17, 21] [9, 13]

.

As regards the last two examples, it is always better to chose the measurement poses in ws1, in red in Fig. 6, than the
ones in ws2, in blue in Fig. 6.

M. Hladík et al. / Journal of Computational and Applied Mathematics 235 (2011) 2715–2730 2729

15

14

14

13

12

12

11

10

10

9

8
8 16 18

Fig. 6. Workspacesws1 in red andws2 in blue. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version
of this article.)

5. Conclusion

In this paper we considered the problem of computing the real eigenvalues of matrices with interval entries. Sharp
approximation of the set of the (real) eigenvalues is an important subroutine in various engineering applications. We
proposed an algorithm based on a branch and prune scheme and splitting only along one dimension (real axis) to compute
the intervals of the real eigenvalues. The algorithm approximates the real eigenvalues with an accuracy depending on a
given positive parameter ε.

Numerical experiments demonstrate that the algorithm is applicable in high dimensions. An exact bound can be achieved
in real time up to the dimension of 30, but more or less sharp approximations can be produced in any dimension. To the
best of our knowledge there is no comparable method for dimension greater that 5.

Our algorithm could be also seen as a first step of an algorithm that produces intervals (in the complex plane) that contain
all the eigenvalues of a given interval matrix. This is work in progress.

References

[1] W. Karl, J. Greschak, G. Verghese, Comments on ‘A necessary and sufficient condition for the stability of interval matrices’, Internat. J. Control 39 (4)
(1984) 849–851.

[2] Z. Qiu, P.C. Müller, A. Frommer, An approximatemethod for the standard interval eigenvalue problem of real non-symmetric intervalmatrices, Comm.
Numer. Methods Engrg. 17 (4) (2001) 239–251.

[3] A.D. Dimarogonas, Interval analysis of vibrating systems, J. Sound Vibration 183 (4) (1995) 739–749.
[4] F. Gioia, C.N. Lauro, Principal component analysis on interval data, Comput. Statist. 21 (2) (2006) 343–363.
[5] D. Chablat, P. Wenger, F. Majou, J. Merlet, An interval analysis based study for the design and the comparison of 3-DOF parallel kinematic machines,

Int. J. Robot. Res. 23 (6) (2004) 615–624.
[6] E. Walter, L. Pronzato, Identification of Parametric Models, Springer, Heidelberg, 1997.
[7] D. Daney, Y. Papegay, B. Madeline, Choosing measurement poses for robot calibration with the local convergence method and Tabu search, Int. J.

Robot. Res. 24 (6) (2005) 501.
[8] A. Nahvi, J. Hollerbach, The noise amplification index for optimal pose selection in robot calibration, in: IEEE International Conference on Robotics

and Automation, Citeseer, 1996, pp. 647–654.
[9] D. Cox, J. Little, D. O’Shea, Ideals, Varieties, and Algorithms, 2nd ed., in: Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997.

[10] L. Busé, H. Khalil, B. Mourrain, Resultant-based methods for plane curves intersection problems, in: V. Ganzha, E. Mayr, E. Vorozhtsov (Eds.), Proc. 8th
Int. Workshop Computer Algebra in Scientific Computing, in: LNCS, vol. 3718, Springer, 2005, pp. 75–92.

