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Abstract

We study a stochastic optimization problem under constraints in a general framework includ-
ing 1nancial models with constrained portfolios, labor income and large investor models and
reinsurance models. We also impose American-type constraint on the state space process. Gen-
eral objective functions including deterministic or random utility functions and shortfall risk loss
functions are considered. We 1rst prove existence and uniqueness result to this optimization
problem. In a second part, we develop a dual formulation under minimal assumptions on the
objective functions, which are the analogue of the asymptotic elasticity condition of Kramkov
and Schachermayer (1999). c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

A basic optimization problem in mathematical 1nance, such as optimal portfolio
choice or hedging, is formulated as

maximize over X ∈X(x) : E[U (XT )]; (1.1)

where X(x) is the set of self-1nanced wealth processes starting from an initial capital x
and U is a concave objective function (eventually state-dependent). The expression of
a self-1nanced wealth process starting from an initial capital x and with an investment
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� in the n securities of price process S is 1

X x;� = S0
(
x +

∫
� d(S=S0)

)
:

Here 2 � (resp. diag(S)�) is the number of shares (resp. the amount) invested in
securities S. The process S0 is a numCeraire, i.e. a strictly positive price process of some
other asset, and so (X x;� − �:S)=S0 (resp. X x;� − �:S) is the number of shares (resp.
amount) invested in S0. Usually, S0 is chosen to be the riskless bond (when it exists).
When asset S0 has (discounted) price equal to 1 at any times, this means actually
that one optimizes the objective function from the discounted wealth X̃ = X=S0. In a
markovian context, problem (1.1) may be studied by a direct dynamic programming
Bellman equation, see e.g. Merton (1971) and DuNe et al. (1997). When dealing
with more general processes, it is now well known that the dual martingale approach
provides an elegant and powerful tool for solving (1.1). Classical references in the
incomplete market model are the papers of Karatzas et al. (1991), He and Pearson
(1991) and Kramkov and Schachermayer (1999). The key point in this approach is
the duality relation between the set of self-1nanced wealth processes and the set P0

of martingale measures Q under which S=S0 is a Q-local martingale. Extensions to
the case of constrained investment are considered by CvitaniCc and Karatzas (1992)
(constraints on the proportion = diag(S)�=X x;�) and by Cuoco (1997) (constraint on
the amount) in an Itô processes model. Cuoco (1997) and CvitaniCc et al. (2000) study
problem (1.1) in the presence of labor income, i.e. when x is random. The wealth
process in these papers is only required to be nonnegative at the terminal date T .
In the case of a complete Itô processes model, He and PagDes (1993) and El Karoui
and Jeanblanc (1998) consider the more delicate case of nonnegative wealth constraint
over the whole interval [0; T ]. While such an American-type constraint is guaranteed
by the nonnegativity of the terminal wealth in an incomplete market model or when
constraints are imposed on proportions, this is no more the case in the presence of
constraints on the amount or share and=or with random endowment.

In this paper, we investigate the general structure of such stochastic optimization
problems. We prescribe a convex family of semimartingales for the normalized state
process X̃ = X=S0 where S0 is a given strictly positive process. This includes 1nancial
models with constrained portfolios, random endowment and large investor, as well
as reinsurance models. Given a process (dt), we impose an American-type constraint
on the state process (Xt) in the form Xt¿dt for all t ∈ [0; T ]. For d ≡ 0; this is
a nonnegativity constraint over the whole interval [0; T ], and for general stochastic
process d, this may be interpreted as a portfolio insurance problem with American
guarantee (see El Karoui et al., 2000). We consider general objective concave functions
U de1ned on (0; Ox), where Ox is random and valued in (0;∞), including deterministic
or random utility functions, and loss functions associated to shortfall risk minimization
problems, see FPollmer and Leukert (2000), CvitaniCc (1998) or Pham (2000a). Using

1 Given a vector-valued semimartingale S̃ and �∈ L(S̃), we write
∫

� dS̃ for the vector stochastic integral
of � with respect to S.

2 Given a vector S = (S1; : : : ; Sn), we denote by diag(S) the n × n diagonal matrix of elements Si . We
also denote by 1n the vector in Rn of components 1.
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general optional decomposition under constraints of FPollmer and Kramkov (1997), we
provide a static characterization of the state process X in terms of a suitable set of
probability measures and nondecreasing processes: this set of probability measures is
the dual set associated to the convex constraints on the family of state process, and
the set of nondecreasing processes is the dual set associated to the American state
space constraints. We are then able to prove an existence and uniqueness result to our
optimization problem. In a second part, we develop a dual formulation under minimal
assumptions on the objective function, which extend the asymptotic elasticity condition
of Kramkov and Schachermayer (1999) from deterministic utility functions on (0;∞)
to random objective concave functions on (0; Ox). The main point is the study of the
additional terms arising from the convex and state space constraints, which lead to a
mixed control=singular dual optimization problem.

The outline of the paper is organized as follows. Section 2 describes the general
framework and formulates the optimization problem. In Section 3, we show how the
conditions of our abstract setting can be applied in several examples motivated by
1nance and insurance problems. In Section 4, we state an existence and uniqueness
result. Section 5 develops a dual formulation while the 1nal Section 6 is devoted to
the proof of this duality theorem.

2. The optimization problem

Let (�;F; P) be a probability space equipped with a 1ltration F=(Ft)06t6T satis-
fying the usual conditions of right-continuity and completeness. T ¿ 0 is a 1xed 1nite
time horizon, and we assume that F0 is trivial and FT =F. We consider a family X̃
of semimartingales, with initial value 0, and predictably convex in the following sense:
for any X̃ 1, X̃ 2 ∈ X̃ and for any predictable process � valued in [0; 1], we have∫

� d X̃ 1 +
∫

(1− �) d X̃ 2 ∈ X̃ −I; (2.1)

where I is the set of nondecreasing adapted processes with initial value 0. We shall
assume the following standing condition:

(CP) The family X̃ is closed for the semimartingale topology:

The semimartingale topology is associated to the Emery distance between two semi-
martingales X̃ 1 and X̃ 2 de1ned as

DE(X̃ 1; X̃ 2) =
∑
n¿1

2−nE
[

sup
06t6T∧n

|X̃ t
1 − X̃ t

2| ∧ 1
]
: (2.2)

For this metric, the space of semimartingales is complete. We refer to MCemin (1980)
(see also the next section) for other properties of the semimartingale topology.

Given X̃ 0 ∈ X̃, we set

X̃0 = {X̃ − X̃ 0: X̃ ∈ X̃ and X̃ − X̃ 0 is locally bounded from below};
so that X̃0 is a predictably convex family of semimartingales, locally bounded from
below, closed for the semimartingale topology, with initial value 0 and containing the
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constant process 0. We then consider the set OP0 of all probability measures Q ∼ P
with the property: there exists A∈Ip, set of nondecreasing predictable processes with
A0 = 0, such that

V − A is a Q-local supermartingale for any V ∈ X̃0: (2.3)

The upper variation process of X̃0 under Q ∈ OP0 is the element Ã0(Q) in Ip satisfying
(2.3) and such that A−Ã0(Q)∈Ip for any A∈Ip satisfying (2.3). We denote by P0

the subset of elements Q∈ OP0 such that

Ã
0
T (Q) is bounded a:s: (2.4)

We make the standing assumption that X̃ 0 ∈ X̃ can be chosen so that

(H0) P0 
= ∅
and

(H1) EQ sup
t
|X̃ 0

t |¡∞; ∀Q∈P0:

Remark 2.1. The set of probability measures P0 and the upper variation process are
derived by using Lemma 2:1 of FPollmer and Kramkov (1997): This result states that
Q∈ OP0 iR there is an upper bound for all the predictable processes arising in the Doob–
Meyer decomposition of the special semimartingale V ∈ X̃0 under Q. In this case, the
upper variation process is equal to this upper bound.

We are given a strictly positive price process S0 and we are interested on the family
of state processes

X(x) = {S0(x + X̃ ): X̃ ∈ X̃}; x∈R:
The main family of examples we have in mind for applications is described below

and will be developed more explicitly in the next section.

Example 2.1. Let S̃ be a semimartingale in Rn and L(S̃) be the set of predictable
processes integrable with respect to S̃. We prescribe a subset � of L(S̃) containing the
zero element and convex in the following sense: for any predictable process � valued
in [0; 1] and for all � 1, � 2 ∈�, we have �� 1 + (1− �)� 2 ∈�. We consider a family
{H̃ �: �∈�} of adapted processes with 1nite variation, with initial value 0 satisfying:

H̃
�� 1+(1−�)� 2

−
∫

� d H̃
� 1

−
∫

(1− �) d H̃
� 2

∈I: (2.5)

Then the family X̃ = {∫ � d S̃ + H̃ �: �∈�} is predictably convex in the sense (2.1).
The family of state processes considered is

X(x) =
{
S0
(
x +

∫
� d S̃ + H̃ �

)
: �∈�

}
; x∈R:

The closure property (CP) is stated for a large class of models described in the next
section. In all examples below, we shall choose X̃ 0 = H̃ 0 corresponding to the element
of X̃ for � = 0. A suNcient condition ensuring (H1) is the boundedness of H̃ 0. For
the moment, let us just mention that the incomplete market setting of the introduction
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is embedded in the family X(x) by taking S̃ = S=S0 as the discounted securities price,
� = L(S̃), H̃ � ≡ 0. More generally, the subset � models constraints on portfolio �
and the process H̃ � allows to take into account the terms arising from labor income
and large investor in 1nancial models. We shall also see how they can be used in
reinsurance models.

Given a semimartingale d = (dt)06t6T and x∈R, we impose an American-type
constraint on the family of state processes X ∈X(x):

Xt¿dt; 06t6T: (2.6)

By considering the family of processes {X̃ − d=S0: X̃ ∈ X̃} which still satis1es the
convexity property (2.1) and the closure property (CP) by the invariance of the Emery
distance under translation (see (2.2)), we may focus without loss of generality to
nonnegativity state constraint

Xt¿0; 06t6T: (2.7)

Given x∈R, we then denote by X+(x) the set of all processes X ∈X(x) satisfying
(2.7). We also denote by Xe(x) the set of all processes X ∈X(x) satisfying the weaker
European constraint: XT¿0, a.s., and the process X is bounded from below.

The general liquidity constraint (2.6) appears in the problem of portfolio insurance
with American guarantee (see El Karoui et al., 2000). In the classical context of
incomplete market model, the European constraint in Xe(x) of nonnegative terminal
wealth suNces to ensure that the optimal state never reaches zero before terminal time
T so that the American nonnegativity constraint (2.7) is not binding. Notice also that
when constraints are imposed on proportions as in CvitaniCc and Karatzas (1992), the
state process is nonnegative by construction. In our general framework, the American
constraint is not satis1ed by the optimal state under the European constraint, and we
have to take special attention to this state space constraint.

