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Abstract

We study the boundary-value problem

{
F(D2u,Du,u, x) + λu = f (x,u) in Ω,

u = 0 on ∂Ω,

where the second order differential operator F is of Hamilton–Jacobi–Bellman type, f is sub-linear in u at
infinity and Ω ⊂ RN is a regular bounded domain. We extend the well-known Landesman–Lazer conditions
to study various bifurcation phenomena taking place near the two principal eigenvalues associated to the
differential operator. We provide conditions under which the solution branches extend globally along the
eigenvalue gap. We also present examples illustrating the results and hypotheses.
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1. Introduction

We study the boundary-value problem

{
F(D2u,Du,u, x) + λu = f (x,u) in Ω,

u = 0 on ∂Ω,
(1.1)

where the second order differential operator F is of Hamilton–Jacobi–Bellman (HJB) type, that
is, F is a supremum of linear elliptic operators, f is sub-linear in u at infinity, and Ω ⊂ RN is a
regular bounded domain.

HJB operators have been the object of intensive study during the last thirty years – for a
general review of their theory and applications we refer to [25,31,40,14]. Well-known exam-
ples include the Fucik operator �u + bu+ + au− [26], the Barenblatt operator max{a�u,b�u}
[10,30], and the Pucci operator M+

λ,Λ(D2u) [35,15].
To introduce the problem we are interested in, let us first recall some classical results in the

case when F is the Laplacian and λ ∈ (−∞, λ2) (we shall denote with λi the i-th eigenvalue
of the Laplacian). If f is independent of u, the solvability of (1.1) is a consequence of the
Fredholm alternative, namely, if λ �= λ1, problem (1.1) has a solution for each f , while if λ = λ1
(resonance) it has solutions if and only if f is orthogonal to ϕ1, the first eigenfunction of the
Laplacian. The existence result in the non-resonant case extends to nonlinearities f (x,u) which
grow sub-linearly in u at infinity, thanks to Krasnoselski–Leray–Schauder degree and fixed point
theory, see [1].

A fundamental result, obtained by Landesman and Lazer [32] (see also [29]), states that in the
resonance case λ = λ1 the problem

�u + λ1u = f (x,u) in Ω, u = 0 on ∂Ω

is solvable provided f is bounded and, setting

f ±(x) := lim sup
s→±∞

f (x, s), f±(x) := lim inf
s→±∞ f (x, s) (1.2)

(this notation will be kept from now on), one of the following conditions is satisfied:

∫
Ω

f −ϕ1 < 0 <

∫
Ω

f+ϕ1,

∫
Ω

f−ϕ1 > 0 >

∫
Ω

f+ϕ1. (1.3)

This result initiated a huge amount of work on solvability of boundary-value problems in which
the elliptic operator is at, or more generally close to, resonance. Various extensions of the results
in [32] for resonant problems were obtained in [2,4,12]. Further, Mawhin and Schmitt [34] – see
also [19,18] – considered (1.1) with F = � for λ close to λ1, and showed that the first (resp. the
second) condition in (1.3) implies that for some δ > 0 problem (1.1) has at least one solution for
λ ∈ (λ1 − δ,λ1] and at least three solutions for λ ∈ (λ1, λ1 + δ) (resp. at least one solution for
λ ∈ [λ1, λ1 + δ) and at least three solutions for λ ∈ (λ1, λ1 + δ)). These results rely on degree
theory and, more specifically, on the notion of bifurcation from infinity, studied by Rabinowitz
in [37].
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The same results naturally hold if the Laplacian is replaced by any uniformly elliptic operator
in divergence form. Further, they do remain true if a general linear operator in non-divergence
form

L = aij (x)∂2
xixj

+ bi(x)∂xi
+ c(x) (1.4)

is considered, but we have to change ϕ1 in (1.3) by the first eigenfunction of the adjoint operator
of L. This fact is probably known to the experts, though we are not aware of a reference. Its
proof – which will also easily follow from our arguments below – uses the Donsker–Varadhan
[21] characterization of the first eigenvalue of L and the results in [11] which link the positivity of
this eigenvalue to the validity of the maximum principle and to the Alexandrov–Bakelman–Pucci
inequality (the degree theory argument remains the same as in the divergence case).

The interest in this type of problems has remained high in the PDE community over the years.
Recently a large number of works have considered the extensions of the above results to quasi-
linear equations (for instance, replacing the Laplacian by the p-Laplacian), where somewhat
different phenomena take place, see [6,20,22,23]. There has also been a considerable interest in
refining the Landesman–Lazer hypotheses (1.3) and finding general hypotheses on the nonlinear-
ity which permit to determine on which side of the first eigenvalue the bifurcation from infinity
takes place, see [3,5,27].

It is our goal here to study the boundary-value problem (1.1) under Landesman–Lazer con-
ditions on f , when F is a Hamilton–Jacobi–Bellman (HJB) operator, that is, the supremum of
linear operators as in (1.4):

F [u] := F
(
D2u,Du,u, x

) = sup
α∈A

{
tr
(
Aα(x)D2u

) + bα(x).Du + cα(x)u
}
, (1.5)

where A is an arbitrary index set. The following hypotheses on F will be kept throughout the
paper: Aα ∈ C(Ω), bα, cα ∈ L∞(Ω) for all α ∈ A and, for some constants 0 < λ � Λ, we have
λI � Aα(x) � ΛI , for all x ∈ Ω and all α ∈ A. We stress however that all our results are new
even for operators with smooth coefficients.

Let us now describe the most distinctive features of HJB operators – with respect to the op-
erators considered in the previous papers on Landesman–Lazer type problems – which make
our work and results different. The HJB operator F [u] defined in (1.5) is nonlinear, yet posi-
tively homogeneous (that is, F [tu] = tF [u] for t � 0), thus one may expect it has eigenvalues
and eigenfunctions on the cones of positive and negative functions, but they may be different
to each other. This fact was established by Lions in 1981, in the case of operators with regu-
lar coefficients, see [33]. In that paper he proved F [u] has two real “demi”- or “half”-principal
eigenvalues λ+

1 , λ−
1 ∈ R (λ+

1 � λ−
1 ), which correspond to a positive and a negative eigenfunc-

tion, respectively, and showed that the positivity of these numbers is a sufficient condition for
the solvability of the related Dirichlet problem. Recently in [36] the second and the third author
extended these results to arbitrary operators and studied the properties of the eigenvalues and the
eigenfunctions, in particular the relation between the positivity of the eigenvalues and the valid-
ity of the comparison principle and the Alexandrov–Bakelman–Pucci estimate, thus obtaining
extensions to nonlinear operators of the results of Berestycki, Nirenberg, and Varadhan in [11].
In what follows we always assume that F is indeed nonlinear in the sense that λ+

1 < λ−
1 – note

the results in [36] easily imply that λ+
1 = λ−

1 can occur only if all linear operators which appear
in (1.5) have the same principal eigenvalues and eigenfunctions.
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In the subsequent works [39,24] we considered the Dirichlet problem (1.1) with f indepen-
dent of u, and we obtained a number of results on the structure of its solution set, depending
on the position of the parameter λ with respect to the eigenvalues λ+

1 and λ−
1 . In particular, we

proved that for each λ in the closed interval [λ+
1 , λ−

1 ] and each h ∈ Lp , p > N , which is not a
multiple of the first eigenfunction ϕ+

1 , there exists a critical number t∗λ,F (h) such that the equation

F [u] + λu = tϕ+
1 + h in Ω, u = 0 on ∂Ω (1.6)

has solutions for t > t∗λ,F (h) and has no solutions for t < t∗λ,F (h). We remark this is in sharp
contrast with the case of linear F , say F = �, when (1.6) has a solution if and only if t =
t∗λ,�(h) = − ∫

Ω
(hϕ1) (we shall assume all eigenfunctions are normalized so that their L2-norm

is one). Much more information on the solutions of (1.6) can be found in [39] and [24]. The value
of t∗

λ+
1 ,F

(h) in terms of F and h was computed by Armstrong [7], where he obtained an extension

to HJB operators of the Donsker–Varadhan minimax formula.
We now turn to the statements of our main results. A standing assumption on the function f

will be the following

(F0) f : Ω × R → R is continuous and sub-linear in u at infinity:

lim|s|→∞
f (x, s)

s
= 0 uniformly in x ∈ Ω.