[11] H. Stetter, Numerical Polynomial Algebra, Society for Industrial Mathematics, 2004.
[12] G. Alefeld, J. Herzberger, Introduction to Interval Computations, Academic Press, London, 1983.
[13] E. Hansen, G.W. Walster, Global Optimization Using Interval Analysis, 2nd ed., Marcel Dekker, New York, 2004, revised and expanded.
[14] A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press, Cambridge, 1990.
[15] S. Poljak, J. Rohn, Checking robust nonsingularity is NP-hard, Math. Control Signals Systems 6 (1) (1993) 1–9.
[16] A.S. Deif, The interval eigenvalue problem, Z. Angew. Math. Mech. 71 (1) (1991) 61–64.
[17] J. Rohn, A. Deif, On the range of eigenvalues of an interval matrix, Computing 47 (3–4) (1992) 373–377.
[18] A. Deif, J. Rohn, On the invariance of the sign pattern of matrix eigenvectors under perturbation, Linear Algebra Appl. 196 (1994) 63–70.
[19] J. Rohn, Interval matrices: singularity and real eigenvalues, SIAM J. Matrix Anal. Appl. 14 (1) (1993) 82–91.
[20] J. Rohn, Bounds on eigenvalues of interval matrices, ZAMM Z. Angew. Math. Mech. 78 (Suppl. 3) (1998) S1049–S1050.
[21] G. Alefeld, G. Mayer, Interval analysis: theory and applications, J. Comput. Appl. Math. 121 (1–2) (2000) 421–464.
[22] E.R. Hansen, G.W. Walster, Sharp bounds on interval polynomial roots, Reliab. Comput. 8 (2) (2002) 115–122.
[23] L. Jaulin, M. Kieffer, O. Didrit, É. Walter, Applied Interval Analysis. With Examples in Parameter and State Estimation, Robust Control and Robotics,

Springer, London, 2001.
[24] F. Rouillier, Z. Zimmermann, Efficient isolation of polynomial’s real roots, J. Comput. Appl. Math. 162 (1) (2004) 33–50.
[25] I.Z. Emiris, B. Mourrain, E.P. Tsigaridas, Real algebraic numbers: complexity analysis and experimentation, in: P. Hertling, C. Hoffmann, W. Luther,

N. Revol (Eds.), Reliable Implementations of Real Number Algorithms: Theory and Practice, in: LNCS, vol. 5045, Springer-Verlag, 2008, pp. 57–82.
Also available in: www.inria.fr/rrrt/rr-5897.html.

http://www.inria.fr/rrrt/rr-5897.html

2730 M. Hladík et al. / Journal of Computational and Applied Mathematics 235 (2011) 2715–2730

[26] W. Krandick, Isolierung reeller nullstellen von polynomen, in: J. Herzberger (Ed.), Wissenschaftliches Rechnen, Akademie-Verlag, Berlin, 1995,
pp. 105–154.

[27] G. Rex, J. Rohn, Sufficient conditions for regularity and singularity of interval matrices, SIAM J. Matrix Anal. Appl. 20 (2) (1998) 437–445.
[28] C. Jansson, J. Rohn, An algorithm for checking regularity of interval matrices, SIAM J. Matrix Anal. Appl. 20 (3) (1999) 756–776.
[29] J. Rohn, Solvability of systems of interval linear equations and inequalities, in: M. Fiedler, J. Nedoma, J. Ramík, J. Rohn, K. Zimmermann (Eds.), Linear

Optimization Problems with Inexact Data, Springer, New York, 2006, pp. 35–77 (Chapter 2).
[30] O. Beaumont, Algorithmique pour les intervalles: comment obtenir un résultat sűr quand les données sont incertaines, Ph.D. Thesis, Université de

Rennes 1, Rennes, 1999.
[31] A. Makhorin, GLPK—GNU linear programming kit. http://www.gnu.org/software/glpk/.
[32] O. Knüppel, D. Husung, C. Keil, PROFIL/BIAS—a C++ class library. http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html.
[33] CLAPACK—linear algebra Package written for C. http://www.netlib.org/clapack/.
[34] X.-J. Liu, J.Wang, G. Pritschow,On the optimal kinematic design of the PRRRP 2-DOFparallelmechanism,Mech.Mach. Theory 41 (9) (2006) 1111–1130.

http://www.gnu.org/software/glpk/
http://www.ti3.tu-harburg.de/Software/PROFILEnglisch.html
http://www.netlib.org/clapack/

	An algorithm for addressing the real interval eigenvalue problem
	Introduction
	Motivation
	Notation and preliminaries
	Previous work and our contribution

	The general algorithm
	Branching in detail
	Initial bounds
	The outer test
	A sufficient regularity condition
	The Jansson and Rohn method
	The ILS method
	Direct enumeration
	Practical implementation

	The inner test
	Complexity
	The interval hull

	Exact bounds
	Numerical experiments
	Conclusion
	References