We consider a measurable function U : [0;∞) × � → R ∪ {−∞}. To alleviate no-
tations, we omit the dependence in the state !∈� and we write U (x). The function
U is uppersemicontinuous and concave. We assume that inf{x¿0: U (x)¿−∞}= 0
a.s. and we set

Ox = sup{x¿0: U (x)¿−∞};
so that the convex domain of U , domU := {x¿0: U (x)¿−∞} satis1es int(domU )=
(0; Ox), a.s. Notice that by the uppersemicontinuity of U , we have U ( Ox)¡∞ if Ox¡∞.
We also assume that U is nondecreasing on dom U . Our interest is on the optimization
problem

J (x) = sup
X ∈X+(x)

E[U (XT )]; x∈R: (2.8)

Since U (x) =−∞ for x¿ Ox, we clearly have

J (x) = sup
X ∈X+(x)

E[U (XT ∧ Ox)]; x∈R: (2.9)

Example 2.2. (i) When U is a deterministic function with Ox=∞, problem (2.8) is an
utility maximization problem from terminal state.
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(ii) When U is on the form U (x) = u(x + B) where u is a utility function as in
(i) and B is a contingent claim, i.e. an FT -measurable nonnegative random variable,
problem (2.8) is an utility-based pricing problem, see Davis (1997) and Karatzas and
Kou (1996).

(iii) Take U on the form

U (x) =

{−l(B− x); 06x6B;

−∞; x¿B;

where B is a nonnegative FT -measurable random variable and l is a convex non-
decreasing function on R+. Then, Ox = B and problem (2.9) is written equivalently
in 3

−J (x) = inf
X ∈X+(x)

E[l(B− XT )+]; x¿0:

This is a shortfall risk minimization problem in 1nance and insurance.

3. Examples

In this section, we provide several examples motivated by 1nance and insurance
problems. We show how one may check the technical conditions (CP) and (H0).

Actually, the set of probability measures and the upper variation process are deter-
mined in the examples by using Remark 2.1. On the other hand, to prove the closure
property (CP), we shall use the following properties of the semimartingale topology
stated by MCemin (1980):

(P1) The space of stochastic integrals {∫ � dS̃: �∈L(S̃)}, where S̃ is a vector-valued
semimartingale, is closed for the semimartingale topology.

(P2) (Vn)n is a sequence of semimartingales converging to V in the semimartingale
topology iR there exists a sequence (also denoted (Vn)n) and a probability measure Q ∼
P with bounded density dQ=dP such that (Vn)n is a Cauchy sequence in M2(Q)⊕A(Q)
where M2(Q) is the Banach space of Q-square integrable martingales and A(Q) is
the Banach space of predictable processes with 1nite Q-integrable variation.

3.1. Incomplete market model

This is a particular case of Example 2.1 with S̃=S=S0 the securities price discounted
by a numCeraire S0 (usually a riskless bond), � = L(S̃), H̃ � = 0. The family of state
processes is the set of self-1nanced wealth processes: X(x)={S0(x+

∫
� dS̃): �∈L(S̃)}.

We choose X̃ 0 = H̃ 0 = 0. In this case, X̃ 0 = X̃ = {∫ � dS̃: �∈L(S̃)}, P0 is the set of
all probability measures Q equivalent to P such that S̃ is a Q-local martingale and
Ã0(Q) = 0. The closure property (CP) follows from property (P1).

3 Given a real number a, we denote a+ = max(a; 0) and a− = max(−a; 0).
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3.2. Constrained portfolios

We consider a standard multivariate Itô processes model for the stock price S =
(S1; : : : ; Sn)′:

dSt = diag(St)($t dt + %t dWt):

Here W is a n-dimensional Brownian motion and F is the P-augmentation of the 1ltra-
tion generated by W . $ is a Rn-valued F-adapted process and % is a n×n matrix-valued
F-adapted process satisfying a nondegeneracy condition:

%t%′
t is de1nite positive (3.1)

almost surely for all t ∈ [0; T ]. There is also a riskless asset of price process

S0
t = exp

(∫ t

0
rs ds

)
; (3.2)

where the interest rate process r is an real-valued F-adapted process, assumed to be
bounded uniformly in (t; !).

The self-1nanced wealth process starting from initial wealth x and with an amount
� invested in securities S is given by

X x;�
t = S0

t

(
x +

∫ t

0
�u diag(Su)−1d(Su=S0

u)
)

= S0
t

(
x +

∫ t

0
�u dS̃u

)
;

where

dS̃ t =
1
S0
t
%t()t dt + dWt) (3.3)

and )t = %−1
t ($t − rt1n). The amount � is constrained to lie in a closed convex set

K in Rn containing 0. This class of constraints contains short-sale prohibition, buying
constraints, rectangular constraints or collateral constraints and was studied by CvitaniCc
and Karatzas (1992) and Cuoco (1997).

This model is a particular class of Example 2.1 with S0 given by (3.2), S̃ given by
(3.3), �={�∈L(S̃) : �t ∈K; 06t6T} and H̃ �=0. Again, we choose X̃ 0 = H̃ 0 =0 so
that X̃0 = X̃={∫ � dS̃: �∈�}. By the martingale representation theorem for Brownian
motion (see e.g. Karatzas and Shreve, 1991), any probability measure equivalent to P
has a density process in the form

Z, = E

(
−
∫

()+ %−1,)′ dW
)

(3.4)

(here E is the DolCeans–Dade exponential) where , lies in the set N of Rn-valued
F-adapted process such that

∫ T
0 |%−1

t ,t |2 dt ¡∞ and E[Z,
T ]=1. By Girsanov’s theorem,

the Doob–Meyer decomposition of V� =
∫
� dS̃ ∈ X̃0 under P, = Z,

TP, ,∈N, is

V� =
∫

1
S0 �

′% dW, + A,;�; (3.5)
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where W, is a P,-Brownian motion and A,;� is the predictable compensator under P,:

A,;� =
∫

1
S0 (−�′,) dt:

Denote by -(,)= sup�∈K −�′, the support function of K and let K̃={,∈Rn: -(,)¡∞}
the eRective domain of -. It follows that there is an upper bound for {A,;�; �∈�} iR
, is valued in K̃ . Therefore, by Remark 2.1, P0 consists of all probability measures
P,, ,∈N(K̃) = {,∈N: , valued in K̃ and

∫ T
0 1=S0

T -(,t) dt is bounded}. Moreover,
the upper variation process is given by

Ã0(P,) =
∫

1
S0 -(,) dt:

CvitaniCc and Karatzas (1992, in the case of proportion) and Cuoco (1997) have ob-
tained same results for the set P0, called in their papers auxiliary martingale measures
or state price densities.

The next result states the closure property (CP) in this model.

Lemma 3.1. The set X̃ = {∫ � dS̃: �∈�} is closed for the semimartingale topology.

Proof. Let Vn=
∫
� n dS̃, � n ∈�, be a sequence converging to V in the semimartingale

topology. By (P1), (P2) and the martingale representation for Brownian motion, there
exist �∈L(S̃) and P,, ,∈N, such that Vn converges to V=

∫
� dS̃ in M2(P,)⊕A(P,).

As in (3.5), the canonical decomposition of Vn and V in M2(P,)⊕A(P,) is

Vn =
∫

� n′ %̃ dW, + A,;� n
;

V =
∫

�′%̃ dW, + A,;�;

where we set %̃ = %=S0. Therefore,
∫
� n′%̃ dW, converges to

∫
�′%̃ dW, in M2(P,),

which means that

EP,
[∫ T

0
(�nt − �t)′%̃t %̃

′
t(�

n
t − �t) dt

]
→ 0;

as n goes to in1nity. We deduce that (possibly along a subsequence):

(�nt − �t)′%̃t %̃
′
t(�

n
t − �t) → 0 a:s: for all t ∈ [0; T ]

as n goes to in1nity. By the nondegeneracy condition (3.1) and since S0 is strictly
positive, this implies:

�nt → �t a:s: for all t ∈ [0; T ]:

Therefore, �t ∈K , a.s. for all t. We conclude that �∈�, which ends the proof.

3.3. Labor income model

We consider the same model as in the previous paragraph 3:2 but we assume further
that the agent receives an income with a rate et per unit of time. His self-1nanced
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wealth process starting from initial wealth x and with an amount � invested in securities
S is given by

X x;�
t = S0

t

(
x +

∫ t

0
�u dS̃u +

∫ t

0

1
S0
u
eu du

)
:

This model is a particular case of Example 2.1 with S0 given by (3.2), S̃ given by (3.3),
�= {�∈L(S̃): �t ∈K; 06t6T} and H̃ � =

∫
(1=S0)e dt. Here H̃ � is independent of �

and obviously satis1es the convexity property (2.5). We choose X̃ 0 = H̃ 0 =
∫
(1=S0)e dt

so that X̃0={∫ � dS̃: �∈�} and P0 are same as in paragraph 3:2. The closure property
(CP) for X̃={∫ � dS̃+

∫
(1=S0)e dt: �∈�} is satis1ed from the invariance of the Emery

distance in (2.2) under translation.
If we assume that the agent may consume during [0; T ], then his self-1nanced wealth

process becomes:

X x;�;c
t = S0

t

(
x +

∫ t

0
�u dS̃u +

∫ t

0

1
S0
u
(eu − cu) du

)
;

where c∈C+, the set of nonnegative F-adapted processes such that
∫ T
0 ct dt ¡∞ a.s.

Here c represents the consumption rate process per unit of time. We have then to
consider the family X̃= {∫ � dS̃ +

∫
1=S0(e− c) dt: �∈�; c∈C+}, which satis1es the

convexity property (2.1). We choose X̃ 0 =
∫
(1=S0)e dt corresponding to the element of

X̃ for �=0 and c=0. In this case, X̃0 = {∫ � dS̃ − ∫ (1=S0)c dt: �∈�; c∈C+}. Since
c is nonnegative, P0 is same as in the case without consumption and so as in Section
3.2. The closure property (CP) for the family X̃ may also be proved. It requires a
little more work than in Lemma 3.1 and is omitted here. Proof may be obtained upon
request from the authors, see also Pham (2000b).

3.4. Large investor model

We consider a model as in Section 3.2 but we assume further that the stock price
S is inTuenced through its rate of return by the portfolio strategy �:

$ = $̃ + f(�):

Here f is some given function which transduces the eRect of the portfolio chosen by
the investor on the price process. The self-1nanced wealth process is given by

X x;�
t = S0

t

(
x +

∫ t

0
�u dS̃u +

∫ t

0
�′uf(�u) du

)
;

where

dS̃ t =
1
S0
t
%t()̃t dt + dWt) (3.6)

and )̃t=%−1
t ($̃t−rt1n). This is a particular case of Example 2.1 with S̃ given by (3.6),

�={�∈L(S̃):
∫ T
0 |�′tf(�t) dt|¡∞; �t ∈K; 06t6T} and H̃ �=

∫
�′f(�) dt. Convexity

of � and property (2.5) are satis1ed provided that the function h(�)= �′f(�) satis1es
the conditions:

h is concave in �
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and there exists k¿0, ∀� 1; � 2 ∈K , ∀2∈ [0; 1], ∀t ∈ [0; T ],

|h(t; 2� 11 + (1− 2)� 2)|6k(1 + |h(t; � 1)|+ |h(t; � 2)|):
This is the setting studied by Cuoco and CvitaniCc (1998). We choose X̃ 0 = H̃ 0 = 0 so
that X̃0 = X̃= {∫ � dS̃ +

∫
h(�) dt: �∈�}. As in Section 3.2, any probability measure

equivalent to P has a density process in the form:

Z, = E

(
−
∫

()̃+ %−1,)′ dW
)
;

where , lies in the set N of Rn-valued F-adapted process such that
∫ T
0 |%−1

t ,t |2 dt ¡∞
and E[Z,

T ] = 1. By Girsanov’s theorem, the predictable compensator of V� =
∫
� dS̃ +∫

h(�) dt ∈ X̃0 under P, = Z,
TP, ,∈N, is given by

A,;� =
∫

1
S0 (h(�)− �′,) dt:

Denote by h̃(,) = sup�∈K (h(�) − �′,) the convex conjugate of −h(−�) and let H̃ =
{,∈Rn: h̃(,)¡∞} its eRective domain. We deduce from Remark 2.1 that P0 consists
of all probability measures P,, ,∈N(H̃)={,∈N: , valued in H̃ and

∫ T
0 1=S0

t h̃(,t) dt
is bounded}. Moreover, the upper variation process is given by

Ã0(P,) =
∫

1
S0 h̃(,) dt:

Same results have been obtained by Cuoco and CvitaniCc (1998). The closure property
(CP) may also be proved in this model under a Lipschitz condition on function h, see
Pham (2000b).

3.5. Reinsurance model

We consider an insurance company which reinsures a fraction 1−�t of the incoming
claims. The times of arrival of the claims are modelled by a Poisson process (Nt) with
constant intensity  and the magnitude of the incoming claims is constant, equal to
-¿0. The premium rate per unit of time received by the company is a constant 2¿0
and the premium rate per unit of time paid by the company to the reinsurer is 4¿2.
The risk process of the insurance company is given by:

X x;�
t = x +

∫ t

0
(2− 4(1− �u)) du−

∫ t

0
�u- dNu:

The reinsurance trading strategy is constrained to remain in K=[0; 1]. This is a partic-
ular case of Example 2.1 with S̃ =−-N , S0 = 1, �= {�∈L(S̃): �t ∈K; 06t6T} and
H̃ � =

∫
(2 − 4(1− �)) dt. We choose X̃ 0 = H̃ 0 =

∫
(2 − 4) dt so that X̃0 = {∫ −�- dN

+
∫
4� dt: �∈�}. Assuming that F is the 1ltration generated by the Poisson process,

it is well-known from the martingale representation theorem for random measures (see
e.g. BrCemaud, 1981) that all probability measures Q ∼ P have a density process in the
form

Z5 = E

(∫
(5− 1) dÑ

)
;
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where Ñ = N − ∫  dt is the P-compensated martingale of N and 5∈D= {(5t)06t6T

predictable process: 5t ¿ 0, a.s., 06t6T ,
∫ T
0 |ln 5t | + 5t dt ¡∞ and E[Z5

T ] = 1}. By
Girsanov’s theorem, the predictable compensator of an element V� =

∫ −�- dN +∫
4� dt ∈ X̃0 under P5 = Z5

TP is

A5;� =
∫

�(4 − 5-) dt:

We then deduce from Remark 2.1 that P0 = {P5: 5∈D} and the upper variation
process of P5 is

Ã0(P5) =
∫

(4 − 5-)+ dt:

The closure property (CP) may also be proved in this model by using properties
(P1) and (P2), see Pham (2000b).

4. Existence and uniqueness

We denote by L0
+(FT ) the set of nonnegative FT -measurable random variables and

we set for x∈R:
C+(x) = {H ∈L0

+(FT ): H6XT a:s: for some X ∈X+(x)}:
The following lemma formulates dynamic problem (2.8) into an equivalent static

one.

Lemma 4.1.

J (x) = sup
H ∈C+(x)

E[U (H)] = sup
H ∈C+(x)

E[U (H ∧ Ox)]; x∈R: (4.1)

(1) If X ∗ ∈X+(x) solves (2:8); then H∗ = X ∗
T ∈C+(x) solves (4:1)

(2) Conversely; if H∗ ∈C+(x) solves (4:1); then X ∗ ∈C+(x); s.t. H∗6X ∗
T ; solves

(2:8).

Proof. Let X ∈X+(x). Then XT ∈C+(x) and so E[U (XT )]6supH ∈C+(x) E[U (H)], hence

J (x)6 sup
H ∈C+(x)

E[U (H)] = sup
H ∈C+(x)

E[U (H ∧ Ox)]; (4.2)

where the equality in (4.2) is clear since U (x) =−∞ for x¿ Ox.
Conversely, given H ∈C+(x), there exists X ∈X+(x) such that XT¿H a.s. Since U

is nondecreasing on its domain, we deduce that E[U (H ∧ Ox)]6E[U (XT ∧ Ox)] and so
by (2.9)

sup
H ∈C+(x)

E[U (H ∧ Ox)]6J (x); (4.3)

which proves (4.1).
(1) Suppose that X ∗ ∈X+(x) solves (2.8). Then H∗ = X ∗

T ∈C+(x) and we have

J (x) = E[U (X ∗
T )] = E[U (H∗)];

which shows that H∗ solves (4.1).
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(2) Suppose that H∗ ∈C+(x) solves (4.1). Then there exists X ∗ ∈X+(x) such that
H∗6X ∗

T a.s. Since U is nondecreasing on its domain, we have

J (x) = E[U (H∗∧ Ox)]6E[U (X ∗
T ∧ Ox)];

which shows that X ∗ solves (2.9).

The main purpose of this section is to provide an existence and uniqueness result to
the problem (4.1). We 1rst state a dual characterization of the set C+(x). We denote
by T the set of all stopping times valued in [0; T ].

Proposition 4.1. Let H ∈L0
+(FT ) and x∈R. Then

H ∈C+(x) i< v(H) := sup
Q∈P0 ;7∈T

EQ
[
H
S0
T
17=T − X̃ 7

0 −Ã7
0(Q)

]
6x: (4.4)

Proof (Necessary condition). Let H ∈C+(x). Then there exists X = S0X̃ ∈X+(x)
such that H=S0

T1t=T6X̃ t , a.s. 06t6T . Let Q∈P0. By de1nition of P0, the process
X̃ − X̃ 0 − Ã0(Q) is a Q-local supermartingale, bounded from below by a Q-integrable
random variable under (2.4) and (H1), and is actually a Q-supermartingale from
Fatou’s lemma. We deduce that

EQ
[
H
S0
T
17=T − X̃ 7

0 −Ã7
0(Q)

]
6 EQ[X̃ 7 − X̃ 7

0 −Ã7
0(Q)]

6 x

for all Q∈P0 and 7∈T. This shows that v(H)6x.
(Su=cient condition). Consider the adapted process gt = H=S0

T1t=T − X̃ t
0, 06t6T .

Since

v(H) = sup
Q∈P0 ;7∈T

EQ[g7 −Ã7
0(Q)]6x¡∞;

then by the stochastic control Lemma A:1 of FPollmer and Kramkov (1997), there exists
a RCLL version of the process:

Vt = ess sup
Q∈P0 ;7∈Tt

EQ[g7 −Ã7
0(Q) +Ãt

0(Q)|Ft] 06t6T; (4.5)

where Tt is the set of stopping times valued in [t; T ]. Moreover, for any Q∈P0, the
process V −Ã0(Q) is a Q-local supermartingale. By the optional decomposition under
constraints of FPollmer and Kramkov (see their Theorem 3:1), the process V admits a
decomposition

V = v(H) + U − C;

where U ∈ X̃0 and C is an (optional) nondecreasing process with C0 = 0. Hence there
exists X̃ ∈ X̃ such that

Vt6v(H) + X̃ t − X̃ t
0 a:s: 06t6T: (4.6)

Since v(H)6x and Vt¿gt¿− X̃ t
0, by (4.5), inequality (4.6) implies that

Xt(x) := S0
t (x + X̃ t)¿0; 06t6T



M. Mnif, H. Pham / Stochastic Processes and their Applications 93 (2001) 149–180 161

and so X (x)∈X+(x). Moreover, inequality (4.6) for t = T shows that

H6XT (x); a:s:

Therefore H ∈C+(x) and the proof is ended.

Characterization (4.4) in the last proposition means that v(H) is the least initial state
value which allows to “dominate” in the almost sure sense the FT -measurable random
variable H by a nonnegative state process. In a 1nancial context, v(H) is usually
called the superreplication cost of the American option (H1t=T )t . Notice in particular
that expression of v(H) does not depend on the choice of X̃ 0 and P0 satisfying (H0)
and (H1).

Remark 4.1. Arguments in the proof of Proposition 4.1 show that the process X ∈X+(x)
such that XT¿H a.s. is given by the optional decomposition of the process V in (4.5).

Remark 4.2. In the case of European constraint Xe(x) and by setting Ce(x) = {H ∈
L0
+(FT ): H6XT a.s. for some X ∈Xe(x)}, we can prove similarly (see Pham, 2000b)

that

H ∈Ce(x) iR ve(H) := sup
Q∈P0

EQ
[
H
S0
T
− X̃ T

0 −ÃT
0(Q)

]
6x:

Remark 4.3. When X̃ 0 is nonincreasing and Ã0(Q)=0, the supremum in 7∈T in the
expression of v(H) is attained for 7 = T and so v(H) = ve(H). This means that the
optimal state under the European constraint is also the optimal state under the American
constraint. In the general case, typically in the presence of random endowment and=or
constraints, we have ve(H)¡v(H).