Remark 1.1. For continuous f it is known [16,41,42] that all viscosity solutions of (1.1) are
actually strong, that is, in W 2,p(Ω), for all p < ∞. Without serious additional complications we
could assume that the dependence of f in x is only in Lp , for some p > N .

Remark 1.2. Some of the statements below can be divided into subcases by supposing that f is
sub-linear in u only as u → ∞ or as u → −∞ (such results for the Laplacian can be found in
[19,18]). We have chosen to keep our theorems as simple as possible.

Now we introduce the hypotheses which extend the Landesman–Lazer assumptions (1.3) for
the Laplacian to the case of general HJB operators. From now on we write the critical t-values
at resonance as t∗+ = t∗+(h) = t∗

λ+
1 ,F

(h) and t∗− = t∗−(h) = t∗
λ−

1 ,F
(h), and p > N is a fixed number.

We assume there are

(F
+) a function c+ ∈ Lp(Ω), such that c+(x) � f+(x) in Ω and t∗+(c+) < 0,
(F
−) a function c− ∈ Lp(Ω), such that c−(x) � f −(x) in Ω and t∗−(c−) > 0,
(F r+) a function c+ ∈ Lp(Ω), such that c+(x) � f +(x) in Ω and t∗+(c+) > 0,
(F r−) a function c− ∈ Lp(Ω), such that c−(x) � f−(x) in Ω and t∗−(c−) < 0.

Remark 1.3. Note that, decomposing h(x) = (
∫
Ω

hϕ+
1 )ϕ+

1 (x) + h⊥(x), where ϕ+
1 is the eigen-

function associated to λ+
1 , we clearly have

t∗λ (h) = t∗λ
(
h⊥) −

∫ (
hϕ+

1

)
for each λ ∈ [

λ+
1 , λ−

1

]
. (1.7)
Ω
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So when F = � hypotheses (F
+)–(F
−) and (F r+)–(F r−) reduce to the classical Landesman–
Lazer conditions (1.3), since for the Laplacian the critical t-value of a function orthogonal to ϕ1
is always zero, by the Fredholm alternative.

We further observe that whenever one of the limits f±, f ± is infinite, the functions c±, c±
with the required in (F
+)–(F
−), (F r+)–(F r−) property always exist, while if any of f±, f ± is in
Lp(Ω), we take the corresponding c to be equal to this limit. Note also that the strict inequalities
in (F
+)–(F
−) and (F r+)–(F r−) are important, see Section 7.

Throughout the paper we denote by S the set of all pairs (u,λ) ∈ C(Ω) × R which satisfy
Eq. (1.1). For any fixed λ we set S(λ) = {u | (u,λ) ∈ S} and if C ⊂ S we denote C(λ) = C ∩ S(λ).

Our first result gives a statement of existence of solutions for λ around λ+
1 and λ−

1 , under the
above Landesman–Lazer type hypotheses. We recall that for some constant δ0 > 0 (all constants
in the paper will be allowed to depend on N , λ, Λ, γ , diam(Ω)), λ+

1 , λ−
1 are the only eigenvalues

of F in the interval (−∞, λ−
1 + δ0) – see Theorem 1.3 in [36].

Theorem 1.1. Assume (F0) and (F
+) hold. Then there exist δ > 0 and two disjoint closed con-
nected sets of solutions of (1.1), C1, C2 ⊂ S such that

(1) C1(λ) �= ∅ for all λ ∈ (−∞, λ+
1 ],

(2) C1(λ) �= ∅ and C2(λ) �= ∅ for all λ ∈ (λ+
1 , λ+

1 + δ).

The set C2 is a branch of solutions “bifurcating from plus infinity to the right of λ+
1 ”,

that is, C2 ⊂ C(Ω) × (λ+
1 ,∞) and there is a sequence {(un,λn)} ∈ C2 such that λn → λ+

1
and ‖un‖∞ → ∞. Moreover, for every sequence {(un,λn)} ∈ C2 such that λn → λ+

1 and
‖un‖∞ → ∞, un is positive in Ω , for n large enough.

If we assume (F
−) holds, then there is a branch of solutions of (1.1) “bifurcating from minus
infinity to the right of λ−

1 ”, that is, a connected set C3 ⊂ S such that C3 ⊂ C(Ω) × (λ−
1 ,∞) for

which there is a sequence {(un,λn)} ∈ C3 such that λn → λ−
1 and ‖un‖∞ → ∞. Moreover, for

every sequence {(un,λn)} ∈ C3 such that λn → λ−
1 and ‖un‖∞ → ∞, un is negative in Ω for n

large.

Under the sole hypothesis (F
+) it cannot be guaranteed that the sets of solutions C1 and C2
extend much beyond λ+

1 . This important fact will be proved in Section 7, where we find δ0 > 0
such that for each δ ∈ (0, δ0) we can construct a nonlinearity f (x,u) which satisfies (F0), (F
+)
and (F
−), but for which S(λ+

1 + δ) is empty.
It is clearly important to give hypotheses on f under which we can get a global result, that is,

existence of continua of solutions which extend over the gap between the two principal eigen-
values (this gap accounts for the nonlinear nature of the HJB operator!). The next theorems deal
with that question, and use the following additional assumptions.

(F1) f (x,0) � 0 and f (x,0) �≡ 0 in Ω .
(F2) f (x, ·) is locally Lipschitz, that is, for each R ∈ R there is CR such that |f (x, s1) −

f (x, s2)| � CR|s1 − s2| for all s1, s2 ∈ (−R,R) and x ∈ Ω .

A discussion on these hypotheses, together with examples and counterexamples, will be given in
Section 7.
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Theorem 1.2. Assume (F0), (F1), (F2), (F
+) and (F
−) hold. Then there exist a constant δ > 0
and three disjoint closed connected sets of solutions C1, C2, C3 ⊂ S , such that

(1) C1(λ) �= ∅ for all λ ∈ (−∞, λ+
1 ],

(2) Ci (λ) �= ∅, i = 1,2, for all λ ∈ (λ+
1 , λ−

1 ],
(3) Ci (λ) �= ∅, i = 1,2,3, for all λ ∈ (λ−

1 , λ−
1 + δ).

The sets C2 end C3 have the same “bifurcation from infinity” properties as in the previous theo-
rem.

While Theorem 1.2 deals with bifurcation branches going to the right of the corresponding
eigenvalues, the next theorem takes care of the case where the branches go to the left of the
eigenvalues.

Theorem 1.3. Assume (F0), (F1), (F2), (F r+) and (F r−) hold. Then there exist δ > 0 and disjoint
closed connected sets of solutions C1, C2 ⊂ S such that

(1) C1(λ) �= ∅ for all λ ∈ (−∞, λ+
1 − δ],

(2) C1(λ) �= ∅, C2(λ) contains at least two elements for all λ ∈ (λ+
1 − δ,λ+

1 ), and C2 is a branch
“bifurcating from plus infinity to the left of λ+

1 ”,
(3) C1(λ) �= ∅ and C2(λ) �= ∅ for all λ ∈ [λ+

1 , λ−
1 ), and either:

(i) C1 is the branch “bifurcating from minus infinity to the left of λ−
1 ”,

(ii) there is a closed connected set of solutions C3 ⊂ S , disjoint of C1 and C2, “bifurcating
from minus infinity to the left of λ−

1 ” such that C3(λ) has at least two elements for all
λ ∈ (λ−

1 − δ,λ−
1 ),

(4) C2(λ) �= ∅ for all λ ∈ [λ−
1 , λ−

1 + δ]. In case (ii) in (3), C2(λ) �= ∅ and C3(λ) �= ∅ for all
λ ∈ [λ−

1 , λ−
1 + δ].

Note alternative (3)(ii) in this theorem is somewhat anomalous. While we are able to exclude
it in a number of particular cases (in particular for the model nonlinearities which satisfy the
hypotheses of the theorem), we do not believe it can be ruled out in general. See Proposition 6.1
in Section 6.

Going back to the case when F is linear, a well-known “rule of thumb” states that the number
of expected solutions of (1.1) changes by two when the parameter λ crosses the first eigenvalue
of F . A heuristic way of interpreting our theorems is that, when F is a supremum of linear
operators, crossing a “half”-eigenvalue leads to a change of the number of solutions by one.

The following graphs illustrate our theorems.

The paper is organized as follows. The next section contains some definitions, known results,
and continuity properties of the critical values t∗. In Section 3 we obtain a priori bounds for the
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solutions of (1.1), and construct super-solutions or sub-solutions in the different cases. In Sec-
tion 4 bifurcation from infinity for HJB operators is established through the classical method of
Rabinowitz, while in Section 5 we construct and study a bounded branch of solutions of (1.1).
These results are put together in Section 6, where we prove our main theorems. Finally, a discus-
sion on our hypotheses and some examples which highlight their role are given in Section 7.

2. Preliminaries and continuity of t∗

First, we list the properties shared by HJB operators of our type. The function F : SN ×RN ×
R × Ω → R satisfies (with S,T ∈ SN × RN × R):

(H0) F is positively homogeneous of order 1: F(tS, x) = tF (S, x) for t � 0.
(H1) There exist λ,Λ,γ > 0 such that for S = (M,p,u), T = (N,q, v)

M−
λ,Λ(M − N) − γ

(|p − q| + |u − v|) � F(S, x) − F(T ,x)

� M+
λ,Λ(M − N) + γ

(|p − q| + |u − v|).
(H2) The function F(M,0,0, x) is continuous in SN × Ω .
(DF) We have −F(T − S,x) � F(S, x) − F(T ,x) � F(S − T ,x) for all S, T .

In (H1) M−
λ,Λ and M+

λ,Λ denote the Pucci extremal operators, defined as M+
λ,Λ(M) =

supA∈A tr(AM), M−
λ,Λ(M) = infA∈A tr(AM), where A ⊂ SN denotes the set of matrices whose

eigenvalues lie in the interval [λ,Λ], see for instance [15]. Note under (H0) assumption (DF) is
equivalent to the convexity of F in S – see Lemma 1.1 in [36]. Hence for each φ,ψ ∈ W 2,p(Ω)

we have the inequalities F [φ + ψ] � F [φ] + F [ψ] and F [φ − ψ] � F [φ] − F [ψ].
We recall the definition of the principal eigenvalues of F from [36]

λ+
1 (F,Ω) = sup

{
λ

∣∣ Ψ +(F,Ω,λ) �= ∅}
, λ−

1 (F,Ω) = sup
{
λ

∣∣ Ψ −(F,Ω,λ) �= ∅}
,

where Ψ ±(F,Ω,λ) = {ψ ∈ C(Ω) | ±(F [ψ] + λψ) � 0, ±ψ > 0 in Ω}. Many properties of
the eigenvalues (simplicity, isolation, monotonicity and continuity with respect to the domain,
relation with the maximum principle) are established in Theorems 1.1–1.9 of [36]. We shall
repeatedly use these results. We shall also often refer to the statements on the solvability of the
Dirichlet problem, given in [36] and [24].

We recall the following Alexandrov–Bakelman–Pucci (ABP) and C1,α estimates, see [28,17,
42].

Theorem 2.1. Suppose F satisfies (H0), (H1), (H2), and u is a solution of F [u] + cu = f (x)

in Ω , with u = 0 on ∂Ω . Then there exist α ∈ (0,1) and C0 > 0 depending on N , λ, Λ, γ , c and
Ω such that u ∈ C1,α(Ω), and

‖u‖C1,α(Ω) � C0
(‖u‖L∞(Ω) + ‖f ‖Lp(Ω)

)
.

Moreover, if one chooses c = −γ (so that by (H1) F − γ is proper) then this equation has
a unique solution which satisfies ‖u‖C1,α(Ω) � C0‖f ‖L∞(Ω). More precisely, any solution of
F [u] − γ u � f (x) satisfies supΩ u � sup∂Ω u + C‖f ‖LN .
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For readers’ convenience we state a version of Hopf’s lemma (for viscosity solutions it was
proved in [9]).

Theorem 2.2. Let Ω ⊂ RN be a regular domain and let γ > 0, δ > 0. Assume w ∈ C(Ω)

is a viscosity solution of M−
λ,Λ(D2w) − γ |Dw| − δw � 0 in Ω , and w � 0 in Ω . Then ei-

ther w ≡ 0 in Ω or w > 0 in Ω and at any point x0 ∈ ∂Ω at which w(x0) = 0 we have
lim supt↘0

w(x0+tν)−w(x0)
t

< 0, where ν is the interior normal to ∂Ω at x0.

The next theorem is a consequence of the compact embedding C1,α(Ω) ↪→ C1(Ω), Theo-
rem 2.1, and the convergence properties of viscosity solutions (see Theorem 3.8 in [17]).

Theorem 2.3. Let λn → λ in R and fn → f in Lp(Ω). Suppose F satisfies (H1) and un is a
viscosity solution of F [un] + λnun = fn in Ω , un = 0 on ∂Ω . If {un} is bounded in L∞(Ω) then
a subsequence of {un} converges in C1(Ω) to a function u, which solves F [u] + λu = f in Ω ,
u = 0 on ∂Ω .

As a simple consequence of this theorem, the homogeneity of F and the simplicity of the
eigenvalues we obtain the following proposition.

Proposition 2.1. Let λn → λ±
1 in R and fn be bounded in Lp(Ω). Suppose F satisfies (H1)

and un is a viscosity solution of F [un] + λnun = fn in Ω , un = 0 on ∂Ω . If {un} is unbounded
in L∞(Ω) then a subsequence of un‖un‖ converges in C1(Ω) to ϕ±

1 . In particular, un is positive

(negative) for large n, and for each K > 0 there is N such that |un| � Kϕ+
1 for n � N .

For shortness, from now on the zero boundary condition on ∂Ω will be understood in all
differential (in)equalities we write, and ‖ · ‖ will refer to the L∞(Ω)-norm.

We devote the remainder of this section to the definition and some basic continuity properties
of the critical t-values for (1.6). These numbers are crucial in the study of existence of solutions
at resonance and in the gap between the eigenvalues. For each λ ∈ [λ+

1 , λ−
1 ] and each d ∈ Lp ,

which is not a multiple of the first eigenfunction ϕ+
1 , the number

t∗λ (d) = inf
{
t ∈ R

∣∣ F [u] + λu = sϕ+
1 + d has solutions for s � t

}
is well defined and finite. The non-resonant case λ ∈ (λ+

1 , λ−
1 ) was considered in [39], while the

resonant cases λ = λ+
1 and λ = λ−

1 were studied in [24].
In what follows we prove the continuity of t∗λ : Lp(Ω) → R for any fixed λ ∈ [λ+

1 , λ−
1 ]. Ac-

tually, in [39] the continuity of this function is proved for all λ ∈ (λ+
1 , λ−

1 ), so we only need to
take care of the resonant cases λ = λ+

1 and λ = λ−
1 , that is, to study t∗+ and t∗−. In doing so, it is

convenient to use the following equivalent definitions of t∗+ and t∗− (see [24])

t∗+(d) = inf
{
t ∈ R

∣∣ for each s > t and λn ↗ λ+
1 there exists un

such that F [un] + λnun = sϕ+
1 + d and ‖un‖ is bounded

}
(2.1)

and
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t∗−(d) = inf
{
t ∈ R

∣∣ for each s > t and λn ↘ λ−
1 there exists un

such that F [un] + λnun = sϕ+
1 + d and ‖un‖ is bounded

}
. (2.2)

Proposition 2.2. The functions t∗+, t∗− : Lp(Ω) → R are continuous.

Proof. If we assume t∗+ is not continuous, then there is d ∈ Lp(Ω), ε > 0 and a sequence dn → d

in Lp(Ω) such that either t∗+(dn) � t∗+(d)+3ε for all n ∈ N or t∗+(dn) � t∗+(d)−3ε for all n ∈ N.
First we suppose that t∗+(dn) � t∗+(d)+ 3ε for all n ∈ N. Then, for any sequence λm ↗ λ+

1 we
find solutions um

n of the equation

F
[
um

n

] + λmum
n = (

t∗+(dn) − 2ε
)
ϕ+

1 + d in Ω,

and the sequence {‖um
n ‖} is bounded as m → ∞, for each fixed n – see (2.1). We also consider

the solutions wn of F [wn] − γwn = dn − d . By Theorem 2.1 we know that wn → 0 in C1(Ω).
Then by the structural hypotheses on F (recall F [u + v] � F [u] + F [v]) we have

F
[
um

n + wn

] + λm

(
um

n + wn

)
�

(
t∗+(dn) − 2ε

)
ϕ+

1 + dn + (γ + λm)wn

�
(
t∗+(dn) − ε

)
ϕ+

1 + dn,

where the last inequality holds if n is large, independently of m. Fix one such n. On the other
hand we can take solutions zm

n of

F
[
zm
n

] + λmzm
n = (

t∗+(dn) − ε
)
ϕ+

1 + dn

(
� F

[
um

n + wn

] + λm

(
um

n + wn

))
.

By (2.1) for any n we have ‖zm
n ‖ → ∞ as m → ∞. By the comparison principle (valid by

λm < λ+
1 and Theorem 1.5 in [36]) we obtain zm

n � um
n + wn in Ω , hence zm

n is bounded above
as m → ∞. Since zm

n is bounded below, by Theorem 1.7 in [36] and λm � λ+
1 < λ−

1 , we obtain a
contradiction.

Assume now that t∗+(dn) � t∗+(d) − 3ε. Let un be a solution of

F [un] + λ+
1 un = (

t∗+(d) − 2ε
)
ϕ+

1 + dn in Ω,

which exists since t∗+(dn) < t∗+(d)−2ε – Theorem 1.2 in [24]. Let wn be the solution of F [wn]+
cwn = d − dn in Ω, with wn → 0 in C1(Ω). Then there exists n0 large enough so that (λ+

1 +
γ )wn0 < εϕ+

1 , and consequently un0 + wn0 is a super-solution of

F [u] + λ+
1 u = (

t∗+(d) − ε
)
ϕ+

1 + d in Ω. (2.3)

Now, if w is the solution of F [w] − γw = −d in Ω , by defining vk = kϕ−
1 − w we obtain

F [vk] + λ+
1 vk � k

(
λ+

1 − λ−
1

)
ϕ−

1 + d − (
λ+

1 + γ
)
w >

(
t∗+(d) − ε

)
ϕ+

1 + d,

for k large enough. By taking k large we also have vk < un0 −wn0 in Ω , thus Eq. (2.3) possesses
ordered super- and sub-solutions. Consequently it has a solution (by Perron’s method – see for
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instance Lemma 4.3 in [36]), a contradiction with the definition of t∗+(d). This completes the
proof of the continuity of the function t∗+.

The rest of the proof is devoted to the analysis of continuity of t∗−. Assuming t∗− is not con-
tinuous, there is ε > 0 and a sequence dn → d in Lp(Ω) such that either t∗−(dn) � t∗−(d) + 3ε or
t∗−(dn) � t∗−(d) − 3ε. In the first case, let us consider a sequence λm ↘ λ−

1 , and a solution vm of
the equation

F [vm] + λmvm = (
t∗−(d) + ε

)
ϕ+

1 + d in Ω.

We recall vm exists, by the results in [7] and [24]. We have shown in [24] that t∗−(dn) � t∗−(d) +
3ε > t∗−(d) + ε implies that vm can be chosen to be bounded as m → ∞ (see (2.2)). Let wn be
the solution to F [wn] − γwn = dn − d in Ω , as above. Then zm

n0
= vm + wn0 satisfies for some

large n0

F
[
zm
n0

] + λmzm
n0

�
(
t∗−(d) + ε

)
ϕ+

1 + (λm + γ )wn + dn �
(
t∗−(d) + 2ε

)
ϕ+

1 + dn,

since again wn → 0 in C1(Ω). On the other hand, we consider a solution of

F
[
um

n

] + λmum
n = (

t∗−(d) + 2ε
)
ϕ+

1 + dn in Ω.

As t∗−(dn) � t∗−(d) + 3ε > t∗−(d) + 2ε for all n, the sequence um
n is not bounded (again by (2.2)

and [24]) and um
n /‖um

n ‖∞ → ϕ−
1 as m → ∞, for each fixed n. Therefore for large m the function

Ψ = um
n0

− (vm + wn0) < 0 and F [Ψ ] + λmΨ � 0, which is a contradiction with the definition
of λ−

1 , since λm > λ−
1 .

Let us assume now that for ε > 0 and the sequence dn → d in Lp(Ω) we have t∗−(dn) �
t∗−(d) − 3ε, for all n. Let λm ↘ λ−

1 and vm be a solution of the equation F [vm] + λmvm =
(t∗−(d)−ε)ϕ+

1 +d in Ω (by (2.2) vm is unbounded), and let wn be the solution to F [wn]−γwn =
d − dn in Ω. Then, vm/‖vm‖∞ → ϕ−

1 and wn → 0 in C1(Ω). We take a solution um
n to

F
[
um

n

] + λmum
n = (

t∗−(d) − 2ε
)
ϕ+

1 + dn in Ω,

and note that, since t∗−(dn) � t∗−(d) − 3ε < t∗−(d) − 2ε, for any given n there exists a constant cn

such that ‖um
n ‖∞ � cn, for all m. Now, as above, we define Ψ = vm − (um

n + wn), and see that

F [Ψ ] + λmΨ �
(
t∗−(d) − ε

)
ϕ+

1 + d − (
t∗−(d) − 2ε

)
ϕ+

1 − dn − F [wn] − λmwn

� εϕ+
1 − (λm + γ )wn.

We choose n large enough to have (λm + γ )wn < εϕ+
1 in Ω . Then, keeping n fixed, we can

choose m large enough to have Ψ < 0 in Ω , a contradiction with the definition of λ−
1 , since

λm > λ−
1 . �

Finally we prove that the function t∗λ (d) is also continuous in λ at the end points of the interval
[λ+, λ−], when d is kept fixed. This fact will be needed in Section 7.
1 1
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Proposition 2.3. For every d ∈ Lp(Ω)

lim
λ↘λ+

1

t∗λ (d) = t∗+(d) and lim
λ↗λ−

1

t∗λ (d) = t∗−(d).

Proof. Let us assume that there are ε > 0 and a sequence λn ↘ λ+
1 such that t∗λn

< t∗+ − ε (since
d is fixed, we do not write it explicitly). Then by the definition of t∗λn

there is a function un

satisfying

F [un] + λnun = (
t∗+ − ε

)
ϕ+

1 + d in Ω.

Since λn ↘ λ+
1 , un cannot be bounded, for otherwise we get a contradiction with the defini-

tion of t∗+ by finding a solution with t < t∗+ – from Theorem 2.3. Then by Proposition 2.1
un/‖un‖∞ → ϕ+

1 , un is positive for large n, and

F [un] + λ+
1 un = (

t∗+ − ε
)
ϕ+

1 + d + (
λ+

1 − λn

)
un <

(
t∗+ − ε

)
ϕ+

1 + d,

that is, un is a super-solution. On the other hand, for t > t∗+, let u be a solution of F [u] + λ+
1 u =

tϕ+
1 + d , in Ω , then u is a sub-solution for this equation with (t∗+ − ε)ϕ+

1 + d as a right-hand
side. By taking n large enough, we have un � u, so that the equation

F [u] + λ+
1 u = (

t∗+ − ε
)
ϕ+

1 + d in Ω

has a solution, a contradiction with the definition of t∗+.
Now we assume that there are ε > 0 and a sequence λn ↘ λ+

1 such that tn = t∗λn
> t∗+ + 2ε.

Let v be a solution to

F [v] + λ+
1 v = (

t∗+ + ε/2
)
ϕ+

1 + d in Ω,

then F [v]+λnv = (t∗+ +ε)ϕ+
1 +d −ε/2ϕ+

1 + (λn −λ+
1 )v. Since t∗+ +ε < t∗λn

−ε/2, by choosing

n large we find F [v] + λnv < (t∗λn
− ε/2)ϕ+

1 + d, so that v is a super-solution of

F [u] + λnu = (
t∗λn

− ε/2
)
ϕ+

1 + d. (2.4)

Next we consider a solution uK of F [u] + (λ+
1 + ν)u = K (where we have set ν = (λ−

1 −
λ+

1 )/2 > 0), for each K > 0. Such a solution exists by Theorem 1.9 in [36], and it further satisfies
uK < 0 in Ω and ‖uK‖∞ → ∞ as K → ∞, so |uK | � C(K)ϕ+

1 , where C(K) → ∞ as K → ∞.
Let w be the (unique) solution of F [w] − γw = −d in Ω . Since F [uK − w] � F [uK ] − F [w],
we easily see that the function uK − w is a sub-solution of (2.4) and uK − w < v, for large K .
Then Perron’s method leads again to a contradiction with the definition of tλn . This shows t∗λ is
right-continuous at λ+

1 .
Now we prove the second statement of Lemma 2.3. Assume there are ε > 0 and a sequence

λn ↗ λ−
1 such that t∗λn

< t∗− − ε. Let un be a solution to

F [un] + λnun = (
t∗− − ε

)
ϕ+ + d in Ω.
1
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Since λn → λ−
1 , un cannot be bounded (as before) and then un/‖un‖∞ → ϕ−

1 . Thus, for large n

we have un < 0 and

F [un] + λ−
1 un = (

t∗− − ε
)
ϕ+

1 + d + (
λ−

1 − λn

)
un <

(
t∗− − ε

)
ϕ+

1 + d,

so that uk is a super-solution for some large (fixed) k. Consider now a sequence λ̃n ↘ λ−
1 and let

vn be the solution to

F [vn] + λ̃nvn = (
t∗− − ε

)
ϕ+

1 + d in Ω,

whose existence was proved in [7] and [24]. Then vn cannot be bounded, so vn/‖vn‖∞ → ϕ−
1 ,

and for large n we have

F [vn] + λ−
1 vn = (

t∗− − ε
)
ϕ+

1 + d + (
λ−

1 − λ̃n

)
vn >

(
t∗− − ε

)
ϕ+

1 + d,

that is, vn is a sub-solution. For the already fixed uk , we can find n sufficiently large so that
uk > vn, which implies that the equation

F [u] + λ−
1 u = (

t∗− − ε
)
ϕ+

1 + d in Ω

has a solution, a contradiction with the definition of t∗−.
Finally, assume that there are ε > 0 and a sequence λn ↗ λ−

1 such that t∗λn
> t∗λn

−2ε > t∗− +ε.

By Theorem 1.4 in [24] we can find a function u which solves the equation F [u] + λ−
1 u =

(t∗− + ε)ϕ+
1 + d in Ω. Then

F [u] + λnu <
(
t∗λn

− ε
)
ϕ+

1 + d − εϕ+
1 + (

λn − λ−
1

)
ϕ+

1 <
(
t∗λn

− ε
)
ϕ+

1 + d,

so that u is a super-solution of F [u] + λnu = (t∗λn
− ε)ϕ+

1 + d , for some large fixed n. As we

explained above, since λn < λ−
1 , by Theorem 1.9 in [36] we can construct an arbitrarily negative

sub-solution of this problem, hence a solution as well, contradicting the definition of t∗λn
. �

3. Resonance and a priori bounds

In this section we assume that the nonlinearity f (x, s) satisfies the one-sided Landesman–
Lazer conditions at resonance, that is, one of (F
+), (F
−), (F r+) and (F r−). Under each of these
conditions we analyze the existence of super-solutions, sub-solutions and a priori bounds when
λ is close to the eigenvalues λ+

1 and λ−
1 . This information will allow us to obtain existence of

solutions by using degree theory and bifurcation arguments. In particular we will get branches
bifurcating from infinity which curve right or left depending on the a priori bounds obtained here.

We start with the existence of a super-solution and a priori bounds at λ+
1 , under hypothe-

sis (F
+).

Proposition 3.1. Assume f satisfies (F0) and (F
+). Then there exists a super-solution z such that
F [z] + λz < f (x, z) in Ω , for all λ ∈ (−∞, λ+

1 ]. Moreover, for each λ0 < λ+
1 there exist R > 0

and a super-solution z0 such that if u is a solution of (1.1) with λ ∈ [λ0, λ
+
1 ], then ‖u‖ � R and

u � z0 in Ω .
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Proof. We first replace c+ by a more appropriate function: we claim that for each ε > 0 there
exist R > 0 and a function d ∈ Lp(Ω) such that

‖d − c+‖Lp(Ω) � ε and u � Rϕ+
1 implies f

(
x,u(x)

)
� d(x) in Ω.

In fact, setting σ = ε

2|Ω|1/p , we can find s0 such that f (x, s) � c+(x)−σ in Ω , for all s � s0. Let

ΩR = {x ∈ Ω | Rϕ+
1 (x) > s0} and define the function dR as dR(x) = c+(x) − σ if x ∈ ΩR , and

dR(x) = −M for x ∈ Ω \ ΩR , where M is such that f (x, s) � −M , for all s ∈ [0, s0]. It is then
trivial to check that the claim holds for d = dR , if R is taken such that |Ω \ ΩR| < (ε/2M)p .

Now, by (F
+) and the continuity of t∗+ (Proposition 2.2) we can fix ε so small that the function
d chosen above satisfies

t∗+(d) < 0. (3.1)

Let zn be a solution to

F [zn] + λ+
1 zn = tnϕ

+
1 + d in Ω,

where tn → t∗+(d) < 0, tn � t∗+(d), is a sequence such that zn can be chosen to be unbounded –
such a choice of tn and zn is possible thanks to Theorem 1.2 in [24]. Then zn/‖zn‖ → ϕ+

1 , which
implies that for large n

F [zn] + λ+
1 zn < d and zn � Rϕ+

1 ,

by (3.1), where R is as in the claim above. Thus zn is a strict super-solution and, since zn is
positive, F [zn] + λzn < f (x, zn), for all λ ∈ (−∞, λ+

1 ]. From now on we fix one such n0 and
drop the index, calling the super-solution z.

Suppose there exists an unbounded sequence un of solutions to

F [un] + λnun = f (x,un) in Ω,

with λn ∈ [λ0, λ
+
1 ] and λn → λ. If λ < λ+

1 then a contradiction follows since λ+
1 is the first

eigenvalue (divide the equation by ‖un‖ and let n → ∞). If λ = λ+
1 then un/‖un‖ → ϕ+

1 , so that
for n large we have un > z and un � Rϕ+

1 , consequently f (x,un) � d(x) in Ω . Thus, setting
w = un − z we get, by λn � λ+

1 , w > 0,

F [w] + λ+
1 w � F [un] − F [z] + λ+

1 (un − z) > f (x,un) − d � 0.

Since w > 0, Theorem 1.2 in [36] implies the existence of a constant k > 0 such that w = kϕ+
1 ,

a contradiction with the last strict inequality. Now that we have an a priori bound for the solutions,
we may choose an appropriate n0 for the definition of z0 = zn0 , which makes it larger than all
solutions. �

Next we state an analogous proposition on the existence of a sub-solution to our problem at
λ− under hypothesis (F
−).
1
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Proposition 3.2. Assuming that f satisfies (F0) and (F
−), there exists a strict sub-solution z such
that F [z] + λz > f (x, z) in Ω for all λ ∈ (−∞, λ−

1 ]. Moreover, for each δ > 0 there exist R > 0
and a sub-solution z such that if u solves (1.1) with λ ∈ [λ+

1 + δ,λ−
1 ] then ‖u‖∞ � R and u � z

in Ω .

Proof. By using essentially the same proof as in Proposition 3.1, we can find R > 0 and a func-
tion d ∈ Lp(Ω) such that t∗−(d) > 0, and u � −Rϕ+

1 implies f (x,u(x)) � d(x) in Ω . Consider
a sequence tn ↘ t∗−(d) and solutions zn to

F [zn] + λ−
1 zn = tnϕ

+
1 + d in Ω, (3.2)

chosen so that zn is unbounded and zn/‖zn‖∞ → ϕ−
1 – see Theorem 1.4 in [24]. Hence for n

large enough

F [zn] + λ−
1 zn > d and zn � −Rϕ+

1 . (3.3)

Thus zn is a strict sub-solution and, since zn is negative for sufficiently large n, F [zn] + λzn >

f (x, zn), for all λ ∈ (−∞, λ−
1 ]. Fix one such n0 and set z = zn0 .

If un is an unbounded sequence of solutions to F [un] + λnun = f (x,un), in Ω , with λn ∈
[λ+

1 + δ,λ−
1 ] and λn → λ we obtain a contradiction like in the previous proposition. Namely, if

λ ∈ [λ+
1 + δ,λ−

1 ) then the conclusion follows since there are no eigenvalues in this interval. If
λ = λ−

1 then un/‖un‖ → ϕ−
1 , so that for n large un < z and un � −Rϕ+

1 , hence f (x,un) � d(x),
which leads to the contradiction F [z − un] + λ−

1 (z − un) � 0 and z − un > 0. Then, given the
a priori bound, we can choose n0 such that zn0 is smaller than all solutions. �

The next two propositions are devoted to proving a priori bounds under hypotheses (F r+)
and (F r−).

Proposition 3.3. Under assumptions (F0) and (F r+) for each δ > 0 the solutions to (1.1) with
λ ∈ [λ+

1 , λ−
1 − δ] are a priori bounded.

Proof. As in the proof of Proposition 3.1, we may choose R > 0 and a function d so that
t∗+(d) > 0, that is,

∫
Ω

dϕ+
1 < t∗+(d⊥) (recall (1.7)), and whenever u � Rϕ+

1 then f (x,u) � d .
Let t̃ be fixed such that

∫
Ω

dϕ+
1 < t̃ < t∗+(d⊥). If the proposition were not true, then there would

be sequences λn ↘ λ+
1 and un of solutions to F [un] + λnun = f (x,un), such that un is un-

bounded. Then un/‖un‖ → ϕ+
1 , in particular, un is positive for large n. Then

F [un] + λ+
1 un � f (x,un) � d < t̃ϕ+

1 + d⊥,

that is, un is a super-solution of F [un]+λ+
1 un = t̃ϕ+

1 +d⊥. Next, take the solution w of F [w]−
γw = −d⊥ in Ω, where, as before, γ is the constant from (H1), so that F − γ is proper. For
α > 0 we define v = αϕ−

1 − w, then

F [v] + λ+v � α
(
λ+ − λ−)

ϕ− − (
λ+ + γ

)
w + d⊥,
1 1 1 1 1
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exactly like in the proof of Proposition 2.2. If we choose α large enough, we see that v is a sub-
solution for F [un] + λ+

1 un = t̃ϕ+
1 + d⊥, and v is smaller than the super-solution we constructed

before. The existence of a solution to this equation contradicts the definition of t∗+(d⊥) and
t̃ < t∗+(d⊥). �
Proposition 3.4. Under assumptions (F0) and (F r−) there exists δ > 0 such that the solutions to
(1.1) with λ ∈ [λ−

1 , λ−
1 + δ] are a priori bounded.

Proof. We proceed like in the proof of the previous proposition. Now
∫
Ω

dϕ+
1 > t∗−(d⊥), and

whenever u � −Rϕ+
1 then f (x,u) � d . If t̃ is such that

∫
Ω

dϕ+
1 > t̃ > t∗+(d⊥), and we assume

there are sequences λn ↘ λ−
1 and un of solutions to F [un]+λnun = f (x,un) in Ω , such that un

is unbounded, we get un/‖un‖ → ϕ−
1 , consequently

F [un] + λ−
1 un > t̃ϕ+

1 + d⊥.

On the other hand if z solves F [z] + λ−
1 z = t̃ϕ+

1 + d⊥ in Ω (such z exists by Theorem 1.4
in [24]), then F [un − z] + λ−

1 (un − z) > 0, and un − z < 0 in Ω , for large n. Thus, we may
apply Theorem 1.4 in [36] to obtain k > 0 so that un − z = kϕ−

1 , a contradiction with the strict
inequality. �
4. Bifurcation from infinity at λ+

1 and λ−
1

In this section we prove the existence of unbounded branches of solutions of (1.1), bifurcating
from infinity at the eigenvalues λ+

1 and λ−
1 . Then, thanks to the a priori bounds obtained in

Section 3, for the two types of Landesman–Lazer conditions (see Propositions 3.1–3.4), we may
determine to which side of the eigenvalues these branches curve.

We recall that F(M,q,u, x) + cu is decreasing in u for any c � −γ , in other words, F + c is
a proper operator. Given v ∈ C1(Ω) we consider the problem

F [u] + cu = (c − λ)v + f (x, v) in Ω, u = 0 on ∂Ω, (4.1)

see Theorem 2.1. We define the operator K : R × C1(Ω) → C1(Ω) as follows: K(λ,v) is the
unique solution u ∈ C1,α(Ω) of (4.1). The operator K is compact in view of Theorem 2.1 and
the compact embedding C1,α(Ω) → C1(Ω). With these definitions, our Eq. (1.1) is transformed
into the fixed point problem u = K(λ,u), u ∈ C1(Ω), with λ ∈ R as a parameter. We are going to
show that the sub-linearity of the function f (x, ·), given by assumption (F0), implies bifurcation
at infinity at the eigenvalues of F . The proof follows the standard procedure for the linear case,
see for example [38] or [8], so we shall be sketchy, discussing only the main differences. We
define

G(λ,v) = ‖v‖2
C1K

(
λ,

v

‖v‖2
C1

)
,

for v �= 0, and G(λ,0) = 0. Finding u �= 0 such that u = K(λ,u) is equivalent to solving the
fixed point problem v = G(λ,v), v ∈ C1(Ω), for v = u/‖u‖2

C1 . The important observation is
that bifurcation from zero in v is equivalent to bifurcation from infinity for u.
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Let u = G0(λ, v) be the solution of the problem

F [u] + cu = (c − λ)v in Ω, u = 0 on ∂Ω, (4.2)

and set G1 = G − G0, so that G(λ,v) = G0(λ, v) + G1(λ, v).

Lemma 4.1. Under the hypothesis (F0) we have lim‖v‖
C1 →0

G1(λ,v)
‖v‖

C1
= 0.

Proof. Let g = G(λ,v) and g0 = G0(λ, v). Then we have

1

‖v‖C1

(
F [g] − F [g0] + c(g − g0)

) = ‖v‖C1f

(
x,

v

‖v‖2
C1

)
.

The right-hand side here goes to zero as ‖v‖C1 → 0, by (F0). Then by (DF)

1

‖v‖C1

(
F

[|g − g0| + c|g − g0|
])

� −‖v‖C1

∣∣∣∣f
(

x,
v

‖v‖2
C1

)∣∣∣∣,
so the ABP inequality (Theorem 2.1) implies

sup
Ω

{
1

‖v‖C1
|g − g0|

}
� C‖v‖C1

∥∥∥∥f

(
x,

v

‖v‖2
C1

)∥∥∥∥
Lp

,

and the result follows. �
The next proposition deals with the equation v = G0(λ, v), v ∈ C1(Ω) (recall we want to

solve v = G0(λ, v) + G1(λ, v)), which is equivalent to

F
(
D2v,Dv,v, x

) = −λv in Ω, v = 0 on ∂Ω. (4.3)

Proposition 4.1. There exists δ > 0 such that for all r > 0 and all λ ∈ (−∞, λ−
1 + δ) \ {λ+

1 , λ−
1 },

the Leray–Schauder degree deg(I − G0(λ, ·),Br ,0) is well defined. Moreover

deg
(
I − G0(λ, ·),Br ,0

) =
⎧⎨
⎩

1 if λ < λ+
1 ,

0 if λ+
1 < λ < λ−

1 ,

−1 if λ−
1 < λ < λ−

1 + δ.

Proof. We recall it was proved in [36] that problem (4.3) has only the zero solution in
(−∞, λ−

1 + δ) \ {λ+
1 , λ−

1 }, for certain δ > 0. The compactness of G0 follows from Theorem 2.1,
so the degree is well defined in the given ranges for λ.

Suppose λ < λ+
1 and consider the operator I − tG0(λ, ·) for t ∈ [0,1]. Since tλ is not an

eigenvalue of (4.3), we have for t ∈ [0,1]

deg
(
I − G0(λ, ·),Br ,0

) = deg
(
I − tG0(λ, ·),Br ,0

) = deg(I,Br,0) = 1.
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The case λ+
1 < λ < λ−

1 was studied in [39]. Consider the problem

F [u] + cu = (c − λ)v − tϕ+
1 in Ω, u = 0 on ∂Ω (4.4)

for t ∈ [0,∞), whose unique solution is denoted by G̃0(λ, v, t). It follows from the results in
[36,39] that for t > 0 the equation

F [u] + cu = (c − λ)u − tϕ+
1 in Ω, u = 0 on ∂Ω (4.5)

does not have a solution. On the other hand, since λ is not an eigenvalue, there is R > 0 such that
the solutions of (4.5), for t ∈ [0, t], are a priori bounded, consequently

deg
(
I − G0(λ, ·),Br ,0

) = deg
(
I − G̃0(λ, ·,0),BR,0

)
= deg

(
I − G̃0(λ, ·, t),BR,0

) = 0.

If λ−
1 < λ < λ−

1 + δ we proceed as in [24], where the computation of the degree was done by
making a homotopy with the Laplacian (see the proof of Lemma 4.2 in that paper). �

Now we are in position to apply the general theory of bifurcation to v = G(λ,v), see for
instance the surveys [38] and [8], and obtain bifurcation branches emanating from (λ+

1 ,0) and
(λ−

1 ,0), exactly like in [13]. In short, from (λ+
1 ,0) bifurcates a continuum of solutions of v =

G(λ,v), which is either unbounded in λ, or unbounded in u, or connects to (λ,0), where λ �= λ+
1

is an eigenvalue (recall λ+
1 and λ−

1 are the only eigenvalues in (−∞, λ−
1 + δ), for some δ > 0).

A similar situation occurs at (λ−
1 ,0). Inverting the variables we obtain bifurcation at infinity for

our problem (1.1):

Theorem 4.1. Under the hypotheses of Theorem 1.1 there are two connected sets C2, C3 ⊂ S
such that:

1) There is a sequence (λn,un) with un ∈ C2(λn) (un ∈ C3(λn)), and ‖un‖∞ → ∞, λn → λ+
1

(λ−
1 ).

2) If (λn,un) is a sequence such that un ∈ C2(λn) (C3(λn)), ‖un‖∞ → ∞ and λn → λ+
1 (λ−

1 ),
then un is positive (negative) for large n.

3) The branch C2 satisfies one of the following alternatives, for some δ > 0: (i) C2(λ) �= ∅ for
all λ ∈ (λ+

1 , λ−
1 + δ); (ii) there is λ ∈ (−∞, λ−

1 + δ] such that 0 ∈ C2(λ); (iii) C2(λ) �= ∅ for
all λ ∈ (−∞, λ+

1 ); (iv) there is a sequence (λn,un) such that un ∈ C2(λn), ‖un‖∞ → ∞,
λn → λ−

1 , and λn � λ−
1 .

4) The branch C3 satisfies one of the following alternatives, for some δ > 0: (i) C3(λ) �= ∅ for
all λ ∈ (λ−

1 , λ−
1 + δ); (ii) there is λ ∈ (−∞, λ−

1 + δ] such that 0 ∈ C3(λ); (iii) C3(λ) �= ∅ for
all λ ∈ (−∞, λ−

1 ); (iv) there is a sequence (λn,un) such that un ∈ C3(λn), ‖un‖∞ → ∞,
and λn → λ+

1 .

We remark that (F1) excludes alternatives 3)(ii) and 4)(ii) in this theorem.
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5. A bounded branch of solutions

In this section we prepare for the proof of our main theorems by establishing the existence of
a continuum of solutions of (1.1) which is not empty for all λ ∈ (−∞, λ+

1 + δ), for some δ > 0.
Our first proposition concerns the behavior of solutions of (1.1) when λ → −∞.

Proposition 5.1.

(1) Assume f satisfies (F0). Then there exists a constant C0 > 0, depending only on F , f ,
and Ω , such that any solution of (1.1) satisfies ‖u‖∞ � C0λ

−1 as λ → −∞.
(2) If in addition f is Lipschitz at zero, that is, for some ε > 0 and some C > 0 we have

|f (x, s1) − f (x, s2)| � C|s1 − s2| for s1, s2 ∈ (−ε, ε), then (1.1) has at most one solution
when λ is sufficiently large and negative.

Proof. (1) Let uλ be a sequence of solutions of (1.1), with λ → −∞. We first claim that ‖uλ‖∞
is bounded. Suppose this is not so, and say ‖u+

λ ‖∞ → ∞ (with the usual notation for the positive
part of u). Then, setting vλ = uλ/‖u+

λ ‖∞, on the set Ω+
λ = {uλ > 0} we have the inequality

F [vλ] − γ vλ � f (x,uλ)

‖u+
λ ‖∞

→ 0, as λ → −∞.

The ABP estimate (see Theorem 2.1) then implies supΩ+
λ

vλ → 0, which is a contradiction with

supΩ+
λ

vλ = 1. In an analogous way we conclude that ‖u−
λ ‖∞ is bounded.

Hence there exists a constant C such that |f (x,uλ(x))| � C in Ω , so

F [uλ] − γ uλ � −(λ + γ )uλ − C � 0 on the set Ω̃λ,

where Ω̃λ = {uλ > C/(|λ| + γ )}. Applying the maximum principle or the ABP inequality in this
set implies it is empty, which means uλ � C/(|λ| + γ ) in Ω . By the same argument we show uλ

is bounded below, and (1) follows.
(2) From statement (1) we conclude that for λ small, all solutions of (1.1) are in (−ε, ε). If

u1, u2 are two solutions of (1.1) then for |λ| > γ + C we have F [u1 − u2] − γ (u1 − u2) � 0 on
{u1 > u2} which means this set is empty. �

The next result is stated in the framework of Theorem 1.1 and gives a bounded family of
solutions (uλ,λ), for λ ∈ (−∞, λ+

1 + δ). No assumption of Lipschitz continuity on f is needed.

Proposition 5.2. Assume f satisfies (F0) and (F
+). Then there is a connected subset C1 of S
such that C1(λ) �= ∅, for all λ ∈ (−∞, λ+

1 + δ).

Proof. According to Proposition 3.1, given λ0 < λ+
1 , there is R > 0 so that all solutions of (1.1)

with λ ∈ [λ0, λ
+
1 ] belong to the ball BR . In particular, the equation does not have a solution

(λ,u) ∈ [λ0, λ
+
1 ] × ∂BR . Moreover, there is δ > 0 such that (1.1) does not have a solution in

[λ+
1 , λ+

1 + δ] × ∂BR – otherwise we obtain a contradiction by a simple passage to the limit.
Consequently the degree deg(I −K(λ, ·),BR,0) is well defined for all λ ∈ [λ0, λ

+
1 + δ] (K(λ, ·)

is defined in the previous section). We claim that its value is 1.



4172 P. Felmer et al. / Journal of Functional Analysis 258 (2010) 4154–4182
To compute this degree, we fix λ < λ+
1 and analyze the equation

F [u] + λu = sf (x,u) in Ω,

for s ∈ [0,1]. Since λ is not an eigenvalue of F in Ω , the solutions of this equation are a priori
bounded, uniformly in s ∈ [0,1], that is, there is R1 � R, such that no solution of the equation
exists outside of the open ball BR1 . Given v ∈ C1(Ω) we denote by Ks(λ, v) the unique solution
of the equation F [u] + λu = sf (x, v) in Ω . Then we have

deg
(
I − K(λ, ·),BR,0

) = deg
(
I − K1(λ, ·),BR1 ,0

)
= deg

(
I − K0(λ, ·),BR1 ,0

) = 1,

where the last equality is given by Proposition 4.1. Hence, again by the homotopy invariance of
the degree, we have deg(I − K(λ, ·),BR,0) = 1, for all λ ∈ (λ0, λ

+
1 + δ).

The last fact together with standard degree theory implies that for every λ ∈ [λ0, λ
+
1 + δ]

there is at least one (λ,u), solution of (1.1), and, moreover, there is a connected subset C1 of S
such that C1(λ) �= ∅ for all λ in the interval [λ0, λ

+
1 + δ]. Since λ0 is arbitrary, we can use the

same argument for each element of a sequence {λn
0}, with λn

0 → −∞. Then, by a limit argument
(like the one in the proof of Theorem 1.5.1 in [24]), we find a connected set C1 with the desired
properties. �

Next we study a branch of solutions driven by a family of super- and sub-solutions, assuming
that f is locally Lipschitz continuous. In this case the statement of the previous proposition can
be made more precise. Specifically, we assume that f satisfies (F2), and there exist u,u ∈ C1(Ω),
such that u is a super-solution and u is a sub-solution of (1.1), for all λ � λ, where λ is fixed. We
further assume that u and u are not solutions of (1.1), and

u < u in Ω, u = u = 0 and
∂u

∂ν
<

∂u

∂ν
on ∂Ω. (5.1)

We define the set

O =
{
v ∈ C1(Ω)

∣∣∣ u < v < u in Ω and
∂u

∂ν
<

∂v

∂ν
<

∂u

∂ν
on ∂Ω

}
, (5.2)

which is open in C1(Ω). Since O is bounded in C(Ω), we see that for every λ0 < λ the set of
solutions of (1.1) in [λ0, λ]× O is bounded in C1(Ω), that is, all solutions of (1.1) in [λ0, λ]× O
are inside the ball BR , for some R > 0.

Lemma 5.1. With the definitions given above, we have

deg
(
I − K(λ, ·), O ∩ BR,0

) = 1, for all λ ∈ [λ0, λ].

Proof. First we have to prove that the degree is well defined. We just need to show that there are
no fixed points of K(λ, ·) on the boundary of O ∩BR . For this purpose it is enough to prove that,
given v ∈ C1(Ω) such that u � v � u in Ω , we have u < K(λ,v) < u in Ω . In what follows we
write u = K(λ,v).
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By (F2) we can assume that the negative number c, chosen in Section 4, is such that the
function s → f (x, s) + (c − λ)s is decreasing, for s ∈ (−τ, τ ), where τ = max{‖u‖∞,‖u‖∞}.
Then

F [u] = F [u] − f (x,u) − (c − λ)u + f (x,u) + (c − λ)u

� F [u] − f (x, v) − (c − λ)v + f (x,u) + (c − λ)u

= −cu + f (x,u) + (c − λ)u

= c(u − u) + f (x,u) − λu � F [u] + c(u − u).

By (H1) this implies M+(D2(u−u))+γ |Du−Du|+ (γ − c)(u−u) > 0 in Ω . It follows from
Theorem 2.2 that u < u in Ω and ