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The integrity of our genetic material is under constant attack from numerous endogenous and exogenous
agents. The consequences of a defective DNA damage response are well studied in proliferating cells, espe-
cially with regards to the development of cancer, yet its precise roles in the nervous system are relatively
poorly understood. Here we attempt to provide a comprehensive overview of the consequences of genomic
instability in the nervous system. We highlight the neuropathology of congenital syndromes that result from
mutations in DNA repair factors and underscore the importance of the DNA damage response in neural devel-
opment. In addition, we describe the findings of recent studies, which reveal that a robust DNA damage
response is also intimately connected to aging and the manifestation of age-related neurodegenerative dis-
orders such as Alzheimer’s disease and amyotrophic lateral sclerosis.
Introduction
Upon analyzing the data collected in the 2000 census, health

officials arrived at the remarkable prediction that by the year

2050, approximately 800,000 Americans would live to see their

hundredth birthday (Park, 2010). Even with the benefits of mod-

ern medical technology, it is miraculous that our bodies can

sustain themselves for a century. Each cell in the human

body incurs thousands of lesions per day to its constituent

lipids, proteins, and nucleic acids from sources that range

from the products of cellular metabolism to the myriad envi-

ronmental chemicals, pollutants, and high-frequency electro-

magnetic radiation. While some cells only need to endure this

onslaught for a short time and are replaced continuously (for

instance, epithelial cells lining the intestine have an average

lifespan of 5 days), others such as neurons are retained for

life and therefore require the means to cope with a lifetime of

damage.

All biological macromolecules are susceptible to corruption;

however, damage to a cell’s genomic DNA is particularly harmful

because DNA is the blueprint for protein production and, unlike

other molecules, it cannot simply be replaced by resynthesis.

DNA damage induces mutations and chromosomal aberrations

that can lead either to cellular dysfunction or to the formation

of cancer, and encounters with certain DNA lesions can derail

transcription and replication, and thereby trigger cell death,

senescence, and aging (Hoeijmakers, 2009). Accordingly, cells

devote enormous resources for the purpose of genome mainte-

nance and have evolved elaborate systems to repair damaged

DNA. In this Review, we focus on the consequences of DNA

damage in the nervous system, taking into account the insights

obtained from neurological disorders that manifest from a defec-

tive DNA damage response. A majority of these disorders are

congenital; however, several recent studies suggest that defec-

tive DNA repair also underlies brain aging and age-associated

neurodegeneration andwe also discuss the implications of these

studies.
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The Cellular DNA Damage Response
On any given day, a listing of endogenous DNA damage experi-

enced by a typical mammalian cell would read something as fol-

lows: 200 cytosine deaminations, 3,000 guanine methylations,

10,000 spontaneous depurinations, 10,000–100,000 oxidative

lesions, 10,000 single-strand breaks, and 10–50 double-strand

breaks (Ames et al., 1993; Haber, 1999; Lindahl, 1993; Nakamura

et al., 1998; Vilenchik and Knudson, 2003). To avert the poten-

tially catastrophic consequences of these lesions, cells activate

a highly evolved DNA damage response (DDR) that not only

detects and repairs damaged DNA, but also coordinates repair

with other cellular processes, such as chromatin remodeling,

transcription, cell-cycle progression (in dividing cells), and

apoptosis (Jackson andBartek, 2009). A truly remarkable feature

of the DDR is that each class of lesion elicits its own distinct dam-

age detection and repair mechanism. For instance, thymidine

dimers generated upon exposure to UV light are repaired using

nucleotide excision repair, whereas a separate base excision

repair pathway is utilized to repair oxidative lesions such as

8-oxo-dG. However, the same lesion can also be repaired using

diverse mechanisms depending upon cell-cycle stage, devel-

opmental status, and tissue type. As an example, whereas a

majority of DNA double-strand breaks are repaired through

nonhomologous end joining (NHEJ), a specialized pathway

called homologous recombination (HR) is employed to repair

double-strand breaks that are produced in the S and G2 phases

of the cell cycle.

Although relatively stable compared to other macromolecules,

DNA bases frequently undergomodification by alkylation, oxida-

tion, and deamination. In fact, reactive oxygen species (ROS)

alone generate more than 100 different oxidative base modif-

ications and these alterations have the potential to be highly

mutagenic (Iyama and Wilson, 2013). The brain is thought to

metabolize as much as a fifth of consumed oxygen. Accordingly,

a number of studies have shown that ROS are a major source

of DNA damage in the brain. The base excision repair (BER)
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Figure 1. The SSBR Pathway
It is not clear whether BER- and TOP1-mediated
SSBs actually require a sensing step; however,
direct breaks are detected by polyADP ribose
polymerase 1 (PARP1). Various activities collabo-
rate to generate 30 OH and 50 P ends that are
compatible for ligation. For instance, 30 phos-
phoglycolate, and 30 phosphate and 50 OH in-
termediates generated from ROS-mediated sugar
disintegration, and products of abortive TOP1 re-
actions are variously processed by APE1 PNKP
and TDP1, respectively. Occasionally, failure of
ligation can result in the formation of a 50AMP-
associated SSB, which is processed by APTX.
Like in BER, any gap-filling synthesis is mediated
by polb and nicks are sealed by either XRCC1/
LIG3 or FEN1/LIG1.
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machinery has evolved to specifically solve these problems. The

main strategy in BER consists of converting the large array of

modified base substrates into a few intermediates that can then

be processed by the core BER components of APE1, polb, and

XRCC1/LIG3. This step is mediated primarily by enzymes called

DNA glycosylases (humans contain at least 15) that specialize in

detecting distinct modified bases and excising them through

cleavage of the N-glycosidic bond (Lindahl, 1974).

Like BER, the nucleotide excision repair (NER) pathway also

resolves modified bases and follows the general program of

damage detection, excision, gap-filling DNA synthesis, and liga-

tion, the distinguishing feature of NER being that it senses struc-

tural distortions in the double helix rather than specific base

modifications. This confers NER with the versatility to operate

on a range of highly diverse substrates, such as the cyclobutane

pyrimidine dimers (CPDs) and 6,4-photoproducts (6-4PPs)
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generated by UV radiation, DNA adducts

that arise from intercalation of chemicals

such as benzopyrene (a component of

cigarette smoke), psoralen, and cisplatin,

and cyclopurines formed by attacks

of the hydroxyl radical on 20-deoxyade-
nosine and 20-deoxyguanosine. These

‘‘bulky’’ lesions typically obstruct the

progression of transcription and replica-

tion machineries and can thereby induce

cellular dysfunction and apoptosis (de

Laat et al., 1999). More than 30 different

proteins work collaboratively in NER,

which is broadly categorized into two

classes, global genome NER (GG-

NER), which resolves lesions throughout

the genome, and transcription-coupled

NER (TC-NER), which specializes in the

removal of damage on the transcribed

strand of DNA within active genes.

In addition to generating numerous

basemodifications,ROS-mediatedattack

on theDNAbackboneandsugar fragmen-

tation can also lead to the formation of

DNA single-strand breaks (SSBs). More
indirectly, SSBs may also arise as intermediates of the BER

pathway or as by-products of abortive DNA topoisomerase I

(TOP1) reactions (Caldecott, 2008).

The primary challenge in the repair of SSBs is to generate DNA

ends that are compatible for ligation, which is to say, a 30 hydrox-
yl and a 50 phosphate, and depending on the lesion this stepmay

require diverse end-processing activities (Figure 1). Like in BER,

any gap-filling synthesis is mediated by polb and nicks are

sealed by either XRCC1/LIG3 or FEN1/LIG1 (Figure 1).

Under certain conditions, such as the generation of SSBs in

close proximity to each other or encounters between an existing

SSB and either the transcription or replicationmachineries (lead-

ing to their collapse) can cause SSBs to be converted to DNA

double-strand breaks (DSBs). In addition to these, ionizing radi-

ation and chemotherapeutic drugs are prominent environmental

DSB-inducing agents. When compared to other lesions, DNA
83, July 16, 2014 ª2014 Elsevier Inc. 267



Figure 2. The NHEJ Pathway of DNA Double-Strand Break Repair
KU70/KU80 heterodimer binds to the broken DNA ends and recruits the cat-
alytic subunit of the DNA-dependent protein kinase, DNA-PKcs. Activation of
DNA-PKcs allows end-processing proteins, such as the ARTEMIS, to access
the broken DNA ends and DNA polymerase (i.e., pol m and pol l) to fill in the
gap. The XRCC4/LIG4 complex is then recruited to promote religation.
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DSBs are rare events; however, DSBs are also extremely delete-

rious because they can cause large chromosome rearrange-

ments that can either lead to cell death or promote tumorigenesis

(Jackson, 2002). Furthermore, even a few DSBs are sufficient to

trigger apoptosis in proliferating cells (although whether neurons
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have a higher tolerance for DNA DSB accumulation has not been

thoroughly investigated) (Rich et al., 2000). DSBs are repaired

using one of two main pathways: NHEJ, which involves direct

ligation of the broken DNA ends and is error prone, or HR, which

is selectively utilized in the S and G2 phases of the cell cycle

and employs homologous sequences in the sister chromatid

as a template to ensure error-free repair (Lombard et al., 2005).

Because neurons are postmitotic cells, NHEJ is the primary

pathway of DSB repair in neurons, although HR is probably

important for DNA repair in neural progenitors and nonneuronal

cells in the brain. In NHEJ, DSBs are recognized by the KU70/

KU80 heterodimer, which binds the DNA ends and then recruits

and activates the catalytic subunit of the DNA-dependent pro-

tein kinase, DNA-PKcs. Activation of DNA-PKcs allows end-pro-

cessing activities such as the ARTEMIS, APLF, and PNKP to

access the broken DNA ends and prepare them for ligation.

The XRCC4/LIG4 complex is then recruited, which acts in con-

cert with proteins such as XLF to promote religation (Figure 2).

However, it is important to note that while the importance of

NHEJ in postmitotic neurons in vitro and in newly differentiated

neurons in vivo has been established in various studies, its pre-

cise roles in neurons in the mature brain has not been character-

ized extensively. Studies that involve conditional ablation of

NHEJ factors in the mature nervous system will provide key in-

sights into these issues. Together, the collaborative efforts of

these diverse DNA repair pathways ensure that cells remain

functional despite the numerous lesions they accumulate daily.

Chromatin Modifications in the DNA Damage Response
Both DNA damage and the concomitant response occur in the

context of chromatin. Traditionally, this has been interpreted to

mean that chromatin organization imposes a barrier that must

be overcome to allow DNA repair activities to access damaged

sites, after which the original chromatin configuration is restored.

However, in contrast to this somewhat passive view of chromatin

organization, more recent models emphasize that chromatin

changes in the DDR play active roles in stabilization of the repair

machinery, in the propagation of the DDR, and in the regulation

of transcription in the vicinity of damaged sites (Smerdon, 1991;

Soria et al., 2012). Furthermore, the discovery of roles for histone

deacetylases and other chromatin-compacting activities at the

earliest stages after the induction of DNA damage suggest that

chromatin changes at damaged sites are more dynamic than

previously conceived.

Generally, four main activities are thought to be important for

chromatin changes in response to DNA damage: posttransla-

tional modifications of histone tails and chromatin modifying

enzymes, ATP-dependent chromatin remodelers, histone vari-

ants, and histone chaperones. Although categorized in this

manner, it is important to note that there is extensive crosstalk

between these mechanisms during damage detection, repair,

and the restoration of chromatin organization following repair.

ATP-dependent chromatin remodelers in DNA repair are sum-

marized in Table 1 and the reader is referred to several excellent

reviews on the topics of histone variants and chaperones in the

DDR (Avvakumov et al., 2011; Soria et al., 2012). Here we limit

our discussion to a broad overview of posttranslational chro-

matin modifications in the DDR (Figure 3).



Table 1. Mammalian ATP-Dependent Chromatin Remodelers in DNA Repair

Family Complex Catalytic Subunit Unique Subunit Functions in DNA Repair Reference

Snf2-like

ALC1 CHD1L/ALC1 CHD1L/ALC1 – Implicated in NHEJ and NER (Ahel et al., 2009;

Pines et al., 2012)

Iswi ACF/CHRAC SNF2H ACF1 Facilitates DSBR and NER; ACF1 is

required to recruit KU70

(Lan et al., 2010;

Ura et al., 2001)

Iswi WICH SNF2H WSTF, tyrosine

protein kinase

activity

WSTF phosphorylates H2A.X (Y142)

that is required for gH2A.X expansion

(Xiao et al., 2009)

Mi-2 NuRD CHD3/CHD4 HDAC1/2,

MTA1/2/3,

MBD2/3

CHD3 maintains heterochromatin

structure; CHD4 promotes recruitment

of RNF168 and BRCA1

(Goodarzi et al., 2011;

Larsen et al., 2010)

Snf2 BAF/ PBAF BRG1/SMARCA4

or BRM/SMARCA2

BAF170 Facilitates NER; BRM is required to

recruit KU70; BRG1 binds to and

regulates p53 and BRCA1, is part of the

activation loop with gH2A.X and histone

acetylation

(Lee et al., 2010;

Naidu et al., 2009;

Ogiwara et al., 2011;

Peng et al., 2009)

Swr1-like

Ino80 INO80 INO80 ARP5, ARP8 Mediates DSB end resection;

promotes NER

(Gospodinov et al., 2011;

Jiang et al., 2010)

Swr1 NuA4 p400 TIP60 Incorporates H2A.Z-H2B dimers (Ikura et al., 2000;

Xu et al., 2012)

Etl1 SMARCAD1 SMARCAD1 – Regulates end resection in HR (Costelloe et al., 2012)

Rad54-like

ATRX ATRX ATRX – Important for genomic integrity (Leung et al., 2013;

Lovejoy et al., 2012)

Rad54 RAD54 RAD54 – Implicated in many stages of HR (Ceballos and Heyer, 2011)

ERCC6

ERCC6 ERCC6/CSB – – Mutated in Cockayne’s syndrome group B,

participates in transcription-coupled repair

(Orren et al., 1996;

Troelstra et al., 1992)
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The modification of histone tails serves as an important way

through which DNA accessibility, chromatin dynamics, and the

binding of nonhistone proteins are regulated in the DDR. The

N-terminal extensions of histones are the sites of most modifica-

tions, such as poly-ADP-ribosylation, phosphorylation, acetyla-

tion, methylation, ubiquitination, and sumoylation. One of the

earliest detectable modifications following the induction of

DNA strand breaks is poly-ADP-ribosylation (PARylation) that

is mediated by poly- (ADP-ribose) polymerases (PARPs).

PARP1 is a ubiquitous nuclear protein containing an N-terminal

DNA binding domain composed primarily of two zinc finger mo-

tifs, a central BRCT motif containing automodification domain

that mediates interaction with other DNA repair proteins, and

a C-terminal catalytic domain that binds NAD+ and transfers

ADP-ribose from NAD+ to acceptor sites on proteins (Krishnaku-

mar and Kraus, 2010). PARP1 senses DNA strand breaks and

upon activation, catalyzes the assembly of poly- (ADP-ribose)

(PAR) chains onto histones and other protein substrates

including itself. Several lysine residues on histones, such as

K13 of H2A, K30 of H2B, K27 and K37 of H3, and K16 of H4

have been identified as ADP-ribose acceptor sites on histones

(Messner et al., 2010), although glutamate and aspartate resi-

dues have also been identified as acceptor sites on other targets.

The PAR chains cause the nucleation of various chromatin mod-
ifiers. For instance, the recruitment of PAR-interacting factors

such as ALC1 and the ATP-dependent chromatin remodeler

SNF2H has also been shown to promote nucleosome sliding

and greater accessibility to DNA ends, whereas the recruitment

of NuRD, polycomb, and macroH2A (an H2A variant) is thought

to mediate chromatin looping and compaction (Ahel et al.,

2009; Chou et al., 2010; Lukas et al., 2011). While chromatin

modulation through PARylation mediates several important

functions in the DDR, it is becoming increasingly clear that the

regulation of PAR levels is also a critical determinant of survival.

PAR levels are tightly regulated through the activities of PAR

glycohyrolase (PARG), which cleaves PAR chains, and terminal

ADP-ribose glycohydrolase (TARG), which removes the proximal

ADP-ribose directly linked to the target protein. Defects in PARG

and TARG1 have been shown to cause neurodegeneration (Tallis

et al., 2014). In addition, prolonged PARP activity can cause

the depletion of NAD+ and trigger an energy crisis within cells,

leading to a form of apoptosis referred to as parthenos.

An extremely well-studied histone modification in the DDR

is the phosphorylation of the histone H2A variant, H2AX, at

Ser139 (gH2AX) (Burma et al., 2001). Three PI-3 kinases, ATM,

ATR, and DNA-PK, are known to phosphorylate H2AX. gH2AX

appears immediately after formation of DNA DSBs and can

spread up to a megabase in the vicinity of the DSB. The
Neuron 83, July 16, 2014 ª2014 Elsevier Inc. 269



Figure 3. Chromatin Modifications in the DDR
The formation of DNA DSBs triggers various chromatin modifications, including poly-ADP-ribosylation mediated by PARP1; histone acetylation/deacetylation
mediated by HAT such as p300,MOF, and TIP60 andHDAC, such as HDAC1, SIRT1 and SIRT6; and ATM-dependent H2AX phosphorylation and RNF8/RNF168-
mediated H2A ubiquitination. ATP-dependent chromatin remodelers can slide, exchange, or evict histone dimers or octamers. The consequences of these
modifications are depicted, with details provided in the text. H2AX containing nucleosomes are shown in orange.
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phosphorylation of H2AX at Ser139 is accompanied simulta-

neously by dephosphorylation at Tyr142 and these events allow

recognition of gH2AX by a protein called mediator of DNA dam-

age checkpoint protein 1 (MDC1). The recruitment of MDC1 co-

ordinates virtually every aspect of the DSB signaling response

(Lukas et al., 2011). MDC1 allows for propagation of gH2AX

adjacent to DSB sites, interacts with proteins such as ATM,

TOPBP1, and CHK2, activates checkpoint responses in prolifer-

ating cells, and also coordinates other posttranslational modifi-

cations such as histone ubiquitination and acetylation. For

instance, ATM-mediated phosphorylation of MDC1 stimulates

the recruitment of the H2A ubiquitin ligases RNF8 and RNF168

(Lukas et al., 2011). Ubiquitination of H2A by RNF8 and

RNF168 facilitates the binding sites of downstream factors,

such as breast cancer 1 (BRCA1), p53-binding protein 1

(53BP1), and the E3 ubiquitin-protein ligase RAD18, all of which

are essential for DSB repair.

In addition to these modifications, the significance of histone

acetylation in the DDR has become a major focus of recent

studies. Increased histone acetylation following UV damage is

one of the first identified chromatin modifications associated

with DNA damage. In particular, acetylation of histone H3

Lys56 (H3K56) is believed to promote nucleosome assembly in

DNA repair and DNA synthesis (Das et al., 2009). Similarly, acet-

ylation of H4K16 is known to unfold compact chromatin fibers

(Shogren-Knaak and Peterson, 2006). Consistently, histone ace-

tyltransferases (HATs) that mediate these modifications, such as

MOF, a specific H4K16 HAT, as well as Tip60 and CBP/P300,

less specific HATs that acetylate both histone and nonhistone

proteins, play pivotal roles in DNA repair (Das et al., 2009; Ikura

et al., 2000; Li et al., 2010).

Meanwhile, based on the notion that DNA repair requires chro-

matin relaxation, histone deacetylation and histone deacety-

lases (HDACs) were long believed to only participate at the later

stages of DNA repair, primarily to restore chromatin structure.
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However, recent studies in several systems, including postmi-

totic neurons, have unveiled the roles of HDACs and chromatin

compaction in the early phase of DNA repair (Dobbin et al.,

2013; Miller et al., 2010; O’Hagan et al., 2008). Intriguingly,

although acetylation of H3K56 and H4K16 are important for

DNA repair, deacetylation of these residues has been observed

to occur immediately after the formation of DSBs, whereas the

reacetylation is usually observed hours after DNA damage (Miller

et al., 2010). In addition, H4K16 deacetylation facilitates 53BP1

foci formation and NHEJ repair (Hsiao and Mizzen, 2013). Given

the positive role of acH4K16 in transcriptional activation (Taylor

et al., 2013), it is also possible that the transient removal of this

modification serves to inhibit local transcription. Incidentally,

ATM activity was also shown to cause transcriptional silencing

and prevent RNA polymerase II elongation-dependent chro-

matin decondensation in cis of DNA DSBs (Shanbhag et al.,

2010). Histone deacetylation and chromatin compaction may

also prevent the excessive processing of DNA ends and the

uncontrolled expanding of repair factors into adjacent chro-

matin. SIRT6, HDAC1, and HDAC2 have all been implicated as

H3K56 deacetylases, whereas HDAC1 and HDAC2 have been

reported to deacetylate H4K16 (Miller et al., 2010; Toiber et al.,

2013). SIRT6 increases the binding of SNF2H to nucleosomes

and deacetylates H3K56 simultaneously. Decreased SNF2H-

chromatin association, increased H3K56 acetylation, and accu-

mulated DNA damage are detected in the brains of Sirt6 KO

mice, suggesting a physiological role of SIRT6 in maintaining

genomic integrity in the CNS (Schwer et al., 2010; Toiber et al.,

2013). In addition to its deacetylase activity, SIRT6 also has

mono-ADP ribosyltransferase activity and is shown to promote

BER repair through activating PARP1 (Mao et al., 2011; Mosto-

slavsky et al., 2006). Furthermore, the deacetylation of histones

at DSBs is also associated with transient H3K9 methylation

(Price and D’Andrea, 2013). Together, these results suggest

that a compact chromatin state might prevail immediately after



Figure 4. The Lock, Loosen, Load Model of Chromatin Dynamics
DNA damage triggers chromatin compaction in the vicinity of damaged sites
that allows the broken DNA ends to be stabilized or ‘‘locked’’ and to inhibit
transcription in regions adjacent to damaged DNA. This transient state is
quickly followed by chromatin relaxation (‘‘Loosen’’) that allows a plethora of
DNA repair proteins to be recruited (Loaded) to the sites of damage.
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the formation of DNA damage. Such chromatin compaction

could be important for the synapsis of DNA ends and to inhibit

transcription in regions flanking damaged DNA. This transient

compaction is then followed by an ‘‘open’’ chromatin state that

allows repair proteins to be loaded to DNA damaged sites

(Figure 4).

DNA Repair during Neural Development
Human neural development commences in the third week of

gestation with the specification of neural progenitors during

gastrulation. From the end of gastrulation until about embryonic

day 42 (E42), neural progenitors undergo symmetric divisions

that enormously expand the size of the progenitor pool. There-

after, neural progenitors switch to an ‘‘asymmetric’’ mode of

division wherein each round yields one progenitor cell and one

‘‘postmitotic’’ neuron. Newborn neurons then migrate from the

proliferative zones to their final destinations in various regions

of the CNS, and upon reaching their targets, undergo further

differentiation and ultimately become integrated into functional

networks.

DNA repair is extremely important in the early developmental

stages because unrepaired lesions and mutations at this stage

can have a huge effect on the formation of a functional nervous

system (McKinnon, 2013). In fact, mouse models that involve

germline deletions of various DNA repair factors clearly illustrate

this point. For instance, as mentioned above, polb is the poly-

merase that primarily mediates repair-associated DNA synthesis

in BER and SSBR. Targeted deletion of polb causes neonatal

lethality with widespread apoptosis of newly formed neurons in

the developing CNS and PNS (Sugo et al., 2000). Similarly, dele-

tion of either Xrcc2 or Lig4, which are essential for DSB repair

through HR and NHEJ, respectively, results in embryonic
lethality that is also associated with extensive apoptosis in the

nervous system (Orii et al., 2006). Interestingly, Xrcc2�/� em-

bryos display massive apoptosis in the brain by E10.5, a stage

that corresponds to the period of neural progenitor proliferation,

whereas no apoptotic cells are detectable in Lig4�/� brains until

E12.5, a time period when neural progenitors are differentiating

into neurons (Orii et al., 2006). These observations also reveal

that cells rely on different repair pathways depending on their

status in the developmental program. The reliance on HR-medi-

ated DSB repair during progenitor proliferation has the added

advantage that its utilization probably preserves genetic infor-

mation. In contrast, HR is unlikely to operate in neurons that

have exited the cell cycle and DSB repair through NHEJ be-

comes crucial under these conditions.

Defects in NER and Neurodegeneration: The Cancer
Connection
In addition to mouse models, the numerous congenital diseases

that manifest from mutations in DNA repair factors also under-

score the importance of maintaining genomic stability in the

nervous system (Table 2). For instance, mutations in NER com-

ponents result in syndromes such as xeroderma pigmentosum

(XP), cockayne syndrome (CS), and trichothiodystrophy (TTD),

all of which have neurological components. While all three disor-

ders are characterized by photosensitivity, patients with XP also

show an elevated predisposition to various cancers, including

skin, lung, and mucousmembrane cancers, brain tumors, leuke-

mia, and gastric carcinomas (Kraemer et al., 1987). In fact, such

observations were the first to establish that the development of

cancer is intimately related to the fidelity of DNA repair (Cleaver,

1968). However, about a quarter of XP patients also display a

spectrum of neurological abnormalities that include micro-

cephaly, mental retardation, deafness, cerebellar ataxia, and

peripheral neuropathy, and these clinical presentations suggest

that DNA repair defects are also linked to neurodegeneration

(Iyama and Wilson, 2013; Mimaki et al., 1986). Interestingly, the

fraction of XP patients that develop neurological phenotypes

correspond to those with mutations in genes such as XPA,

XPB, XPD, XPF, and XPG that would cripple both GG-NER and

TC-NER (Iyama andWilson, 2013). However, patients withmuta-

tions in XPC, and hence with defects in GG-NER alone, show no

neurological impairments (Anttinen et al., 2008). Furthermore,

patients with CS and TTD, who also have mutations in genes

that specifically impair TC-NER, but not GG-NER, also show

neurological symptoms but no cancer predisposition (Iyama

and Wilson, 2013). Thus, it appears that the nervous system is

especially susceptible to perturbations in TC-NER.

Neurological Consequences of Unrepaired DNA Strand
Breaks
In addition to defects in NER, neurological abnormalities have

also been observed in individuals harboring hypomorphic

mutations in certain SSBR and DSBR factors. Whereas these

observations have been used as indicators of the importance

of specific repair pathways in the nervous system, the nonover-

lapping phenotypes of mutations in genes within the same repair

pathway have also raised new questions about whether the lack

of DNA repair is in fact the underlying cause of neuropathology in
Neuron 83, July 16, 2014 ª2014 Elsevier Inc. 271



Table 2. Human Neurological Diseases Linked to Mutations in DNA Repair Genes

Human Syndromes and Clinical Features Mutated Gene Mouse Models

NER

Cockayne Syndrome (CS): developmental

failure, premature aging, progressive

neurodegeneration, deafness, myelinopathy,

UV sensitivity

ERCC8/CSA Csa �⁄� mice: impaired TC-NER, photoreceptor loss, UV sensitivity,

lacking gross abnormalities (van der Horst et al., 2002)

ERCC6/ CSB Csb mutants mimicing human CS1AN allele: mild CS-like symptoms

including minor neurologic abnormalities; impaired TC-NER; UV

sensitivity (van der Horst et al., 1997)

XPB, XPD Xpb frameshifted homozygous or Xpd null mutants: early embryonic

lethality (may caused by disruption in basal transcription) (de Boer

et al., 1998b); XpbXPCS mutants mimicking human XP11BE allele:

UV hypersensitivity, no overt developmental or aging phenotypes;

Xpa&XpbXPCS double mutants: CS like symptoms including

accelerated aging, neurological defects, big phenotypic variation

(Andressoo et al., 2009)

XPG Xpg �⁄� mice: postnatal growth failure, short life span (Harada

et al., 1999)

Xeroderma Pigmentosum (XP): predisposed

to UV-induced skin cancer, a quarter of XP

patients develop neurological symptoms

including microcephaly, mental retardation,

deafness, cerebellar ataxia, and peripheral

neuropathy

XPA� XPG Xpa�⁄� or Xpc�⁄� mice: UV sensitivity, normal development, no overt

neurological abnormalities; Xpa�⁄�; Csb�⁄� or Xpc�⁄�; Csb�⁄� double

mutants: CS and XP like symptoms including growth retardation,

ataxia, motor dysfunction, reduced cerebellar neurogenesis, and

neurodegeneration (Laposa et al., 2007; Murai et al., 2001); Xpf�⁄�

mice: UV hypersensitivity, developmental defects, short life span

(Tian et al., 2004)

Trichothiodystrophy (TTD): brittle hair, growth

defects, photosensitivity.80% of TTD patients

show neurological abnormalities including

microcephaly, mental retardation, deafness,

and ataxia

XPD XpdR722W mutants: TTD-like symptoms including brittle hair,

developmental abnormalities, reduced life span, and UV

sensitivity (de Boer et al., 1998a)

TTDA Ttda�⁄� mice are embryonic lethal, completely NER deficient,

hypersensitive to oxidative DNA damage (Theil et al., 2013)

SSBR

Ataxia with Occulomotor Apraxia-1 (AOA1):

ataxia, occulomotor apraxia, cerebellar atrophy,

and cognitive impairments

APTX Aptx�⁄�; Tdp1�⁄� mice: significantly slower SSBR rate with intact

DSBR (El-Khamisy et al., 2009)

Spinocerebellar Ataxia with Axonal Neuropathy

(SCAN1): cerebellar atrophy

TDP1 Tdp1�⁄� mice: progressive cerebellar atrophy, defects in SSB repair

(Katyal et al., 2007)

DSBR

Ataxia Telangiectasia (A-T): ataxia, widespread

cerebellar atrophy, occulomotor apraxia,

dysarthria, immunodeficiency, and cancer

predisposition

ATM Atm�⁄� mice: growth retardation, immunodeficiency, meiotic failure,

cancer predisposition, and no obvious cerebellar atrophy. One

mutant line shows abnormal motor function (Barlow et al., 1996),

the other reveals microglia activation and mild cerebellar degeneration

(Kuljis et al., 1997; Xu et al., 1996)

A-T Like Disease (ATLD): ataxia, dysarthria,

and occulomotor apraxia

MRE11 Mre11�⁄� or Mre11H129N/H129N (disrupting nuclease activity) mice: early

embryonic lethality, genome instability, although Mre11H129N/H129N can

activate ATM normally (Buis et al., 2008)

ATR-Seckel Syndrome: microcephaly, dwarfism ATR Atr�⁄� mice: early embryonic lethality (de Klein et al., 2000); Atr S/S

(mimicking seckel mutation, a severe hypomorphism): microcephaly,

dwarfism, accumulated replicative stress, progressive aging (Murga

et al., 2009)

Nijmegen Breakage Syndrome (NBS):

microcephaly, immunodeficiency and

cancer predisposition

NBS1 Nbs1�⁄� mice: early embryonic lethality (Zhu et al., 2001)

LIG4 Syndrome: microcephaly LIG4 Lig4�⁄� mice: late embryonic lethality; p53 dependent apoptosis of

postmitotic neuron (Frank et al., 1998, 2000)

XLF Syndrome: microcephaly, growth

retardation, immunodeficiency

XLF/NHEJ1/

Cernunnos

XLF�⁄� mice: no obvious neuronal cell death, relatively normal

lymphocyte development, increased ionizing radiation sensitivity

(Li et al., 2008).
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these diseases. Despite this concern, however, it is impossible

to ignore that mutations in diverse genes, whose products

have well-characterized roles in the cellular DDR, have severe

neuropathological effects.

Perhaps the most detailed insights into the role of DNA dam-

age in the nervous system have come from studies of ataxia

telangiectasia (A-T) and related disorders. A-T is caused by

mutations in ATM, a large serine/threonine kinase that is rapidly

recruited to DNA DSBs and coordinates virtually all aspects of

the cellular DSB response, including DNA repair, checkpoint

activation, and apoptosis (Shiloh and Ziv, 2013). Although A-T

is a multisystem disease in which patients display radiosensi-

tivity, immunodeficiency, and a predisposition to malignancy,

its hallmark features are neurological. These include defects in

movement and coordination (ataxia) that develop early in child-

hood and confine patients to awheelchair by their teenage years,

marked cerebellar atrophy, lack of natural eye movements

(occulomotor apraxia), and slurred speech (dysarthria) (Biton

et al., 2008). Like with XP, the coincidence of neurodegeneration

and cancer predisposition in individuals with mutations in a DDR

factor suggests that the neurological defects in A-T might also

arise from defects in the DDR.

A disorder related to A-T known simply as A-T-like disease

(ATLD) is caused by mutations in MRE11 (Stewart et al., 1999).

ATLD is an extremely rare disease, with only nine families and

a total of 20 affected patients identified worldwide (Palmeri

et al., 2013). Like individuals with A-T, ATLD patients also

display ataxia, dysarthria, and occulomotor apraxia, although

these features appear later in ATLD compared to A-T (Taylor

et al., 2004). In the DSB response, the MRN complex

(comprising MRE11, RAD50, and NBS1) initially recognizes

and binds the broken DNA ends and then rapidly recruits and

activates ATM. The similarities between A-T and ATLD only

reinforce the notion that a defective DDR underlies the neuro-

pathology in these diseases. However, the situation becomes

complicated when one takes into account that mutations in

another member of the MRN complex, NBS1, causes a disease

called Nijmegen breakage syndrome (NBS), in which the primary

neuropathological feature is microcephaly and not the progres-

sive cerebellar degeneration that characterizes A-T and ATLD

(Digweed and Sperling, 2004). Furthermore, in contrast to the

situation in the nervous system, NBS shares many of the other

features of A-T, including radiosensitivity, immunodeficiency,

and cancer predisposition.

Although the reason for the differences between NBS, ATLD,

and A-T are not fully understood, an analysis of neural tissue

from mouse models carrying human ATLD and NBS mutations

is at least partially illuminating (Shull et al., 2009). When these

mice were subjected to genotoxic stress induced by ionizing ra-

diation, widespread apoptosis was observed in nervous systems

of Nbs1 mutant mice, but not in the Mre11 mutants. Similar to

Mre11 mutants, Atm�/� mice were also resistant to DNA dam-

age-induced apoptosis after ionizing radiation (Shull et al.,

2009). From these studies, it appears that while both MRE11

and NBS1 are important for ATM activity, mutations in these

components have different effects on ATM-mediated apoptosis

following DNA damage induction. Thus, while human NBSmuta-

tions elevate the level of DNA damage, NBS neurons also seem
to possess sufficient ATM activity to trigger neural apoptosis,

which results in microcephaly. On the other hand, human

ATLD and A-T mutations essentially preclude apoptotic ATM

activity and thereby allow damaged neurons to survive. These

dysfunctional neurons probably perish in the long run, which

results in neurodegeneration. Such an explanation is also sup-

ported by an examination of mice lacking Ligase IV, which is a

core component of the NHEJ machinery and is essential for

the repair of DNA DSBs. In humans, hypomorphic mutations in

LIG4 result in LIG4 syndrome that is characterized by micro-

cephaly and this feature is recapitulated in mice harboring a con-

ditional deletion of Lig4 in the nervous system (O’Driscoll et al.,

2001; Shull et al., 2009). Interestingly, themicrocephaly in Ligase

IV-deficient mice can be rescued either by introducing hypomor-

phicMre11mutations or by deleting Atm, but not through muta-

tions in Nbs1 (Shull et al., 2009). Taken together, the overlapping

features of A-T and related disorders and the functional relation-

ship between ATM and MRN in the DDR strongly support the

model that a defective DDR contributes significantly to neurode-

generation.

Notwithstanding the evidence presented above, it still remains

to be shown precisely how defects in the DDR and DNA repair

cause neurodegeneration. In the case of A-T and related disor-

ders, the ideal scenario would consist of a mouse model(s)

that faithfully recapitulates the phenotypes of the correspond-

ing disease in humans and in which at least an accrual of

DNA damage precedes neurodegeneration. However, whereas

ATM-knockout mice exhibit many of the characteristics of A-T,

they show almost none of the neurological phenotypes (Katyal

and McKinnon, 2008). Similarly, mice carrying hypomorphic

Mre11 and Nbs1 alleles are also devoid of neuropathology

(Katyal and McKinnon, 2008). On the one hand, the relatively

short life expectancy of mice might preclude the appearance

of effects that manifest over two decades in humans. On the

other hand, perhaps different thresholds exist for DNA dam-

age-induced apoptosis between the two species. In any case,

the lack of neuropathology in these mouse models (which reca-

pitulate many of the nonneurological aspects of the respective

human diseases) has been perplexing. If the issue is that mice

have a higher threshold for DNA damage-induced apoptosis,

then perhaps introducing mutations that more severely compro-

mise the DDR could breach this threshold. Interestingly, amouse

model in which Nbs1 is conditionally deleted in the CNS seems

to do exactly that (Frappart et al., 2005). While a null mutation

in Nbs1 is embryonic lethal, its selective ablation in the CNS

permits survival. However, the animals display both the micro-

cephaly that is characteristic of human NBS patients, as well

as the severe cerebellar atrophy and ataxia that is seen in A-T

(Frappart et al., 2005). A reason for this striking phenotype could

be that MRN is essential for the activation of not only ATM,

but also another related kinase called ATR that senses single-

stranded DNA generated by stalled or collapsed replication

forks, and coordinates the activation of cell-cycle checkpoints.

Thus, multiple DDR pathways and the survival of both prolifer-

ating progenitors and postmitotic neurons are probably compro-

mised by the loss of Nbs1 in the CNS. These effects provide an

insight into what might be required to model human neurode-

generative diseases in the mouse.
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Every Single Strand Matters
Several lines of evidence suggest that SSBs might be at least as

(if not more) crucial in the nervous system. SSBs arise three

timesmore frequently than DSBs and unrepaired SSBs also elicit

a strong apoptotic response (Rulten and Caldecott, 2013). In

addition, while SSBs pose a problem for both proliferating and

postmitotic cells, proliferating cells have more options to repair

SSBs than postmitotic cells. For instance, DNA replication can

convert SSBs into DSBs and these can be accurately repaired

through HR in the S/G2 phases of the cell cycle, whereas such

mechanisms are probably absent in cells like neurons (Rulten

and Caldecott, 2013). The discovery of two disorders called

ataxia with occulomotor apraxia-1 (AOA1) and spinocerebellar

ataxia with axonal neuropathy (SCAN1) further highlights these

points. The interesting feature is that the pathology in these dis-

orders is almost exclusively restricted to the nervous system.

The disease AOA1 is one of the most common forms of spino-

cerebellar ataxia and shares many phenotypic similarities with

A-T, including age of onset, ataxia, occulomotor apraxia, and

cerebellar atrophy caused by a severe loss of Purkinje cells

(Date et al., 2001; Moreira et al., 2001). In addition, AOA1

patients also show cognitive impairments, hypoalbuminaemia,

and hypercholesterolaemia. However, AOA1 patients do not

display the radiosensitivity or a predisposition to cancer that is

seen in A-T patients. AOA1 is caused by mutations in the gene

aprataxin (APTX), which, as mentioned above, is involved in pro-

cessing DNA ends generated as a result of abortive ligation reac-

tions in the SSBR pathway (Date et al., 2001; Moreira et al.,

2001). APTX encodes for a 342 amino acid polypeptide (although

a splice variant of 356 amino acids is also thought to exist) that

consists of three distinct domains: an N-terminal forkhead-asso-

ciated (FHA) domain, a catalytic histidine triad (HIT) domain, and

aC-terminal zinc finger (ZnF)motif (Rass et al., 2007). Through its

FHA domain, APTX interacts with phosphorylated XRCC1 and

XRCC4, whereas multiple domains of the protein bind PARP1

and p53 (Clements et al., 2004; Gueven et al., 2004). These inter-

actions suggest that APTXmight be important for both the repair

of both SSBs and DSBs, although its specific role in DSBR

remains unknown. The HIT-ZnF domain is responsible for the

DNA deadenylase activity of APTX through which it resolves

50-AMP termini and makes them compatible for religation (Ahel

et al., 2006; Rass et al., 2008). A majority of the mutations in

AOA1map to the HIT domain of APTX (Rass et al., 2007). A num-

ber of studies using AOA1 cell lines have reported increased

sensitivity to various DNA damaging agents and neurons lacking

APTX show a specific defect in short-patch SSBR and accumu-

late adenylated DNA nicks (Gueven et al., 2004; Reynolds et al.,

2009). However, like with other disease genes, Aptx�/� mice do

not recapitulate the phenotypes of AOA1 patients, making it diffi-

cult to study the neurodegenerative aspects of this disease in

mice (Rulten and Caldecott, 2013).

Compared to AOA1, SCAN1 is an extremely rare disease and

only nine patients from a single Saudi Arabian family have been

discovered until now (Takashima et al., 2002). Like AOA1, pa-

tients with SCAN1 exhibit cerebellar atrophy and show no cancer

predisposition; however, SCAN1 has a later onset than AOA1

(average age of onset is about 15 years) and SCAN1 patients

show no cognitive impairment or occulomotor apraxia and pre-
274 Neuron 83, July 16, 2014 ª2014 Elsevier Inc.
sent milder hypercholesterolaemia and hypoalbuminaemia

(Takashima et al., 2002). The underlying mutation in SCAN1

has been mapped to a gene that encodes for tyrosyl-DNA phos-

phodiesterase 1 (TDP1) (Takashima et al., 2002). As its name

suggests, TDP1 possesses the ability to hydrolyze a phospho-

tyrosyl linkage at the 30 ends of DNA SSBs and DSBs (Yang

et al., 1996). This sort of linkage usually arises from abortive

TOP1 activity on theDNA (Pourquier et al., 1997). TOP1 is a topo-

isomerase that catalyzes the relaxation of DNA supercoils that

form ahead of an advancing RNA or DNA polymerase. Normally,

in this reaction, TOP1 generates an enzyme-bridged transient

single-strand break in which the 30 end of the DNA becomes

covalently attached to the active site tyrosine in TOP1. The break

then causes the DNA to unwind and become relaxed, after which

the enzyme religates the two ends. However, certain conditions,

such as a collision between a replication fork or RNA polymerase

with a TOP1-DNA complex or the exposure of cells to certain

topoisomerase poisons (such as camptothecin) can result in

the formation of abortive TOP1-DNA complexes and resolving

these intermediates requires TDP1.

Accordingly, SCAN1 cell lines accumulate more DNA SSBs

in the presence of camptothecin compared to control lines and

are also defective in the repair of camptothecin-generated

SSBs (El-Khamisy et al., 2005). In addition, SCAN1 cell lines

also show defects in the repair of SSBs generated by treatment

with hydrogen peroxide and ionizing radiation (El-Khamisy et al.,

2005; Katyal et al., 2007). It is unclear whether these treatments

also result in the accumulation of TOP1-DNA intermediates,

although there is some evidence to suggest that TDP1 might

also process other 30 and 50 termini that arise at SSBs and

DSBs. Interestingly, and unlike a number of other mousemodels,

Tdp1�/�mice do show a progressive reduction in cerebellar size,

which is consistent with the cerebellar atrophy in SCAN1 pa-

tients, although the mice do not develop ataxia (Katyal et al.,

2007). Given that SCAN1 has a later onset, it is again likely that

the short life expectancy in mice precludes them from devel-

oping other aspects of the disease. Nevertheless, the results

from studies on AOA1 and SCAN1 suggest that the processing

of SSBs and SSBR intermediates, especially abortive TOP1-

DNA complexes, is extremely relevant in neurodegeneration.

DNA Damage in the Aging Brain
No one is immune to aging, the progressive deterioration of

bodily functions with time. Ralph Waldo Emerson wrote ‘‘.old

age seems the only disease, all others run into this one’’ (Essay

X: Circles). In addition to being inevitable, the phenomenon of

aging is also mysterious. For instance, in a classic paper titled

Pleiotropy, Natural Selection and the Evolution of Senescence,

George C.Williams observed, ‘‘It is remarkable that after a seem-

ingly miraculous feat of morphogenesis a complex metazoan

should be unable to perform the much simpler task of merely

maintaining what is already formed’’ (Kirkwood, 2005; Williams,

1957). Yet, maintenance is no simple task in a cellular environ-

ment that constantly threatens the stability of its constituents,

especially its DNA.

The consequences of genomic instability manifest in at least

three important ways with age (Figure 5). The first is an accumu-

lation of unrepaired DNA damage, which can arise from a



Figure 5. The Consequences of DNA
Damage in Aging and Neurodegeneration
Left: erroneous repair of DNA damage can lead to
the formation of mutations, which are irreversible
and perturb tissue homeostasis in the nervous
system by essentially promoting the formation of
mosaics. Occasionally, mutations could occur in
DNA repair factors (such as FUS, see text) and
this can manifest in profound neurodegeneration
(red arrow). Middle: in contrast, although revers-
ible, the accumulation of unrepaired lesions due to
decreased DNA repair activities can block the
transcription of genes encoding for critical neural
functions and downregulate their activity, leading
to cognitive decline. Right: DNA damage also
affects the epigenetic landscape. DNA damage-
induced epigenetic changes can accrue over time
as ‘‘epimutations’’ and affect gene expression. In
addition, the redistribution of epigenetic modula-
tors, such as SIRT1, can trigger global changes
to the chromatin architecture, leading to large-
scale transcriptional deregulation of their normally
repressed targets, such as major satellite repeti-
tive DNA.
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decrease in DNA repair activities with age. For instance, a

decline in the efficiency of BER and NHEJ due to a reduction in

the activity of DNA glycosylases and DNA-PK, respectively,

has been reported in the literature. An age-dependent attenua-

tion in DNA repair capacity has also been reported in the rodent

and human brain. In an insightful study, microarray analysis of

postmortem human brain samples as a function of age revealed

that genes encoding for critical neuronal functions, including

synaptic plasticity, learning, andmemory, are downregulated af-

ter age 40 and, concomitantly, the expression of stress response

genes is upregulated (Lu et al., 2004). Importantly, this dramatic

change in gene expression profiles is accompanied by an accu-

mulation of oxidative lesions in the promoter regions of the

downregulated genes (Lu et al., 2004), suggesting that an

accrual of oxidative lesions could underlie the decline in cogni-

tive abilities with age.

Another way in which DNA damage participates in aging is

through the erroneous repair of DNA lesions that results in muta-

tions (Vijg and Suh, 2013). In contrast to unrepaired lesions,

which are reversible, mutations are irreversible and can therefore

be highly problematic. For instance, the use of a transgenic

mouse model that harbors a chromosomally integrated reporter

that can be sequenced to assay for mutations as a function of

age revealed that mutations in the liver almost quadrupled with

age (Dollé et al., 1997). Interestingly, no such differences were

found in the brain under these conditions. However, only a few
Neuron
chromosomal loci were sampled in

this study and it is therefore formally

possible that mutations accumulate at

certain ‘‘hotspots’’ in the aging human

brain. Mutations could also contribute

to age-related neurodegeneration in a

more indirect way. In an interesting study,

single-cell genomic analysis of postmor-

tem neurons from the human frontal

cortex revealed that between 13% and
41% of neurons have copy number variations (CNVs) of at least

one megabase (McConnell et al., 2013). The specific conse-

quences of somatic mosaicism in the human brain are presently

unknown; however, it would be interesting to determine whether

CNVs in the brain increase as a function of age or in certain

age-related neurodegenerative disorders. A more direct effect

of mutations on neurodegeneration is clearly evident when these

mutations compromise the activities of DNA repair/DDR factors

(see below).

In addition to direct alterations to the composition and struc-

ture of DNA, the formation of DNAdamage also elicits substantial

changes to chromatin organization. While a number of these

changes serve necessary functions in DDR signaling, there is

also evidence to suggest that chromatin conformation might

not be restored to its predamaged state following DNA repair

(Oberdoerffer and Sinclair, 2007; Tamburini and Tyler, 2005).

Thus, DNA damage could progressively alter chromatin con-

formation, and thereby, gene expression patterns, with age. In

fact, a number of studies have reported age-associated changes

in the epigenome (Krishnan et al., 2011; Peleg et al., 2010;

Vijg and Suh, 2013), although precisely what fraction of these

changes is a result of DNA damage remains unclear.

The studies described thus far highlight the local conse-

quences of DNA damage, through lesions, mutations, and

epigenomic changes at the sites of damage. However, other

studies, especially those conducted by Sinclair and colleagues,
83, July 16, 2014 ª2014 Elsevier Inc. 275
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suggest that DNA damage can also trigger global changes in

chromatin architecture (Oberdoerffer et al., 2008; Oberdoerffer

and Sinclair, 2007). They observed that the exposure of cells

to DNA-damaging agents, including hydrogen peroxide, and

the generation of site-specific DNA DSBs leads to a redistribu-

tion of SIRT1 from various loci, including repetitive DNA ele-

ments, to the sites of DNA damage (Oberdoerffer et al., 2008).

The localization of SIRT1 is essential for DNA repair and there-

fore beneficial in the short term; however, chronic genotoxic

stress during and a persistent redistribution of SIRT1 causes

large-scale transcriptional deregulation of genes normally tar-

geted by SIRT1. Interestingly, the gene expression changes

that result from SIRT1 redistribution parallel those in the aging

mouse brain (Oberdoerffer et al., 2008). These results raise the

possibility that pharmacological SIRT1 activation can impact ag-

ing in at least two ways: by stimulating the repair of damaged

DNA and by promoting the transcriptional regulation of repetitive

elements and other loci normally targeted by SIRT1. In addition

to these mechanisms, telomere dysfunction is thought to be a

major underlying factor in aging (Sahin and DePinho, 2012),

although its specific roles in the aging human brain requires

further characterization.

DNA Damage in Age-Associated Neurodegenerative
Disorders
In addition to normal aging, defective DNA repair has also been

linked with age-associated neurodegenerative disorders such

as Alzheimer’s disease (AD), Parkinson’s disease (PD), and

amyotrophic lateral sclerosis (ALS). For instance, elevated levels

of DNA strand breaks, a reduction in the levels of DSB repair

proteins such as DNA-PKcs and MRN complex proteins, and

decreased BER activity have been described in AD patients

compared to age-matched controls (Adamec et al., 1999;

Jacobsen et al., 2004; Mullaart et al., 1990; Shackelford, 2006).

Similarly, elevated levels of oxidative lesions and SSBs have

been reported in the neurons of ALS patients and damage to

mitochondrial DNA has been documented in PD (Bender et al.,

2006; Kraytsberg et al., 2006; Martin, 2001). While these studies

certainly raise the possibility that defects in the DDR underlie

brain aging and the development of age-related neurodegener-

ative disorders, it should be noted that these studies are largely

correlative in nature and that our understanding of the specific

contribution of DNA damage to the etiology of these disorders

is still only rudimentary. To say that DNA damage has a causal

effect in the neuropathology of AD, PD, or ALS requires speci-

fying what lesions, if any, have a higher propensity to accumulate

in the diseased neurons, identifying the molecular mechanisms

that preclude the repair of these lesions, developing animal

models in which lesion accumulation mimics at least some

aspects of the pathophysiology of human neurodegenerative

disorders, and, ideally, that promoting DNA repair can alleviate

these effects. While an understanding of each of these ques-

tions is currently limited, recent studies are fast changing the

status quo.

A major issue concerns understanding which lesions are cen-

tral to the progression of a given neurodegenerative disease.

Generally, oxidative DNA lesions have received much attention

because the brain has a relatively high metabolic rate, gener-
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ates more ROS, and is thought to have a decreased ratio of anti-

oxidant to pro-oxidant enzymes, all of which translates into a

state of elevated oxidative stress (Canugovi et al., 2013). As

mentioned above, the BER pathway is primarily involved in

the repair of oxidative lesions and consists of enzymes called

DNA glycosylases that specialize in lesion recognition and initial

processing. It has been reported that expression and activity of

various BER factors changes both with age and in disorders

such as AD. For instance, the expression of both UDG1 and

bOGG1 glycosylases, as well as polb, were found reduced

in AD brains compared to age-matched controls (Canugovi

et al., 2013). However, knockout mouse models of various

DNA glycosylases show none of the drastic phenotypes

of human neurodegenerative disorders. In addition, transgenic

mouse models of AD do not exhibit BER deficits. On the one

hand, the lack of an overt phenotype in mice lacking DNA

glycosylases is reminiscent of mouse models of the various

neurodevelopmental disorders described above. On the other

hand, whereas mutations in DDR factors actually underlie the

neurodevelopmental disorders, mutations in BER factors have

so far not been observed in neurodegenerative disorders.

Thus, the specific contribution to age-related neurodegenera-

tion of at least the subset of oxidative lesions that are repaired

through BER remains unclear. In contrast to mouse models

of BER mutants, conditional mouse models in which Ercc1

was specifically deleted in excitatory neurons of the forebrain

showed reduced synaptic plasticity in the hippocampus, as

well as memory impairments that are characteristic features of

age-related neurodegenerative disorders (Borgesius et al.,

2011). Because Ercc1 is a component of the NER pathway,

these results raise the possibility that NER deficits could under-

lie age-related neurodegeneration. However, Ercc1 also partic-

ipates in the repair of DNA DSBs and crosslinks and, like with

BER factors, NER mutations have so far not been identified in

age-related neurodegenerative disorders.

In addition to oxidative lesions, the notion that DNA strand

breaks might contribute significantly to the pathology of age-

related neurodegenerative diseases has recently gained trac-

tion. First, DNA strand breaks are elevated in disorders such

as AD and ALS (Adamec et al., 1999; Martin, 2001; Mullaart

et al., 1990). In addition, elevated levels of DNA DSBs have

now been reported in several mouse models of neurodegenera-

tion (Dobbin et al., 2013; Kim et al., 2008; Suberbielle et al.,

2013). Among these, studies conducted on the p25/Cdk5mouse

model have been particularly illuminating. Cyclin-dependent

kinase 5 (Cdk5) is a brain-specific serine/threonine kinase that

requires its cyclin-like partner, p35, for catalytic activity (Lew

et al., 1994; Tsai et al., 1994). Studies conducted over a dozen

years have informed that in the AD brain as well as under other

neurotoxic conditions, p35 undergoes proteolytic cleavage to

generate p25 and that the association of p25 with Cdk5 changes

the substrate specificity and subcellular localization of Cdk5 (Su

and Tsai, 2011). These observations prompted the generation of

the inducible p25/CDK5mousemodel (CK-p25mice) (Cruz et al.,

2003). Upon induction, CK-p25 mice express p25 in a forebrain-

specific manner and systematically recapitulate various AD-like

pathologies including the accumulation of amyloid-b pep-

tides, neurofibrillary tau tangles, astrogliosis, reduced synaptic
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density, and neuronal loss in the forebrain (Cruz et al., 2003,

2006). Remarkably, an analysis of presymptomatic CK-p25

mice revealed that an accrual of DNA DSBs in the forebrain pre-

cedes the appearance of all other pathological hallmarks and

suggests that DSBs could be the initiating lesion of neurotoxicity

in these mice (Kim et al., 2008).

The unexpected discovery of DSBs in a mouse model of neu-

rodegeneration triggered further investigations into the mecha-

nisms underlying their accumulation in CK-p25 mice. These

studies attributed the elevated DSBs to an inhibition of the class

I histone deacetylase (HDAC1) in CK-p25 mice and found that

overexpression of HDAC1 suppressed both the increased sus-

ceptibility to DSBs and the neuronal loss caused by p25 overex-

pression (Kim et al., 2008). However, a separate study noted that

overexpression of the NAD+-dependent deacetylase SIRT1 can

also prevent neuronal loss in CK-p25 mice (Kim et al., 2007).

Meanwhile, several groups working in dividing cells reported

that SIRT1 is essential for the recruitment of NBS1 and RAD51

to the sites of DNA DSBs and that HDAC1 plays an important

role in DSB repair through the NHEJ pathway (Oberdoerffer

et al., 2008; Yuan et al., 2007). These observations suggested

that the neuroprotective functions of SIRT1 and HDAC1 in CK-

p25 mice might arise from their roles in the neuronal DSB

response. A direct exploration of the functions of SIRT1 and

HDAC1 in the DSB response of postmitotic neurons has pro-

vided further insights into this question (Dobbin et al., 2013).

Neurons lacking either SIRT1 or HDAC1 are more susceptible

to DSB-inducing agents and are deficient in DSB repair. Both

SIRT1 and HDAC1 also localize rapidly to the sites of DNA

DSBs and SIRT1 specifically exhibits a codependent relation-

ship with ATM for its recruitment to DSBs and also stimulates

the autophosphorylation and activity of ATM (Dobbin et al.,

2013). Interestingly, however, SIRT1 also shares an enzyme-

substrate relationship with HDAC1 in which SIRT1 deacetylates

and stimulates the catalytic activity of HDAC1 and helps recruit

HDAC1 to the sites of DNA damage. The effects of SIRT1 on

HDAC1 activity can also be achieved by treatment with pharma-

cological activators of SIRT1 both in vitro and in vivo (Dobbin

et al., 2013). Finally, pharmacological activation of SIRT1 is

able to stimulate HDAC1 deacetylation, reduce DSB formation

and improve neuronal survival in CK-p25 mice. Taken together,

the studies involving CK-p25 mice not only implicate DSBs as

a lesion that could underlie neurodegeneration, but also provide

new clues into activities that could guard against genomic insta-

bility and preserve neuronal viability.

Although extremely cytotoxic, DSB formation is also incredibly

rare even in proliferating cells, where DNA replication is an

important source of these lesions. The notion of DSBs being

important for age-related neurodegeneration therefore requires

identifying the processes that lead to their formation in the first

place. Interestingly, a recent report indicates that physiological

neural activity, including performing new learning tasks, itself

can introduce DSBs within neurons (Suberbielle et al., 2013).

Moreover, using an ADmousemodel, the authors show that am-

yloid b generation exacerbates the accumulation of these DSBs

(Suberbielle et al., 2013). At present, it is still unclear whether

these DSBs serve a physiological purpose or whether they are

merely a consequence of the changes that occur during neuronal
activation, and further studies in this line should illuminate the

precise risk posed by DSB formation induced during neural

activity. Nonetheless, these results provide new evidence to

suggest that DSBs are in fact produced in neurons under phys-

iological conditions and that their repair could govern neuronal

survival in neurodegenerative diseases.

A potential strategy to determine the role of DDR defects

in age-related neurodegeneration consists of understanding

whether mutations that cause the familial forms of these disor-

ders also perturb the DDR. While such connections remain

largely obscure, recent studies involving the RNA/DNA binding

protein FUS could represent a breakthrough in this direction. In

2009, two studies identified more than a dozen mutations in

FUS that are linked with familial ALS (fALS) and found that these

mutations cause FUS to be deposited in the cytoplasm (Kwiat-

kowski et al., 2009; Vance et al., 2009). Based on its similarity to

another RNA binding protein called TDP-43 that was also impli-

cated in familial ALS, a majority of studies on FUS have since

centered on its role in RNA processing (Lagier-Tourenne and

Cleveland, 2009). Interestingly, however, FUS (which stands

for Fused in Sarcoma) was also shown to be important for

genomic stability more than a decade ago. For instance,

Fus�/� mice suffer from high levels of genomic instability,

defective B-lymphocyte development, male sterility, and un-

dergo perinatal death, and FUS was shown to participate in

D-loop formation, which is an intermediate step in DNA repair

through HR (Baechtold et al., 1999; Hicks et al., 2000; Kuroda

et al., 2000). Recently, several independent studies have

demonstrated the rapid recruitment of FUS to laser-induced

DNA damage sites, which is crucial for efficient DSB repair

(Mastrocola et al., 2013; Rulten et al., 2014; Wang et al.,

2013). FUS recruitment to DSBs depends on the enzymatic

activity of PARP-1, but not on DNA-PK or ATM, and in FUS

knockdown neurons, the response to treatment with DSB-

inducing agents is dampened. Moreover, stable tethering FUS

to chromosomes in the absence of a DSB is sufficient to elicit

the DDR (Wang et al., 2013). Thus, FUS appears to be an

early component that participates in the initial steps of DDR

signaling. Furthermore, FUS directly interacts with HDAC1,

and the interacting domains map to the G-rich and C-terminal

domains within FUS, where the majority of the fALS mutations

are also concentrated. fALS FUS mutants display an impaired

interaction with HDAC1 and lead to deficient DNA repair

(Wang et al., 2013). Importantly, when motor cortex samples

from ALS patients harboring C-terminal FUS mutations were

analyzed, it was found that the amount of DNA damage is signif-

icantly enriched compared to normal brain tissues (Wang et al.,

2013). Together, these studies suggest that the dysfunction of

FUS in DSB signaling and repair could contribute to the disease

progression of FUS-linked fALS.

In conclusion, it is becoming increasingly clear that the DNA

damage response is important during both neural development

and in the mature nervous system. Mutations in core DNA

repair factors are either incompatible with life, or, even when

tolerated, manifest in severe neurodevelopmental disorders.

On the other hand, determining the specific contribution of

DNA damage to brain aging and neurodegeneration remains a

complex problem. The vulnerability of postmitotic neurons to
Neuron 83, July 16, 2014 ª2014 Elsevier Inc. 277
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certain types of DNA damage (such as oxidative lesions or

certain DNA strand break lesions) coupled with a gradual

decline in the activities of corresponding repair mechanisms

could lead to their accumulation with age and contribute to

brain aging and neurodegeneration. In addition, mutations in

certain DDR factors (such as FUS) could exacerbate these ef-

fects and predispose individuals to neurodegeneration. In the

future, identification of the specific lesions that accumulate in

human age-related neurodegenerative diseases and the gener-

ation of new conditional mouse models are likely to provide key

insights into which activities should be targeted in therapeutic

strategies to combat these disorders.
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