Problem (4.1) is then a convex optimization problem under (in1nite) linear con-
straints characterized by (4.4). As a 1rst consequence of the previous proposition, we
can provide a necessary and suNcient condition ensuring that the set of constraints
X+(x) and C+(x) are nonempty.

Corollary 4.1. X+(x) and C+(x) are nonempty if and only if

v(0) = sup
Q∈P0 ;7∈T

EQ[− X̃ 7
0 −Ã7

0(Q)]6x: (4.7)

Proof. Suppose that X+(x) 
= ∅. Then there exists X ∈X+(x) such that XT¿0. Hence
H ≡ 0∈C+(x) and by Proposition 4.1, we have v(0)6x. Conversely, suppose that
x¿v(0). Then by Proposition 4.1, H =0∈C+(x), i.e. there exists X ∈X+(x) such that
XT¿0. In particular X+(x) and C+(x) are nonempty.

In the following, we then focus on the optimization problems (2.8) and (4.1) for
x¿v(0). The main result of this section proves the existence and uniqueness of a solu-
tion to the static problem (4.1). It also provides some qualitative properties of the asso-
ciated value function. We make the following assumption on the objective function U .
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Assumption 4.1. We have either
(i) the function U+ is bounded,
or

(ii) there exist :∈ (0; 1); OQ∈P0 with density OZT = d OQ=dP satisfying

( OZT )−1 ∈L Op(P) (4.8)

for some Op¿:=(1−:); x0 ∈ domU; U (x0)∈Lp(P), where p= Op=(:(1+ Op)), ;∈Lp(P)
and k ∈L∞(P) such that the function U+ satis1es the growth condition

U+(x)6kx: + ; ∀x∈ domU ∩ [x0;∞): (4.9)

Remark 4.4. Similar assumptions have been made by Cuoco (1997) and Bank and
Riedel (2000) in the case of deterministic utility functions on (0;∞). In the case of
shortfall risk loss function (Example 2.2(iii)), Assumption 4.1(i) is obviously satis1ed.

Theorem 4.1. Let Assumption 4:1 hold.
(1) For any x∈ [v(0);∞); there exists H∗(x)∈C+(x) solution of (4:1) and Ox is

solution of (4:1) for x∈ [v( Ox);∞). Moreover; if U is strictly concave on domU a.s.;
any two such solutions coincide a.s.

(2) The function J is nondecreasing and concave on [v(0);∞); and equal to E[U ( Ox)]
on [v( Ox);∞). Moreover; if U (x)¡U ( Ox) whenever x¡ Ox; then J is strictly increasing
on [v(0); v( Ox)]; and v(H∗(x)) = x for any x∈ [v(0); v( Ox)]; and if U is strictly concave
on domU a.s.; then J is strictly concave on [v(0); v( Ox)].

We 1rst need to state the two following lemmas.

Lemma 4.2. The set C+(x) is convex and closed for the topology of convergence in
measure.

Proof. The convexity of C+(x) is immediate from its characterization (4.4) in Propo-
sition 4.1. Let (Hn)n∈N be a sequence in C+(x) converging to H ∈L0

+(FT ) a.s.. Take
Q∈P0 and 7∈T. By Fatou’s lemma, we have

EQ
[
H
S0
T
17=T − X̃ 7

0 −Ã7
0(Q)

]
6 lim inf

n→∞ EQ
[
H
S0
T n

17=T − X̃ 7
0 −Ã7

0(Q)
]

6 x

and so v(H)6x. This proves the closedness property of C+(x).

Lemma 4.3. Let Assumption 4:1 hold. Then the family {U+(H); H ∈C+(x)} is
uniformly integrable under P.

Proof. If the function U+ is bounded, then this assertion is trivial. Otherwise, we 1rst
show that the family {H:; H ∈C+(x)} is bounded in Lp(P) with p= Op=:(1+ Op)¿ 1.
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By HPolder’s inequality we have

E[H:p]6 (E[H OZT ]):p(E[ OZ
−:p=(1−:p)
T ])1−:p

6 (x + E OQ[X̃ T
0 +ÃT

0( OQ)]):p(E[ OZ
− Op
T ])1−:p: (4.10)

The last sum in (4.10) is independent of H and 1nite by (4.8), (H1) and (2.4).
Using the hypothesis of growth condition on U+, there exists c¿ 0 such that for all
H ∈C+(x):

E[U+(H)p] = E[U+(H)p1{H6x0}] + E[U+(H)p1{H¿x0}]

6 E[U+(x0)p] + c(E[(kH:)p] + E[;p]):

In view of (4.10) and assumptions on k and ;, this proves the Lp(P)-boundedness of
the family {U+(H); H ∈C+(x)} and therefore its uniform integrability under P.

Proof of Theorem 4.1. (1) Let x¿v(0) and (Hn)n∈N ∈C+(x) be a maximizing
sequence of the problem (4.1), i.e.

lim
n→∞ E[U (Hn)] = J (x): (4.11)

Since Hn¿0 P−a:s, then by Lemma A:1:1 of Delbaen and Schachermayer (1994), there
exists a sequence of FT -measurable random variables Ĥ n ∈ conv(Hn; Hn+1; : : :) such
that Ĥ n converges almost surely to H∗(x)∈L0

+(FT ). By Lemma 4.2, H∗(x)∈C+(x).
By the concavity and upper-semicontinuity of U we have

J (x)6 lim sup
n→∞

E[U (Ĥ n)]

= lim sup
n→∞

E[U+(Ĥ n)]− lim inf
n→∞ E[U−(Ĥ n)]

6 E[U+(H∗(x))]− E[U−(H∗(x))]

= E[U (H∗(x))];

where the second inequality follows from Lemma 4:3 and Fatou’s lemma. Therefore
J (x)6E[U (H∗(x))] which proves that H∗(x) solves (4.1).

Now, suppose that x¿v( Ox), and so Ox∈C+(x). Since U is nondecreasing on domU ,
we have for all H ∈C+(x):

E[U (H ∧ Ox ]6E[U ( Ox)]:

By Lemma 4.1, this shows that Ox is solution of (4.1).
Let H1 and H2 be two solutions of (4:1) and <∈ (0; 1). Set H< = (1 − <)H1 + <H2

which lies in C+(x) by Lemma 4.2. By concavity of function U , we have

E[U (H<)]¿(1− <)E[U (H1)] + <E[U (H2)] (4.12)

= J (x): (4.13)

Suppose that P[H1 
= H2]¿ 0. Then by the strict concavity of U , we should have strict
inequality in (4.12), which is a contradiction with (4.13).
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(2) Let v(0)6x16x2. Since C+(x1)⊂C+(x2), we deduce that J (x1)6J (x2) and so J
is nondecreasing on [v(0);∞). Notice also that 1

2 (H
∗(x1)+H∗(x2))∈C+((x1 + x2)=2).

Then, by concavity of the function U , we have

J
(
x1 + x2

2

)
¿ E

[
U
(
H∗(x1) + H∗(x2)

2

)]

¿
1
2
(E[U (H∗(x1))] + E[U (H∗(x2))])

=
1
2
(J (x1) + J (x2));

which proves the concavity of J on [v(0);∞).
We know from Part (1) of this theorem that J (x) = E[U ( Ox)] for x¿v( Ox). We

now consider the case v(0)¡v( Ox). Let us 1rst check that J is strictly increasing
on [v(0); v( Ox)] under the condition that U (x)¡U ( Ox) if x¡ Ox. On the contrary, there
would exist v(0)6x1 ¡x26v( Ox) such that J (x1) = J (x2) and 2∈ (0; 1) such that x2 =
2x1 + (1− 2)v( Ox). By concavity of J , we should have

J (x2)¿ 2J (x1) + (1− 2)J (v( Ox))

= 2J (x2) + (1− 2)E[U ( Ox)]: (4.14)

Since J (x)6E[U ( Ox)], for all x¿v(0), by (4.1) and the nondecreasing property of
U on domU , relation (4.14) shows that J (x1) = J (x2) = E[U ( Ox)]. Under the condi-
tion that U (x)¡U ( Ox) whenever x¡ Ox, this implies that the solution X ∗(x1) of J (x1)
(=E[U (X ∗

T (x1)∧ Ox)]) satis1es X ∗
T (x1)¿ Ox a.s. This is in contradiction with the fact that

x1 ¡v( Ox) and Proposition 4.1.
Let us prove that for all x∈ [v(0); v( Ox)], we have v(H∗(x))= x. On the contrary, we

should have v(0)6x̃ := v(H∗(x))¡x. Then H∗(x)∈C+(x̃) and so J (x̃)¿E[U ((H∗(x))]
= J (x). However, J is strictly increasing on [v(0); v( Ox)], so J (x)¿J (x̃) which is a
contradiction.

Let us 1nally check the strict concavity of J on [v(0); v( Ox)]. Let v(0)6x1 ¡x26v( Ox).
We have 1

2 (H
∗(x1) + H∗(x2))∈C+((x1 + x2)=2). Since J (x1)¡J (x2), then H∗(x1) 
=

H∗(x2) a.s. By the strict concavity of U , we have

J
(
x1 + x2

2

)
¿ E

[
U
(
H∗(x1) + H∗(x2)

2

)]

¿
1
2
(E[U (H∗(x1))] + E[U (H∗(x2))])

=
1
2
(J (x1) + J (x2));

which proves the strict concavity of J on [v(0); v( Ox)].

5. Dual singular formulation

The aim of this section is to provide a description of the structure of the solution to
problem (4.1) and (2.8) by means of a dual formulation, following the line of research
of Karatzas et al. (1991) or Kramkov and Schachermayer (1999).
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We assume that U is C1 and strictly concave on (0; Ox) a.s. We set U ′(0) := limx↓0 U ′(x)
and we assume that:

U ′( Ox) := lim
x↗ Ox

U ′(x) = 0; a:s: (5.1)

In the case of Example 2.2(i) and (ii) with Ox =∞, (5.1) is the usual Inada condition
U ′(∞) = 0. In the case of Example 2.2(iii) with U (x) = −l(B − x), domU = [0; B],
(5.1) means that l′(0) = 0.

The strictly decreasing continuous function U ′ from (0; Ox) onto (0; U ′(0)) has a
strictly decreasing continuous inverse I : (0; U ′(0)) onto (0; Ox), extended by continuity
on (0;∞) by setting I(y) = 0 for y¿U ′(0).

We consider the (state-dependent) conjugate function of U :

Ũ (y) = sup
x¿0

[U (x)− xy]; y¿ 0: (5.2)

It is well known (see e.g. Rockafellar, 1970) that Ũ is a nonincreasing convex diReren-
tiable function on (0;∞) with Ũ (0)=U ( Ox). Moreover, the derivative of Ũ is given by

Ũ
′
(y) =−I(y); y¿ 0; a:s: (5.3)

We also know that I(y) attains the supremum in (5.2), i.e.

