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Synchronous Activity of Inhibitory Networks in
Neocortex Requires Electrical Synapses
Containing Connexin36

apses (Galarreta and Hestrin, 1999; Tamas et al., 2000),
but electrical synapses may be essential for coordinat-
ing the activity of at least some interneurons. In neocorti-
cal slices, the LTS interneurons generate highly synchro-
nized patterns of either rhythmic or irregular spiking
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when activated by metabotropic glutamate or acetyl-Boston, Massachusetts 02115
choline receptor agonists (Beierlein et al., 2000). Syn-2 Department of Neuroscience
chronous LTS firing in turn produces well-correlatedBrown University
patterns of inhibition in the local neural circuit of FSProvidence, Rhode Island 02912
interneurons and excitatory neurons (i.e., regular spik-
ing, or RS, cells). It seems likely that electrical synapses
are critically necessary for coordinating the activity ofSummary
LTS interneurons under experimental conditions for the
following reasons (Beierlein et al., 2000; Gibson et al.,Inhibitory interneurons often generate synchronous
1999). First, the membrane potentials of LTS cells remainactivity as an emergent property of their interconnec-
highly synchronized even when fast chemical synapsestions. To determine the role of electrical synapses in
and action potentials are blocked. Second, LTS cells

such activity, we constructed mice expressing histo- form electrical synapses almost exclusively with other
chemical reporters in place of the gap junction protein LTS cells. Finally, chemical synapses between LTS cells
Cx36. Localization of the reporter with somatostatin are sparse.
and parvalbumin suggested that Cx36 was expressed Electrical synapses, or neuronal gap junctions, are
largely by interneurons. Electrical synapses were composed of intercellular channels which span the
common among cortical interneurons in controls but plasma membranes of adjoining cells and directly con-
were nearly absent in knockouts. A metabotropic glu- nect their cytoplasms. In vertebrates, these channels
tamate receptor agonist excited LTS interneurons, are encoded by the connexin (Cx) family of genes (White
generating rhythmic inhibitory potentials in surrounding and Paul, 1999), which contains at least 16 different
neurons of both wild-type and knockout animals. How- members. Connexin-based channels are permeable to
ever, the synchrony of these rhythms was weaker and inorganic ions as well as to small molecules (�1000 Da),
more spatially restricted in the knockout. We conclude and thus couple cells both electrically and metabolically.
that electrical synapses containing Cx36 are critical Electrical coupling occurs in a wide variety of neurons
for the generation of widespread, synchronous inhibi- in the vertebrate central nervous system (for review see
tory activity. Bennett [1997]). Transcripts for several Cx genes have

been reported in rodent brain, but the identities of the
neuronal connexins have not been completely estab-Introduction
lished. Only Cx36 has been unequivocally identified at
ultrastructurally defined neuronal gap junctions (RashThe cerebral cortex generates a variety of synchronized,
et al., 2000). In addition, Venance et al. (2000) have dem-often rhythmic patterns of activity that vary with behav-
onstrated the presence of Cx36 transcript in electricallyioral state (Steriade, 1997). The cellular mechanisms un-
coupled interneurons of the neocortex and hippocam-derlying most of these patterns are unknown. One possi-
pus by single-cell RT-PCR. Thus, Cx36 is likely to bebility is that correlated synaptic inhibition coordinates
a component of electrical synapses between corticalthe timing of spikes in large cortical circuits (Buzsaki
interneurons.and Chrobak, 1995; Lytton and Sejnowski, 1991). This

To explore the role of interneuronal electrical syn-implies that networks of inhibitory interneurons can gen-
apses in the generation of synchronous and rhythmicerate synchronized spiking, and studies both in vitro
activity in the neocortex, we constructed mice express-(Benardo, 1997; Michelson and Wong, 1994; Whittington
ing histochemical reporters in place of Cx36. In the neo-et al., 1995) and in vivo (Bragin et al., 1995; Swadlow et
cortex, Cx36 appeared to be expressed largely by in-

al., 1998) suggest that this may be true under certain terneurons. Loss of Cx36 was correlated with a near-
conditions. Synchronous inhibition is likely to be an total loss of electrical coupling between LTS cells and
emergent property of synaptic interactions within net- between FS cells while chemical synapses formed by
works of interneurons (Jefferys et al., 1996). Recent work these cells were normal. A metabotropic glutamate re-
in the neocortex has shown that both the fast spiking ceptor agonist excited LTS interneurons, generating
(FS) (Galarreta and Hestrin, 1999; Gibson et al., 1999; rhythmic inhibitory potentials in surrounding neurons of
Tamas et al., 2000) and the low threshold spiking (LTS) both wild-type and knockout animals. In the knockout
types of inhibitory interneurons are connected by electri- animals, however, the synchrony of rhythms was far
cal synapses (Gibson et al., 1999). weaker and much more spatially restricted.

In principle, either chemical or electrical synapses
could synchronize inhibitory cells. Indeed, FS cells are Results
frequently interconnected by chemical inhibitory syn-

Targeting the Cx36 Gene
Cx36 coding sequences were replaced with a bicistronic3 Correspondence: dpaul@hms.harvard.edu
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Figure 1. Targeting the Cx36 Gene

(A) Structure of wild-type (WT) and mutant alleles and targeting vector. Cx36 coding region was replaced with a bicistronic reporter cas-
sette containing LacZ and IRES-PLAP. The 5� homology region was supplied by a 2 kb Bgl2/Sma1 fragment, placing the start codon of
�-galactosidase 71 bp upstream of the Cx36 start in the Cx36 5� UTR.
(B and C) Analysis of homologous recombination. 5� recombination was verified by Southern blot using a probe outside the targeting construct
and confirmed using a LacZ probe. Because flanking 3� probes were unavailable, 3� recombination was assessed using an internal probe (B),
then verified by PCR using a 5� neo primer and a 3� primer external to the targeting construct (C). To verify the loss of Cx36 protein, frozen
sections of WT and knockout (KO) retina were stained with anti-Cx36 antibodies.
(D) WT retina exhibited punctate or macular staining confined to the plexiform layers, consistent with the known locations of gap junctions
between retinal neurons.
(E) No signal above background was evident in KO retina.

dase (�-gal) and placental alkaline phosphatase (PLAP) tile, and did not display gross anatomic or motor defects
(data not shown). Loss of Cx36 expression in homozy-(Figures 1A, 1B, and 1C). Translation of PLAP was driven

by an internal ribosome entry site (IRES). In interneurons, gotes was verified by immunostaining frozen sections
of retina. For this demonstration, the principal advan-only �-gal was expressed at levels sufficient for histolog-

ical detection. Cx36 knockout animals were viable, fer- tages of the retina over the brain are the restriction of
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Figure 2. Cx36 Is Expressed in Many Areas of the CNS

(A) In low magnification view, �-gal reaction product is evident in many brain regions. The patterns of expression were similar if not identical
in homo- and heterozygote specimens. The box encloses an area of somatosensory cortex where electrophysiological recordings were
performed. M1, primary motor cortex; S1bf, barrel cortex; pir, piriform cortex; CA1/CA3, hippocampus; Th, thalamic nuclei; nRT, nucleus
reticularis; amyg, amygdaloid nuclei.
(B and C) Interneuron marker expression in a region corresponding to box in (A). Frozen sections were histochemically labeled for �-gal (blue
cells) then immunolabeled (brown cells) for either parvalbumin (B) or somatostatin (C). Arrows indicate examples of double positive cells.
Most if not all Cx36-expressing cells in layer 4 were interneurons by the criteria of parvalbumin or somatostatin expression.

electrical synapses to anatomically distinct locations, bodies scattered in the strata oriens and radiatum were
frequently labeled. In CA3, it was not possible to rulethe inner and outer plexiform layers (Raviola and Gilula,

1975; Raviola and Raviola, 1982), and the fact that Cx36 out expression by pyramidal cells, but in CA1 and the
nonpyramidal areas the pattern of labeling was veryis particularly abundant (Sohl et al., 1998). While wild-

type retinae exhibited strong punctate staining in those similar to the distribution of GABAergic neurons. Simi-
larly, the pattern of reporter expression in the dentateregions (Figure 1D), no signal was detected in Cx36

knockout retinae (Figure 1E). gyrus, neostriatum, and cerebellum (data not shown)
corresponded well with the distribution of interneurons.
Significant expression was also observed in regionsCx36 Marker Is Expressed Largely by Interneurons

The distribution of the �-gal reporter was determined where electrical coupling has not been well character-
ized, such as the amygdaloid nuclei. Where comparisonhistochemically in brain sections. The micrograph in Fig-

ure 2A displays a low magnification view of a 200 �M was possible, the pattern of reporter in the brain was
generally similar to that of Cx36 mRNA as assessed byvibratome section from a postnatal day 15 (P15) knock-

out brain. The age of the specimen and the oblique in situ hybridization (Condorelli et al., 2000).
The number of cells expressing reporter in the neocor-orientation of the section is the same as that used for

electrophysiological characterization. This orientation tex and other brain regions at P15 is substantial. Possi-
bly, some of the staining may represent gap junctionsmaintains some of the connections between thalamic

relay nuclei and somatosensory cortex (Agmon and present only during neurogenesis and circuit formation,
which are eliminated later in development (Connors etConnors, 1991). In neocortex, staining was evident in

all layers where neuronal cell bodies were located, al- al., 1983; Yuste et al., 1992). Alternatively, the formation
of electrical synapses containing Cx36 may be a rela-though the intensity depended on both the specific layer

and the cortical area. For example, upper layer staining tively common feature of more mature GABAergic neu-
rons. To explore the identity of the cells expressing re-was modest in piriform cortex but increased dorsally to

very high levels in primary motor and cingulate areas. porter, 14 �M frozen sections were double labeled
histochemically for �-gal and for either parvalbumin (PV;In contrast, staining was virtually absent in thalamic

nuclei with the exception of the nucleus reticularis. In Figure 2B) or somatostatin (SS; Figure 2C) using anti-
bodies. In previous studies, parvalbumin expressionthe hippocampus, strong expression was observed in

the pyramidal layer of CA3 but not CA1. In addition, cell marked at least a subset of FS neurons but did not label
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Figure 3. Electrical Coupling between Interneurons Is Rare and Weak in the KO

(A) Representative recordings showing coupling between a pair of LTS cells in WT neocortex. Note difference in voltage scale for driver and
follower cells.
(B) Coupling between a pair of FS cells in WT; this pair also had an inhibitory chemical synapse, and spikes in FS1 generated a series of
compound electrical PSP-IPSPs in FS2.
(C) Absence of coupling in a representative closely spaced pair of LTS cells from KO.
(D) Chemical inhibitory synapses in KO were similar to those in WT cortex (FS-FS cell pairs).

LTS neurons, while somatostatin expression displayed Electrical Coupling Is Nearly Absent
in the Knockoutthe opposite pattern (Gibson et al., 1999; Kawaguchi

and Kubota, 1997). Microelectrode recordings showed that the neocortex
of the Cx36 knockout was dramatically deficient in elec-In layer 4 of the barrel cortex, 78% of the �-gal-positive

cells were also PV-positive (in 15 independent fields, 72 trical synapses. Electrical coupling was assessed by
making paired whole-cell recordings from electrophysi-cells were positive only for �-gal, 140 were positive only

for PV, and 239 cells were double positive). Conversely, ologically identified neurons in layer 4 and passing cur-
rent pulses sequentially into each cell (Figures 3A and26% of �-gal-positive cells were also SS-positive (in 13

independent fields, 201 cells were positive only for �-gal, 3B). As previously observed for rats (Gibson et al., 1999)
electrical coupling occurred in more than 50% of wild-141 were positive only for SS, and 54 were double posi-

tive; the micrographs in Figures 2B and 2C contain good type pairs of similar interneurons (i.e., FS-FS or LTS-
LTS), whereas pairs of dissimilar wild-type interneuronsexamples of double labeled cells but are not numerically

typical). Assuming no neurons are positive for both PV (FS-LTS) were not coupled (Table 1). Electrical coupling
in knockout was rare and weak compared to wild-typeand SS, these findings are consistent with a restriction of

Cx36 expression to PV- and SS-positive cells. However, (Figure 3C). Only 7% of sampled FS-FS pairs, and none
of the LTS-LTS or FS-LTS pairs, had measurable electri-significant numbers of PV-positive (37%) and SS-posi-

tive (73%) cells did not contain detectable �-gal reaction cal coupling in knockout (Table 1). Furthermore, the av-
erage coupling coefficient for the three coupled pairsproduct. Thus, there could be a different ratio of Cx36-

expressing cells in each class of interneuron. Analysis of FS interneurons in knockout was only 10% that of
the coupled wild-type pairs (Table 2).is complicated by the tendency of the histochemical

and immunochemical signals to interfere with each Most other physiological properties of knockout in-
terneurons were similar to those of wild-type interneu-other, and the problem that levels of both signal types

varied significantly from cell to cell. While more quantita- rons (Table 2). The input resistances of FS and LTS neu-
rons in the knockout were significantly higher than thosetive results must await further study, it can be safely

concluded that pyramidal cells do not widely express of wild-type cells, but this would be expected if electrical
synapses account for some of the input conductancereporter but that many interneurons do.
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Table 1. Frequencies of Chemical and Electrical Synapses between Wild-Type (WT) and Knockout (KO) Neuron Pairs

Synaptic Total Reciprocal Electrical
Connections Total Electrical Chemical Chemical and Chemical
Tested Genotype Cell Pairs Synapses Synapses Synapses Synapses

FS↔FS WT 21 12 27 11 12
KO 30 3 38 14 3

LTS↔LTS WT 5 3 0 0 0
KO 3 0 0 0 0

LTS→FS WT 10 0 6 4 0
KO 14 0 6 5 0

FS→LTS WT 10 0 5 4 0
KO 14 0 8 5 0

Data include only cell pairs with somata spaced �70 �m apart. Arrows indicate the direction of chemical synaptic connection tested.

out should be severely compromised. We repeated ex-of each cell (Gibson et al., 1999). Spike frequency adap-
periments previously done in normal rat neocortextation of FS cells (but not LTS cells) was slightly but
(Beierlein et al., 2000). The metabotropic glutamate re-significantly reduced in knockout neurons, perhaps as
ceptor agonist ACPD caused nearly all LTS cells to de-a consequence of the higher input resistances. Proper-
polarize and fire repetitive action potentials for the dura-ties of the excitatory RS neurons in wild-type and knock-
tion of the ACPD application, in both wild-type (30/33out were indistinguishable. In addition to electrical syn-
cells) and knockout (15/16 cells) (Figure 4A). Prolongedapses, FS cells frequently made inhibitory chemical
excitation by ACPD was selective for LTS cells in wild-synaptic connections with each other (Galarreta and
type and knockout; about 15% of FS cells (n � 80 wild-Hestrin, 1999) and with LTS cells (Gibson et al., 1999;
type, 92 knockout) were transiently (�10 s) depolarizedTamas et al., 2000), whereas LTS cells formed chemical
above threshold by ACPD, and about 5% of FS cellssynapses with LTS cells but not FS cells (Gibson et al.,
generated sustained firing. When ACPD-activated LTS1999). The incidence, strength, and short-term plasticity
cells from wild-type were hyperpolarized with injected

of inhibitory postsynaptic potentials (IPSPs) were similar current, sharp subthreshold fluctuations of the mem-
in wild-type and knockout (Figure 3D; Tables 1 and 2). brane potential were often evident (18/35 cells; Figure
We conclude that the major cellular phenotype of the 4B). In a previous study (Beierlein et al., 2000), these
Cx36 mutation is a dramatic reduction in the number fluctuations were shown to be either attenuated, electro-
and strength of electrical synapses among both FS and tonically conducted action potentials (“spikelets”) or
LTS interneurons. spike-independent oscillations from neighboring LTS

cells. Despite being strongly depolarized by ACPD, LTS
ACPD Activates LTS Cells in Both WT cells from knockout never generated such fluctuations
and Knockout (n � 17; Figure 4B). These observations are consistent
If electrical synapses are critical for interneuron-based with the absence of electrical synapses in our sample

of LTS cell pairs from knockout.network synchrony, then synchrony in the Cx36 knock-

Table 2. Electrophysiological Properties of Neurons and Inhibitory Synapses in Wild-Type (WT) and Knockout (KO)

FS Cells LTS Cells RS Cells

Input resistance (M�) WT 50 � 20 (86) 108 � 59 (38) 198 � 70 (21)
KO 66 � 26 (108)a 153 � 61 (22)a 172 � 69 (25)

Spike width (ms) WT 0.31 � 0.07 (77) 0.57 � 0.13 (36) 1.03 � 0.24 (19)
KO 0.31 � 0.07 (82) 0.57 � 0.13 (20) 0.99 � 0.32 (20)

Frequency adaptation WT 0.79 � 0.19 (35) 0.58 � 0.15 (29) —
KO 0.90 � 0.16 (42)a 0.54 � 0.15 (13) —

Electrical coupling coefficientb WT 0.061 � 0.054 (11) 0.096 � 0.045 (3) —
KO 0.006 � 0.002 (3)a — —

IPSP amplitude (mV) WT 2.0 � 1.8 (21)c 0.5 � 0.4 (6)d 1.5 � 1.3 (5)e —
KO 1.5 � 1.1 (35)c 1.0 � 0.6 (5)d 2.0 � 1.8 (5)e —

IPSP dynamics WT 0.50 � 0.10 (15)c 1.0 � 0.6 (6)d 0.5 � 0.1 (5)e —
KO 0.47 � 0.14 (35)c 1.0 � 0.1 (4)d 0.4 � 0.1 (4)e —

Data are expressed as mean � SD (number of cells or number of cell pairs for IPSP measurements). Input resistance was tested with small
hyperpolarizing current pulses. Spike width of the last spike in train was measured at half amplitude. Spike frequency adaptation was calculated
as (adapted/initial) frequencies (�220 Hz initial rate). IPSP dynamics measured as (average of last three IPSPs/first IPSP) amplitudes.
a P � 0.01 (Student’s t test, two-tailed)
b Only cells with detectable coupling are included in these statistics.
c FS↔FS synapses
d LTS→FS synapses
e FS→LTS synapses
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Figure 4. ACPD Excites LTS Cells Similarly in WT and KO

(A) ACPD depolarized and triggered spiking in LTS cells of both WT
and KO.
(B) When activated by ACPD, WT-LTS cells held below the threshold
for full action potentials displayed subthreshold spikelets; attenu-
ated, they displayed electrotonically conducted action potentials.
In contrast, LTS cells from the KO did not display spikelets.

Correlated Inhibition Is Reduced in the Knockout
In wild-type neocortex, ACPD-induced spiking in LTS
cells coincided with repetitive IPSPs in local RS and
FS cells (Beierlein et al., 2000). When LTS spiking was
prevented with injected current, the subthreshold
ACPD-induced fluctuations were highly anticorrelated
with IPSPs in RS and FS cells (Figures 5A and 5B).
Because spikelets never occurred in knockout LTS cells,
strong correlations between the membrane activity of
LTS and RS/FS cells were never observed in the knock- Figure 5. Correlation of Subthreshold ACPD-Induced LTS Fluctua-

tions with IPSPs in Local FS Cells Is Lost in the KOout. The phase-locked activity induced by ACPD oc-
(A) In WT, simultaneous recordings showed rhythmic IPSPs in ancurred at two distinct time scales. Younger cortex (P14–
FS cell, in phase with depolarizations in an LTS cell; LTS-FS pairs17) generated continuous, minutes-long rhythms at
from KO generated more weakly correlated activity (distance be-about 14 Hz (Figure 5A). When recorded as IPSPs in FS
tween cells was 55 �m for the WT and 45 �m for the KO).and RS cells, this relatively fast activity was larger in
(B) Crosscorrelograms from cell pairs shown in (A); the LTS-FS pair

amplitude and more regular in wild-type as compared from WT is strongly anticorrelated (thin trace) and has prominent
to knockout. Amplitudes of IPSPs recorded in FS and side bands indicative of 14 Hz rhythmicity. LTS-FS pair from KO is

nearly uncorrelated (thick trace).RS cells were measured as mean peak IPSP (wild-type �
(C) Epochs of 3–5 Hz ACPD-induced rhythmic IPSPs were highly2.0 � 1.1mV, knockout � 1.3 � 0.5mV [p � 0.0005]) or
correlated in a pair of FS cells from WT cortex (280 �m apart).as the SD of the membrane fluctuations (wild-type �
ACPD-induced epochs of IPSPs from KO were uncorrelated and0.62 � 0.31mV, knockout � 0.42 � 0.15mV [p � 0.0003]).
nonoverlapping (290 �m apart). One second time calibration applies

Regularity was measured from 30 s traces that subjec- to WT; 2 s calibration to KO.
tively displayed the most consistent fast rhythmicity and
had no clear 3–6 Hz epochs. First, power spectra were
used to find the frequency (� 10% window) of maximum type versus 14.1 � 3.5 Hz for knockout, p � 0.6: n �

35 and 13).power. “Regularity” was defined as this power normal-
ized by the total power from 1.5–70 Hz (expressed as ACPD also induced a more episodic activity at all

ages (P14–21), typically consisting of 2–7 s epochs ofpercent). Regularity decreased with age in wild-type,
from 35.7% � 18.6% at P14–P17 to 18.6% � 9.3% at rhythmic (3–5 Hz) or irregular fluctuations that repeated

at about 0.07 Hz (Figure 5C). In FS and RS cells these�P17 (p � 0.00003; n � 35 and 22, respectively). Within
the P14–P17 group, wild-type was more regular than epochs were generated by IPSPs; in LTS cells they were

membrane fluctuations independent of chemical syn-knockout, although peak frequency was similar (power:
35.7% � 18.6% for wild-type versus 22.2% � 8.4% for apses (Beierlein et al., 2000). The incidence of ACPD-

induced slower frequency IPSP epochs in FS and RSknockout, p � 0.001; frequency: 13.4 � 5.3 Hz for wild-
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Discussion

Electrical coupling and spikelets were absent in LTS
interneurons of knockout animals, and nearly all cou-
pling was gone in FS cells of knockouts as well. We
conclude that Cx36 is critical for the formation of func-
tional gap junctions in most interneurons of the neocor-
tex. The very small residual FS coupling suggests that
other connexins may be present. It is possible that the
constitutive deletion of Cx36 has resulted in a compen-
satory upregulation of other connexin genes. However,
the majority of nonneural cells express multiple connex-
ins (White and Paul, 1999), and it is likely that neurons
do as well. In support of this idea, Cx32 transcript and
protein have been reported in neurons (Micevych and
Abelson, 1991; Nadarajah et al., 1997; Shiosaka et al.,
1989), in one case together with Cx36 (Venance et al.,
2000).

A most interesting characteristic of the Cx36 knockout
was its severe impairment in the synchronous features
of LTS-based rhythmic inhibition. This deficiency does
not arise from an altered sensitivity of LTS cells to the
metabotropic agonist, nor from an inability of the LTS

Figure 6. ACPD-Induced Synchrony Is Weaker and More Spatially cells to generate IPSPs in its FS and RS follower cells.
Restricted in the KO Rather, it is likely that the absence of Cx36-based electri-
Scatter plot of normalized peak crosscorrelations as a function of cal synapses between LTS cells renders them incapable
intercellular distance. Each point represents a neuron pair; filled

of coordinating their firing patterns. Uncorrelated firingsymbols are from KO, open symbols from WT. Gray zones show
within the LTS network precluded strongly synchronousthe baseline correlations derived from shuffled records. The top

graph shows data from high-frequency (about 14 Hz) activity, from inhibition across many neurons at long distances. Some
animals aged P14–17. The bottom graph shows low-frequency modest and localized synchrony of IPSPs was main-
rhythmic activity from animals aged P14–21. Lines are the best- tained in the knockout, presumably because the axons
fits of single exponentials (dashed � WT, solid � KO). The high-

of single LTS cells diverge onto common follower cells.frequency lines are significantly different in peak amplitude (p �
Our results imply that electrical synapses serve to coor-0.001); low-frequency lines have significantly different in space con-
dinate the activity patterns of large networks of inhibi-stants (p � 0.001) but have similar amplitudes at short distances.

tory interneurons in neocortex. The wider generality of
our conclusions is supported by similar findings in the

cells was similar in the sample of wild-type (52%, n �
hippocampus of a different Cx36 knockout mouse (H.

161) and knockout (47%, n � 155) cells, but IPSP ampli-
Monyer, personal communication).tudes were larger in wild-type (3.5 � 1.7mV, n � 70)

The Cx36 knockout mouse should prove valuable forthan in knockout (2.9 � 1.1mV, n � 71; p � 0.02), while
understanding the functions of a variety of electricallythe mean frequency was lower in wild-type (3.5 � 0.7
coupled networks in the brain. Its cellular phenotypeHz) than in knockout (5.2 � 2.0 Hz, p � 0.0000001).
suggests that the knockout may suffer from abnormalDuring both the faster (Figures 5A and 5B) and slower
electrographic rhythms of its forebrain circuits (Llinas(Figure 5C) ACPD-induced activity, pairs of wild-type
et al., 1999). In this context, it is noteworthy that humanneurons were more strongly correlated than pairs of
Cx36 may be linked to a juvenile form of myoclonicknockout neurons. Correlated activity was a steep func-
epilepsy and an inherited abnormality in sensory re-tion of intercellular distance, as assessed by recordings
sponses associated with a predisposition to schizophre-from neuron pairs with variable horizontal spacing (Fig-
nia (Belluardo et al., 1999). FS cells have been implicatedure 6) (Beierlein et al., 2000). Sustained high-frequency
in sensory transformations of the neocortex (Azouz etIPSPs were more strongly correlated in pairs of wild-
al., 1997; Brumberg et al., 1996), and the possibility thattype neurons than knockout neurons at all distances.
their electrical synapses may coordinate the temporalLow-frequency IPSP epochs in wild-type and knockout
or spatial characteristics of stimulus-mediated inhibitioncell pairs were similar at the shortest distances, but
can be tested in the knockout. Finally, electrical syn-correlations fell much more steeply with distance in
apses may critically influence other forms of synchrony.knockout than in wild-type. Correlations were at base-
For example, in the developing retina, electrical syn-line levels for both high- and low-frequency epochs by
apses between ganglion and amacrine cells may influ-about 200 �m in the knockout. The drop-off in correla-
ence the production of spontaneously arising waves oftion with distance in both wild-type and knockout is, in
excitation (Catsicas et al., 1998; Roerig and Feller, 2000;large part, due to epochs no longer occurring simultane-
Wong et al., 1998) which direct formation of eye-specificously over longer distances. We conclude that the ampli-
layers in the lateral geniculate nucleus (Katz and Shatz,tude, synchrony, and spatial extent of synchronous LTS-
1996). A test of these ideas awaits the precise identifica-mediated activity were strongly impaired in the Cx36

knockout. tion of the connexins expressed in these systems.
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Experimental Procedures type of the animals until after data were analyzed. Recordings were
made from 129 wild-type and 124 knockout neuron pairs, of which
17 wild-type and 15 knockout neurons could not be reliably identifiedGene Targeting

Cx36 genomic clones were obtained from a 129SV genomic phage and were excluded from data presented here. Spike frequency adap-
tation was defined as the ratio of the final spiking rate to the initiallibrary (Stratagene) using a 533 bp probe corresponding to the se-

quences encoding the cytoplasmic loop and carboxy-terminus of spiking rate during 600 ms suprathreshold step current stimuli (Fig-
ures 3A and 3B). Average coupling coefficient was determined asCx36. The probe was generated by PCR using primers A (GCGGAG

GGAGCAAACGAGAAG) and B (CTGCCGAAATTGGGAACACTGAC). previously described (Gibson et al., 1999). Short-term dynamics of
inhibitory synapses were tested by evoking eight action potentialsThe targeting vector was based on pPNT (Tybulewicz et al., 1991)

modified to incorporate a bicistronic reporter cassette containing at 40 Hz in one cell while recording IPSPs in the other cell; dynamics
are specified as the ratio of the final IPSP amplitude relative to theLacZ (Shalaby et al., 1995) and IRES-PLAP (gift of C. Cepko). The

construct was linearized at a unique SalI site adjacent to the TK initial IPSP amplitude. Paired voltage records from ACPD experi-
ments were analyzed with auto- and cross-correlograms and powerand transfected into J1 ES cells that were selected for double resis-

tance to G418 and gancyclovir. Resultant ES cell clones were spectra using Labview software (National Instruments) as previously
described (Beierlein et al., 2000). Fast oscillation measurementsscreened by PCR with a 5� primer external to the targeting vector

(Primer C: ATTTGTTGCAGGGCAACTGAC) and a 3� LacZ primer were made on 30 s traces with no low frequency epochs. Correla-
tions for low-frequency epochs were only done for pairs in which(Primer D: GCCTCTTCGCTATTACG). Six of 450 clones screened in

this fashion showed correct recombination. After karyotyping, two both cells displayed such epochs. The low-frequency correlation
for each pair is the average correlation during each 2–7 s epochlines were selected for injected into C57/B6 blastocysts resulting

in germline-transmitting chimeras. Cx36 knockout progeny were that occurred in either cell. Baseline correlations were determined
from randomly shuffled records of ACPD-induced activity.genotyped by PCR using primer pair C and D to detect the targeted

allele, and the primer pair A and B to detect the wild-type allele. 3�

homologous recombination was confirmed by PCR using the 5� Acknowledgments
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