Ũ (y) = U (I(y))− yI(y); y¿ 0; a:s: (5.4)

In the sequel, we identify a probability measure Q�P with its density process
Z = (Zt)06t6T , Zt = E[dQ=dP|Ft]. We now dualize the optimization primal problem
(4.1) as follows: we enlarge P0 by considering the set P0

loc of nonnegative local
martingales Z with Z0 = 1 and satisfying the properties:

(1) there exists A∈Ip such that

Z(V − A) is a P-local supermartingale for any V ∈ X̃0: (5.5)

(2) The upper variation process of X0 under Z ∈P0
loc, de1ned as the element Ã0(Z)

in Ip satisfying (5.5) and such that A−Ã0(Z)∈Ip for any A∈Ip satisfying (5.5), is
bounded a.s.

For any Z ∈P0
loc, we set

A0(Z) =
∫

S0 dÃ0(Z):

Following El Karoui and Jeanblanc (1998), we dualize the space of American con-
straints by considering the set D of nonnegative, nonincreasing adapted continuous
processes D = (Dt)06t6T with D0 = 1. We then de1ne the dual set of American state
space constraints by:

Y0
loc =

{
Y =

ZD
S0 : Z ∈P0

loc; D∈D

}
:

In order to formulate our dual problem, we shall strengthen condition (H1) by requiring
that:

(H′1) X 0 is a process of 1nite variation with E[
∫ T
0 Zt d | X̃ 0

t |]¡∞, ∀Z ∈P0
loc.
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In the sequel, we denote

X 0 =
∫

S0 dX̃ 0

and for any Y = ZD=S0 ∈Y0
loc, we set by convention A0(Y ) = A0(Z).

We now de1ne the value function of our dual problem, for all y¿ 0:

J̃ (y) = inf
Y ∈Y0

loc

E
[
Ũ (yYT ) +

∫ T

0
yYt dX 0

t +
∫ T

0
yYt dA0

t (Y )
]
: (5.6)

With respect to the “classical” dual problem in an incomplete market model, the dual
problem (5.6) contains a linear additional term related to X 0 and a nonlinear additional
term related to the convex constraints A0(Z). Moreover, due to the state space con-
straints, this dual problem appears as a mixed control=singular optimization problem
with dynamics {Yt = ZtDt=S0

t , 06t6T} governed by a “classical” control term Z and
a singular term D.

We make an assumption on the function U which is analogous to the asymptotic
elasticity condition of Kramkov and Schachermayer (1999).

Assumption 5.1. (i) There exist x0 ∈ domU; with x0=S0
T ∈L∞(P) and U (x0)∈L1(P);

:∈ (0; 1); ;∈L1(P); such that

xU ′(x)6:U (x) + ;; a:s: ∀x∈ domU ∩ [x0;∞):

(ii) U ( Ox)∈L1(P) if Ox¡∞ a.s.
(iii) ∀<¿ 0; ∃-< real-valued in [0; <); -<S0

T ∈ domU and U (-<S0
T )∈L1(P).

Remark 5.1. Assumption 5.1(ii) and (iii) are obviously satis1ed in the case of objec-
tive functions of Example 2.2 whenever S0 is bounded.

Remark 5.2. (1) In the case of deterministic utility functions U with Ox = ∞, As-
sumption 5.1(i) is equivalent to the asymptotic elasticity condition of Kramkov and
Schachermayer (1999), KS in short (stated for S0 = 1):

AE(U ) := lim sup
x→∞

xU ′(x)
U (x)

¡ 1:

Without loss of generality, we can assume that U (∞)¿ 0. If Assumption 5.1(i) is
satis1ed, then either U (∞)¡∞ and so AE(U ) = 0 by Lemma 6.1 of KS, either
U (∞)=∞ and so we have AE(U )6:¡ 1. Conversely, if AE(U )¡ 1, then by Lemma
6.3 of KS, there exists x0¿0 and :∈ (AE(U ); 1) such that xU ′(x)6:U (x) for x¿x0
and so Assumption 5.1(i) is satis1ed.

(2) Consider the Example 2.2(iii) of shortfall risk loss function: U (x) =−l(B− x)
and domU = [0; B] with l a C1 convex function on (0;∞). Then by convexity of l,
we have

xU ′(x)6U (x) + l(B); ∀x∈ [0; B]:

Therefore, whenever l(B)∈L1(P), Assumption 5.1(i) is satis1ed with x0 = 0 and
: arbitrary in (0; 1).
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The main result of this section is the following.

Theorem 5.1. Let Assumption 5:1 hold and assume that J̃ (y)¡∞ for some y¿ 0.
(1) For all x∈ [v( Ox);∞); Ox is solution to (4:1).
(2) (a) For all x∈ (v(0); v( Ox)); there exists ŷ¿ 0 that attains the in>mum in

inf y¿0 [J̃ (y) + xy].
(b) Suppose that there exists a solution Ŷ = ẐD̂=S0 ∈Y0

loc to problem J̃ (ŷ). Then
the unique solution of (4:1) is given by

H∗(x) = I(ŷŶ T ): (5.7)

The solution to (2:8) satis>es

Ŷ tX ∗
t (x) = E

[
Ŷ TH∗(x)−

∫ T

t
Ŷ u dX 0

u −
∫ T

t
Ŷ u dA0

u(Ŷ )|Ft

]
; 06t6T: (5.8)

If in addition; D̂T ¿ 0 a.s.; then we also have

Ẑ tX ∗
t (x)
S0
t

= E

[
ẐTH∗(x)

S0
T

−
∫ T

t

Ẑu

S0
u
dX 0

u −
∫ T

t

Ẑu

S0
u
dA0

u(Ẑ)

∣∣∣∣∣Ft

]
; 06t6T:

(5.9)

(3) Suppose that for all y¿ 0; there exists a solution to the dual problem J̃ (y).
Then; we have the conjugate duality relations

J (x) = min
y¿0

[J̃ (y) + xy]; ∀x¿v(0); (5.10)

J̃ (y) = max
x¿v(0)

[J (x)− xy]; ∀y¿ 0: (5.11)

In the complete market model case, the set P0
loc is reduced to a singleton and the

dual problem is an optimization problem over the set D. In such a context, existence
of a solution D̂(y) is proved by El Karoui and Jeanblanc (1998). In an incomplete
semimartingale model, Kramkov and Schachermayer (1999) enlarged the set of local
martingale measures to a properly de1ned set of supermartingales, so that the dual
problem admits a solution. In an incomplete semimartingale model with random en-
dowment and under European constraints, CvitaniCc et al. (2000) extended even further
the dual domain to the dual space of L∞. In our general framework with convex and
state constraints, it is an open problem to determine how we should extend appropri-
ately the set P0

loc ×D in order to get existence to the dual problem.
Assertion (2)(b) of Theorem 5.1 may be viewed as a dual veri1cation theorem: it

provides a characterization of the solution to the primal problem (2.8) in terms of the
solution (when it exists) to the dual problem (5.6). In a markovian context, we have
to solve a dual singular control problem which leads by the dynamic programming
principle to a free boundary problem, see He and PagDes (1993) and El Karoui and
Jeanblanc (1998) in a complete diRusion model. This is an alternative to the usual
veri1cation theorem on the primal problem which leads to a nonlinear Bellman PDE
with Neumann-type boundary conditions due to the state space constraints.
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Remark 5.3. When U ( Ox)=∞, it is clear from (5.6) and Ũ (0)=U ( Ox) that the solution
Ŷ = ẐD̂=S0 satisfy ẐT ¿ 0 and D̂T ¿ 0 a.s.

Remark 5.4. When D̂T ¿ 0 a.s, relation (5.9) means that the process M=(ẐX ∗(x)=S0)−∫
(Ẑ=S0) dX 0 − ∫ (Ẑ=S0) dA0(Ẑ) is a P-martingale. By Itô’s product rule and since D

is continuous with 1nite variation, we have

Ŷ TX ∗
T (x)−

∫ T

0
Ŷ t dX 0

t −
∫ T

0
Ŷ t dA0

t (Ẑ)

= x +
∫ T

0

Ẑ t−X ∗
t−(x)

S0
t−

dD̂t +
∫ T

0
D̂t dMt; (5.12)

where Ŷ = ẐD̂=S0. Taking expectation under P in (5.12) and noting by (5.8) that the
expected value of the left-hand side in (5.12) is equal to x, we obtain

E

[∫ T

0

Ẑ t−X ∗
t−(x)

S0
t−

dD̂t

]
= 0:

Since Ẑ and X ∗(x) are nonnegative, S0 is strictly positive, and D̂ is nonincreasing, this
shows that∫ T

0
Ẑ t−X

∗
t−(x) dD̂t = 0; a:s:

When Ẑ ¿ 0, a.s., this means that D̂ stays constant equal to 1 as long as the optimal
state X ∗(x) is strictly positive, and decreases only when X ∗(x) hits zero.

Remark 5.5. If the solution Ẑ is strictly positive and is a “true” martingale, then it is
the density process of an element Q̂ ∈P0. From Bayes formula, expression (5.9) of
the optimal state process can then be written as

X ∗
t (x) = EQ̂

[
S0
t

S0
T
I(ŷŶ T )−

∫ T

t

S0
t

S0
u
dX 0

u −
∫ T

t

S0
t

S0
u
dA0

u(Ẑ)
∣∣∣∣Ft

]
; 06t6T:

This is similar to the expression that we would obtain for the optimal state process
under European constraints

X e;∗
t (x)=EQ̂e

[
S0
t

S0
T
I

(
ŷe

Ẑ
e
T

S0
T

)
−
∫ T

t

S0
t

S0
u
dX 0

u −
∫ T

t

S0
t

S0
u
dA0

u(Ẑ
e
)

∣∣∣∣∣Ft

]
; 06t6T;

where Ẑ
e
= dQ̂

e
=dP|Ft is the solution to the dual problem

J̃ e(ŷe) = inf
Z ∈P0

E
[
Ũ
(
ŷe

ZT
S0
T

)
+
∫ T

0
ŷe

Zt
S0
t
dX 0

t +
∫ T

0
ŷe

Zt
S0
t
dA0

t (Z)
]

(5.13)

and ŷe ¿ 0 solves J̃
′
e(ŷe) = −x. This point has been 1rst observed by El Karoui and

Jeanblanc (1998) in a complete Itô processes model with random endowment, by using
connections between singular control problems and optimal stopping time problems. By
a diRerent approach (see in particular Lemma 6.7), we extend their results in a general
setting with constraints.
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6. Proof of Theorem 5.1

The proof of Theorem 5.1 is broken into several lemmas.

Lemma 6.1. For all x¿v(0); X ∈X+(x); Y = ZD=S0; Z ∈P0
loc; D∈D; the processes

ZX
S0 −

∫
Z
S0 dX 0 −

∫
Z
S0 dA0(Z)

and

YX −
∫

Y dX 0 −
∫

Y dA0(Z);

are supermartingales under P.

Proof. By de1nition of P0
loc, the process Z(X=S0 − X̃ 0 − Ã0(Z)) is a P-local super-

martingale. Since X̃ 0 and Ã0(Z) have 1nite variation, this implies from Theorem VII.35
in Dellacherie and Meyer (1982) that the process M = ZX=S0 − ∫ Z dX̃ 0 − ∫ Z dÃ0(Z)
is a P-local supermartingale. Moreover, M is bounded from below by the random
variable − ∫ T

0 Zt d|X̃ 0
t |−

∫ T
0 Zt dÃ0(Z), which is integrable under P by condition (H1′).

We deduce by Fatou’s lemma that M = ZX=S0 − ∫ Z=S0 dX 0 − ∫ Z=S0 dA0(Z) is a
P-supermartingale.

On the other hand, by Itô’s product rule and since D is continuous with 1nite
variation, we get:

YX −
∫

Y dX 0 −
∫

Y dA0(Z) = x +
∫

D dM +
∫

Z−X−
S0−

dD: (6.1)

Since D is nonnegative and nonincreasing, and S0; Z; X are nonnegative, this shows
that the process

YX −
∫

Y dX 0 −
∫

Y dA0(Z)

is a P-local supermartingale, bounded from below by an L1(P) random variable, and
hence a P-supermartingale.

Lemma 6.2. For all H ∈L0
+(FT ); we have

v(H) = sup
Y ∈Y0

loc

E
[
YTH −

∫ T

0
Yt dX 0

t −
∫ T

0
Yt dA0

t (Y )
]
: (6.2)

Proof. Fix some H ∈L0
+(FT ). Given an arbitrary 7∈T, we de1ne a sequence (Dn

t )n
of elements in D by

Dn
t = exp

(
−
∫ t

0
n176u du

)
; 06t6T; n∈N:
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We then have for all Z ∈P0:

E
[
ZTDn

T

S0
T

H −
∫ T

0

ZtDn
t

S0
t

dX 0
t −

∫ T

0

ZtDn
t

S0
t

dA0
t (Z)

]

6 sup
Z ∈P0 ; D∈D

E
[
ZTDT

S0
T

H −
∫ T

0

ZtDt

S0
t

dX 0
t −

∫ T

0

ZtDt

S0
t

dA0
t (Z)

]
:

Since Dn
t → 1t67 a.s., for all 06t6T , we have by Fatou’s lemma

E
[
ZTH
S0
T

17=T −
∫ 7

0

Zt
S0
t
dX 0

t −
∫ 7

0

Zt
S0
t
dA0

t (Z)
]

6 sup
Z ∈P0 ; D∈D

E
[
ZTDT

S0
T

H −
∫ T

0

ZtDt

S0
t

dX 0
t −

∫ T

0

ZtDt

S0
t

dA0
t (Z)

]
:

Identifying a probability measure Q∈P0 with its density process Z , we then obtain
from Bayes formula

v(H) = sup
Q∈P0 ; 7∈T

EQ
[
H
S0
T
17=T − X̃ 7

0 −Ã7
0(Q)

]

6 sup
Z ∈P0 ; D∈D

EQ
[
ZTDT

S0
T

H −
∫ T

0

ZtDt

S0
t

dX 0
t −

∫ T

0

ZtDt

S0
t

dA0
t (Z)

]

6 sup
Z ∈P0

loc ; D∈D

EQ
[
YTH −

∫ T

0
Yt dX 0

t −
∫ T

0
Yt dA0

t (Y )
]
;

where the last inequality follows from the inclusion P0 ⊂P0
loc.

Conversely, by the supermartingale property of YX − ∫ Y dX 0 − ∫ Y dA0(Z) for any
Y ∈Y0

loc, see Lemma 6.1, we have

sup
Y ∈Y0

loc

E
[
YTH −

∫ T

0
Yt dX 0

t −
∫ T

0
Yt dA0

t (Y )
]
6x; ∀H ∈C+(x): (6.3)

Now, by Proposition 4.1, any H ∈L0
+(FT ) lies in C+(v(H)). We then deduce from

(6.3) for x = v(H):

sup
Y ∈Y0

loc

E
[
YTH −

∫ T

0
Yt dX 0

t −
∫ T

0
Yt dA0

t (Y )
]
6v(H);

which proves the required equality (6.2).

Remark 6.1. It is easily checked that the supremum in (6.2) can be taken over P0
loc;+,

the subset of elements Z ∈P0
loc such that Zt ¿ 0, for all t, a.s., and D+, the subset of

elements D in D such that DT ¿ 0 a.s.

v(H) = sup
Y ∈Y0

loc;+

E
[
YTH −

∫ T

0
Yt dX 0

t −
∫ T

0
Yt dA0

t (Z)
]
; (6.4)

where Y0
loc;+ = {Y = ZD=S0: Z ∈P0

loc;+; D∈D+}.
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Lemma 6.3. For all Z1 ∈P0
loc; Z

2 ∈P0
loc;+; for all D

1 ∈D; D2 ∈D+; for all <∈ (0; 1);
there exist Z< ∈P0

loc and D< ∈D such that

(1− <)Z1D1 + <Z2D2 = Z<D<:

Moreover; we have

E
[∫ T

0
Z<
t D

<
t dÃ

0
t (Z

<)
]
6(1− <)E

[∫ T

0
Z1
t D

1
t dÃ

0
t (Z

1)
]
+ <E

[∫ T

0
Z2
t D

2
t dÃ

0
t (Z

2)
]
:

Proof. We set OY
1
= Z1D1; OY

2
= Z2D2 and OY

<
= (1 − <) OY

1
+ < OY

2
. Notice that OY

<
is a

strictly positive process. By Itô’s product rule and since D is continuous with 1nite
variation, we have OY

<
= Z<D< where

dZ<
t = Z<

t−

[
(1− <)

D1
t

OY
<
t−

dZ1
t + <

D2
t

OY
<
t−

dZ2
t

]
; Z<

0 = 1; (6.5)

dD<
t = D<

t

[
(1− <)

Z1
t−

OY
<
t−

dD1
t + <

Z2
t−

OY
<
t−

dD2
t

]
; D<

0 = 1: (6.6)

Since Di; i=1; 2∈D, it is clear that the process D< de1ned in (6.6) lies also in D. The
process Z< de1ned in (6.5) is a local martingale and is nonnegative by the DolCeans–
Dade exponential formula. Let us check that Z< lies in P0

loc. Fix some V ∈ X̃0 and
consider the process Ã∈Ip de1ned by

dÃt = (1− <)
OY
1
t−

OY
<
t−

dÃ
0
t (Z

1) + <
OY
2
t−

OY
<
t−

dÃ
0
t (Z

2); Ã0 = 0: (6.7)

From Itô’s formula, we have

d(Z<
t (Vt −Ãt)) = (Vt− −Ãt) d Z<

t + Z<
t− d(Vt −Ãt) + d[Z<; V −Ã ]t : (6.8)

From (6.7), we have

d(Vt −Ãt) = (1− <)
OY
1
t−

OY
<
t−

d(Vt −Ãt
0(Z1)) + <

OY
2
t−

OY
<
t−

d(Vt −Ãt
0(Z2)): (6.9)

From (6.5), we have

d[Z<; V −Ã]t = (1− <)
D1

t

OY
<
t−

Z<
t− d[Z1; V −Ã0(Z1)]t + <

D2
t

OY
<
t−

Z<
t− d[Z2; V −Ã0(Z2)]t

+(1− <)
D1

t

OY
<
t−

Z<
t− d[Z1; Ã0(Z1)]t + <

D2
t

OY
<
t−

Z<
t− d[Z2; Ã0(Z2)]t

− d[Z<; Ã]t : (6.10)

Plugging (6.9) and (6.10) into (6.8) and noting by Itô’s formula that for i = 1; 2:

d(Zi
t (Vt −Ã

0
t (Z

i))) = (Vt− −Ã
0
t (Z

i)) dZi
t + Zi

t− d(Vt −Ã
0
t (Z

i))

+d[Zi; V −Ã0(Zi)]t ;



172 M. Mnif, H. Pham / Stochastic Processes and their Applications 93 (2001) 149–180

we obtain

d(Z<
t (Vt −Ãt))

= (1− <)
D1

t

OY
<
t−

Z<
t− d(Z1

t (Vt −Ãt
0(Z1))) + <

D2
t

OY
<
t−

Z<
t− d(Z2

t (Vt −Ãt
0(Z2)))

− (1− <)
D1

t

OY
<
t−

Z<
t−(Vt− −Ãt

0(Z1)) dZ1
t − <

D2
t

OY
<
t−

Z<
t−(Vt− −Ãt

0(Z2)) dZ2
t

+(1− <)
D1

t

OY
<
t−

Z<
t− d[Z1; Ã0(Z1)]t + <

D2
t−

OY
<
t−

Z<
t− d[Z2; Ã0(Z2)]t

+(Vt− −Ãt) dZ<
t − d[Z<; Ã]t : (6.11)

Now by de1nition of P0
loc and the upper variation process, the processes Zi(V−

Ã0(Zi)); i = 1; 2, are P-local supermartingales. Moreover, since Z< and Zi are P-local
martingales and Ã0(Zi); Ã are predictable processes with 1nite variation, then [Zi; Ã0(Zi)];
i=1; 2 and [Z<; A] are P-local martingales (see Theorem VII.36 in Dellacherie–Meyer,
1982). Therefore, relation (6.11) implies that Z<(V −Ã) is a P-local supermartingale.
The upper variation process of Z< satis1es then

Ã
0
t (Z

<)6Ãt ; 06t6T; a:s: (6.12)

Notice from (6.7) that ÃT is bounded a.s. since Ã0
T (Z

i); i = 1; 2, are bounded. Hence
Ã0
T (Z

<) is bounded and therefore Z< ∈P0
loc.

From (6.12) and (6.7), we now obtain

E
[∫ T

0

OY
<
t dÃ

0
t (Z

<)
]
6 E

[∫ T

0

OY
<
t dÃt

]

= E
[∫ T

0
(1− <) OY

1
t dÃ

0
t (Z

1) + < OY
2
t dÃ

0
t (Z

2)
]
;

which ends proof of Lemma 6.3.

Remark 6.2. The last lemma shows in particular that the set Y0
loc;+={Y =ZD=S0: Z ∈

P0
loc;+; D∈D+} is convex and the function

Y0
loc;+ → R+

Y �→ E
[∫ T

0
Yt dA0

t (Y )
]

is convex.

Lemma 6.4. Let Assumption 5:1(iii) hold and assume that J̃ (y)¡∞ for some y¿ 0.
Then; for all x∈ (v(0); v( Ox)); there exists ŷ¿ 0 that attains the in>mum in
inf y¿0 [J̃ (y) + xy].
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Proof. Fix x∈ (v(0); v( Ox)). Under Assumption 5.1(iii), there exists -̃ real-valued in
[0; x − v(0)) such that -̃S0

T ∈ domU a.s. By de1nition of Ũ , we have

Ũ (yYT )¿U (-̃S0
T )− -̃yZTDT ; ∀y¿ 0; ∀Y = ZD=S0 ∈Y0

loc:

Since E [ZTDT ]6E [ZT ]61, we get

E[Ũ (yYT )]¿U (-̃S0
T )− -̃y; ∀y¿ 0; ∀Y = ZD=S0 ∈Y0

loc:

Taking in1mum in this last inequality over Y ∈Y0
loc, this implies by de1nition (5.6)

of J̃ (y) and relation (6.2) of v(H) for H = 0:

J̃ (y) + xy¿U (-̃S0
T ) + y(x − v(0)− -̃); ∀y¿ 0: (6.13)

Since U (-̃S0
T )¿−∞ and x − v(0)− -̃¿ 0, we deduce that J̃ (y) + xy → ∞ as y →

∞. This shows that the proper convex function y → J̃ (y) + xy attains its in1mum in
ŷ∈R+.

Let us check that ŷ¿ 0. On the contrary, we should have:

Ũ (0)6E
[
Ũ (yYT ) +

∫ T

0
yYt dX 0

t +
∫ T

0
yYt dA0

t (Y )
]
+ xy (6.14)

for all y¿ 0; Y ∈Y0
loc. By convexity of Ũ and recalling that Ũ

′
=−I , we have

Ũ (yYT ) + I(yYT )yYT6Ũ (0): (6.15)

Plugging (6.15) into (6.14) and dividing by y¿ 0, we obtain for all y¿ 0; Y ∈Y0
loc:

−x6E
[
−YT I(yYT ) +

∫ T

0
Yt dX 0

t +
∫ T

0
Yt dA0

t (Y )
]
:

By Hypothesis (H′1) and since I(yYT )¿0 and I(yYT ) → Ox as y → 0, we get by
Fatou’s lemma

E
[
YT Ox −

∫ T

0
Yt dX 0

t −
∫ T

0
Yt dA0

t (Y )
]
6x; ∀Y ∈Y0

loc:

By Lemma 6.2, this shows that v( Ox)6x, a contradiction.

Lemma 6.5. Under Assumption 5:1(i); there exist 20 ∈ (0; 1); c¿ 0 and B∈L1(P);
such that

yI(20y)6c[Ũ (y)1y6U ′(x0) + U (x0)1y¿U ′(x0)] + B; a:s:; ∀y¿ 0:

Proof. Take 20 ∈ (:; 1). Consider 1rst the case 0¡y6U ′(x0). Since I is nonincreas-
ing, we have: I(20y)¿I(20U ′(x0))¿I(U ′(x0)) = x0. By Assumption 5.1(i), we then
obtain

20yI(20y) = I(20y)U ′(I(20y))

6 :U (I(20y)) + ;

6 :[Ũ (y) + yI(20y)] + ;;

where the last inequality follows from de1nition (5.2) of Ũ . Therefore, (20−:)yI(20y)6
:Ũ (y) + ;. By setting c = :=(20 − :) and B = ;=(20 − :), we get

yI(20y)6cŨ (y) + B; a:s: ∀0¡y6U ′(x0): (6.16)
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Consider the other case y¿U ′(x0). Since I is nonincreasing, we have

yI(20y)6 yI(20U ′(x0))

6 cŨ (U ′(x0)) + B; (6.17)

where the second inequality follows from (6.16). Now, by (5.4) and (5.2), we have

Ũ (U ′(x0)) = U (I(U ′(x0)))− U ′(x0)I(U ′(x0))

6U (I(U ′(x0))) = U (x0):

Substituting into (6.17), we 1nally get

yI(20y)6cU (x0) + B; ∀y¿U ′(x0): (6.18)

Lemma 6.6. Let Assumption 5:1(i) hold and suppose that there exists a solution
Ŷ (y)∈Y0

loc to problem (5:6) for some y¿ 0. Then J̃ is di<erentiable in y and we
have

J̃
′
(y) =−E

[
Ŷ T (y)I(yŶ T (y))−

∫ T

0
Ŷ t(y) dX 0

t −
∫ T

0
Ŷ t(y) dA0

t (Ŷ (y))
]
:

Moreover, v(I(yŶ T (y))) =−J̃
′
(y) and in particular

I(yŶ T (y))∈C+(−J̃
′
(y)):

Proof. Let -¿ 0. Then we have by de1nition (5.6) of J̃ ,

J̃ (y + -)− J̃ (y)
-

6 E

[
Ũ ((y + -)Ŷ T (y))− Ũ (yŶ T (y))

-

+
∫ T

0
Ŷ t(y) dX 0

t +
∫ T

0
Ŷ t(y) dA0

t (Ẑ(y))

]
: (6.19)

By convexity of Ũ and recalling that Ũ
′
=−I , we have

Ũ ((y + -)Ŷ T (y))− Ũ (yŶ T (y))
-

6− Ŷ T (y)I((y + -)Ŷ T (y)): (6.20)

Substituting (6.20) into (6.19) and sending - to zero, we deduce by Fatou’s lemma

lim sup
-↓0

J̃ (y + -)− J̃ (y)
-

6−E
[
Ŷ T (y)I(yŶ T (y))

−
∫ T

0
Ŷ t(y) dX 0

t −
∫ T

0
Ŷ t(y) dA0

t (Ŷ (y))
]
:

(6.21)
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Let -¡ 0, with y + -¿ 0. Then by same arguments as above (using de1nition of
J̃ and convexity of Ũ )

J̃ (y + -)− J̃ (y)
-

¿−E
[
Ŷ T (y)I((y + -)Ŷ T (y))

−
∫ T

0
Ŷ t(y) dX 0

t −
∫ T

0
Ŷ t(y) dA0

t (Ẑ(y))
]
: (6.22)

Under Assumption 5.1(i) and by Lemma 6.5, we have for -¡ 0 suNciently small:

−
∫ T

0
Ŷ t(y) dX 0

t −
∫ T

0
Ŷ t(y) dA0

t (Ŷ (y))

6Ŷ T (y)I((y + -)Ŷ T (y))−
∫ T

0
Ŷ t(y) dX 0

t −
∫ T

0
Ŷ t(y) dA0

t (Ŷ (y))

6c[Ũ (yŶ T (y))1{yŶ T (y)6U ′(x0)} + |U (x0)|] + B

−
∫ T

0
Ŷ t(y) dX 0

t −
∫ T

0
Ŷ t(y) dA0

t (Ẑ(y)) (6.23)

for some c¿ 0 and B∈L1(P). The left-hand-side of (6.23) is integrable under (H1′).
On the other hand, since J̃ (y)¡∞, we have

E
[
Ũ (yŶ T (y))−

∫ T

0
Ŷ t(y) dX 0

t −
∫ T

0
Ŷ t(y) dA0

t (Ẑ(y))
]
¡∞: (6.24)

Moreover, by de1nition of Ũ , we have

Ũ (yŶ T (y))−
∫ T

0
Ŷ t(y) dX 0

t −
∫ T

0
Ŷ t(y) dA0

t (Ẑ(y))

¿U (x0)− x0
S0
T
yẐT (y)D̂T (y)−

∫ T

0
Ŷ t(y) dX 0

t −
∫ T

0
Ŷ t(y) dA0

t (Ŷ (y)): (6.25)

The right-hand side of (6.25) is integrable (with respect to P) by (H′1), Assumption
5:1(i) and since |D̂(y)|61. Therefore, the R.H.S. of (6.23) is integrable (with respect
to P) and one can apply dominated convergence theorem to (6.22):

lim inf
-↗0

J̃ (y + -)− J̃ (y)
-

¿−E

[
Ŷ T (y)I(yŶ T (y))

−
∫ T

0
Ŷ t(y) dX 0

t −
∫ T

0
Ŷ t(y) dA0

t (Ẑ(y))

]
:

This last inequality combined with (6.21) and convexity of J̃ proves the 1rst assertion
of Lemma 6.6.

From (6.2), we already have: −J̃
′
(y)6v(I(yŶ T (y))). To state the converse in-

equality, we proceed as follows. Take an arbitrary element (Z; D)∈P0
loc;+ × D+ and

let <∈ (0; 1). By Lemma 6.3, we have

(1− <)Ẑ(y)D̂(y) + <ZD = Z<D<



176 M. Mnif, H. Pham / Stochastic Processes and their Applications 93 (2001) 149–180

with (Z<; D<)∈P0
loc ×D. Since Ŷ (y) = Ẑ(y)D̂(y)=S0 solves J̃ (y), we have

E
[
Ũ (yŶ T (y))−

∫ T

0
Ŷ t(y) dX 0

t −
∫ T

0
Ŷ t(y) dA0

t (Ŷ (y))
]

6E
[
Ũ (yY <

T )−
∫ T

0
Y <
t (y) dX

0
t −

∫ T

0
Y <
t (y) dA

0
t (Ŷ (y))

]
; (6.26)

where we set Y = ZD=S0 and Y < = Z<D<=S0. By convexity of Ũ and noting that Y < −
Ŷ (y) = <(Y − Ŷ (y)), we have

Ũ (yY <
T ) + <yI(yY <

T )(Y − Ŷ (y))6Ũ (yŶ T (y)): (6.27)

By Lemma 6.3, we have

E
[∫ T

0
Y <
t dA

0
t (Y

<)
]
6(1− <)E

[∫ T

0
Ŷ t dA0

t (Ŷ (y))
]
+ <E

[∫ T

0
Yt dA0

t (Y )
]
:

(6.28)

Plugging (6.27)–(6.28) into (6.26) and dividing by <, we obtain

E
[
YT I(yY <

T )−
∫ T

0
Yt dX 0

t −
∫ T

0
Yt dA0

t (Y )
]

6E
[
Ŷ T (y)I(yY <

T )−
∫ T

0
Ŷ t(y) dX 0

t −
∫ T

0
Ŷ t(y) dA0

t (Ŷ (y))
]
: (6.29)

Since Y <¿(1− <)Ŷ (y) and I is nonincreasing, we have by Lemma 6.5:

−
∫ T

0
Ŷ t(y) dX 0

t −
∫ T

0
Ŷ t(y) dA0

t (Ŷ (y))

06 Ŷ T (y)I(yY <
T )−

∫ T

0
Ŷ t(y) dX 0

t −
∫ T

0
Ŷ t(y) dA0

t (Ŷ (y))

6 c[Ũ (yŶ T (y))1{yŶ T (y)6U ′(x0)} + |U (x0)|] + B

−
∫ T

0
Ŷ t(y) dX 0

t −
∫ T

0
Ŷ t(y) dA0

t (Ŷ (y))

for some c¿ 0 and B∈L1(P). By same arguments as in (6.23), one can apply the
dominated convergence theorem to the R.H.S of (6.29), and Fatou’s lemma to the
L.H.S of (6.29), and we obtain

E
[
YT I(yŶ T (y))−

∫ T

0
Yt dX 0

t −
∫ T

0
Yt dA0

t (Y )
]

6E
[
Ŷ T (y)I(yŶ T (y))−

∫ T

0
Ŷ t(y) dX 0

t −
∫ T

0
Ŷ t(y) dA0

t (Ŷ (y))
]
=−J̃

′
(y):

(6.30)

From the arbitrariness of Y ∈Y0
loc;+, this proves by (6.4) that v(I(yŶ T (y)))6 −

J̃
′
(y) and 1nally the required equality. The last assertion of Lemma 6.6 follows from

Proposition 4.1.
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Remark 6.3. The last lemma shows in particular that C+(J̃
′
(y)) 
= ∅ whenever there

exists a solution to problem (5.6) for y¿ 0. Therefore, by Corollary 4.1, −J̃
′
(y)¿v(0).

Lemma 6.7. Let Assumption 5:1(i) hold and suppose that there exists a solution
Ŷ (y)= Ẑ(y)D̂(y)=S0 ∈Y0

loc to problem 5:6 with D̂T (y)¿ 0 a.s.; for some y¿ 0. Then;
we have

J̃
′
(y) =−E

[
ẐT (y)
S0
T

I(yŶ T (y))−
∫ T

0

Ẑ t(y)
S0
t

dX 0
t −

∫ T

0

Ẑ t(y)
S0
t

dA0
t (Ẑ(y))

]
:

Proof. Since v(I(yŶ T (y))) =−J̃
′
(y) (see Lemma 6.6), we already have by (6.2)

−J̃
′
(y)¿E

[
ẐT (y)
S0
T

I(yŶ T (y))−
∫ T

0

Ẑ t(y)
S0
t

dX 0
t −

∫ T

0

Ẑ t(y)
S0
t

dA0
t (Ẑ(y))

]
:

(6.31)

The converse inequality is proved as follows. Let 0¡-¡ y, and consider the process
D- in D de1ned by

D-
t =

(
D̂t(y)− -

y
(1− D̂t(y))

)
1{D̂t(y)¿-=(y+-)}; 06t6T;

which tends to D̂t(y) a.s. for all t, as - goes to zero. We then have by de1nition
of J̃ :

J̃ (y)− J̃ (y − -)
-

¿ E

[
Ũ (y(ẐT (y)D̂T (y)=S0

T ))− Ũ ((y − -)(ẐT (y)D-
T =S

0
T ))

-

+
∫ T

0

yD̂t(y)− (y − -)D-
t

-
Ẑ t(y)
S0
t

dX 0
t

+
∫ T

0

yD̂t(y)− (y − -)D-
t

-
Ẑ t(y)
S0
t

dA0
t (Ẑ(y))

]
: (6.32)

By convexity of Ũ , we have

Ũ (yẐT (y)D̂T (y)=S0
T )− Ũ ((y − -)ẐT (y)D-

T =S
0
T )

-

¿− yD̂T (y)− (y − -)D-
T

-
ẐT (y)
S0
T

I

(
(y − -)

ẐT (y)D-
T

S0
T

)
: (6.33)

By de1nition of D-, we have

yD̂t(y)− (y − -)D-
t

-
= 1 +

-
y
(D̂t(y)− 1) + It(-); 06t6T; (6.34)

where It(-) = (y − -)=y[1 − (y + -)=-D̂t(y)]1{D̂t(y)¡-=(y+-)}, 06t6T . Notice that
06It(-)6(y − -)=-1{D̂t(y)¡-=(y+-)}, 06t6T . Therefore, under the assumption that

D̂T (y)¿ 0 a.s

It(-) → 0 when - → 0; 06t6T; a:s:
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We deduce that

yD̂t(y)− (y − -)D-
t

-
→ 1 when - → 0; 06t6T; a:s: (6.35)

Plugging (6.33)–(6.34) into (6.32) and sending - to zero, we obtain by (6.35) and
Fatou’s lemma:

J̃
′
(y)¿− E

[
ẐT (y)
S0
T

I(yŶ T (y))−
∫ T

0

Ẑ t(y)
S0
t

dX 0
t −

∫ T

0

Ẑ t(y)
S0
t

dA0
t (Ẑ(y))

]
:

This last inequality combined with (6.31) ends the proof of Lemma 6.7.

Proof of Theorem 5.1. (1) Let v( Ox)6x¡∞. Then, we clearly have Ox¡∞ a.s. and so
U ( Ox)∈ L1(P) by Assumption 5:1(ii). Moreover, by Proposition 4.1, Ox∈C+(x). Since
U is nondecreasing on domU , we get by (4.1)

J (x)6E[U ( Ox)]:

This shows that Ox∈C+(x) is solution to (4.1) with J (x) = E[U ( Ox)].
(2) Let x∈ (v(0); v( Ox)). The existence of ŷ in assertion (a) follows from Lemma

6.4. By Lemma 6.6, J̃ is diRerentiable in ŷ and we have J̃
′
(ŷ) =−x. We also deduce

from the second part of Lemma 6.6 that H∗(x) given in (5.7) lies in C+(x). Moreover,
from de1nition of Ũ and (5.4), we have for all H ∈C+(x):

U (H)6 Ũ (ŷŶ T ) + ŷŶ TH

= U (H∗(x))− ŷŶ TH∗(x) + ŷŶ TH:

Hence, by taking expectation, we obtain

E[U (H)]6 E[U (H∗(x))] + ŷ(v(H) + J̃
′
(ŷ))

6 E[U (H∗(x))];

where we used expression of J̃
′
(ŷ) in Lemma 6.6, expression of v(H) in Lemma 6.2,

and the fact that v(H)6x =−J̃
′
(ŷ). This shows that H∗(x) solves (4.1).

From Proposition 4.1, there exists X ∗(x)∈X+(x) such that

H∗(x)6X ∗
T (x); a:s: (6.36)

Since Ŷ X ∗(x)−∫ Ŷ dX 0−∫ Ŷ dA0(Ẑ) is a P-supermartingale by Lemma 6.1, we have

E
[
Ŷ TX ∗

T (x)−
∫ T

0
Ŷ t dX 0

t −
∫ T

0
Ŷ t dA0

t (Ẑ)
]
6x: (6.37)

From the expression of −J̃
′
(ŷ) (= x) in Lemma 6.6 and by (6.36), this shows that we

actually have Ŷ TX ∗
T (x) = Ŷ TH∗(x) a.s., and equality in (6.37). Therefore Ŷ X ∗(x) −∫

Ŷ dX 0 − ∫ Ŷ dA0(Ẑ) is a martingale under P, and so relation (5.8) is proved.
If in addition D̂T ¿ 0 a.s. then ẐTX ∗

T (x) = ẐTH∗(x) a.s. From the expression of
−J̃

′
(ŷ) (=x) in Lemma 6.7, we deduce that

E

[
ẐT

S0
T
X ∗
T (x)−

∫ T

0

Ẑ t

S0
t
dX 0

t −
∫ T

0

Ẑ t

S0
t
dA0

t (Ẑ)

]
= x:
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This implies that the P-supermartingale ẐX ∗(x)=S0 − ∫ Ẑ=S0 dX 0 − ∫ Ẑ=S0 dA0(Ẑ) is
actually a P-martingale, which ends the proof of assertion (2)(b).

(3) By de1nition of Ũ , we have for all x¿v(0), y¿ 0, H ∈C+(x), Y ∈Y0
loc:

U (H)− y
(
YTH −

∫ T

0
Yt dX 0

t −
∫ T

0
Yt dA0

t (Y )
)

6Ũ (yYT ) +
∫ T

0
yYt dX 0

t +
∫ T

0
yYt dA0

t (Y ): (6.38)

By using the expression of v(H) in (6.2) and since v(H)6x, we obtain by taking
expectation in (6.38) and in1mum over Y ∈Y0

loc:

J (x)6J̃ (y) + xy; ∀x¿v(0); ∀y¿ 0: (6.39)

For v( Ox)6x¡∞, we have seen that Ox is solution to (4.1) and J (x)=E[U ( Ox)]. Since
Ũ is nonincreasing with Ũ (0) =U ( Ox) and recalling that U ( Ox)∈L1(P) by Assumption
5.1(ii), we deduce by the dominated convergence theorem that

J̃ (0) = lim
y↓0

[J̃ (y) + xy]6E[U ( Ox)] = J (x):

This last inequality combined with (6.39) proves (5.10). For v(0)¡x¡v( Ox), we get
from (5.4)

J̃ (ŷ) = E[U (H∗(x))]− ŷE
[
Ŷ TH∗(x)−

∫ T

0
Ŷ t dX 0

t −
∫ T

0
Ŷ t dA0

t (Ẑ)
]

= J (x) + ŷJ̃
′
(ŷ)

= J (x)− xŷ;

where we used expression of J̃
′
in Lemma 6.6 and the fact that J̃

′
(ŷ) =−x. This last

inequality combined with (6.39) proves (5.10).
Fix now y¿ 0 and take x∗ =−J̃

′
(y) which is larger than v(0) by Remark 6.3. By

Lemma 6.6, we have I(yŶ T (y))∈C+(x∗). This implies that

J (x∗)¿ E[U (I(yŶ T (y)))]

= E[Ũ (yŶ T (y))] + yŶ T (y)I(yŶ T (y))

= J̃ (y)− yJ̃
′
(y)

= J̃ (y) + x∗y;

where we used (5.4) and expression of J̃
′
in Lemma 6.6. This last inequality combined

with (6.39) proves (5.11). Proof of Theorem 5.1 is complete.
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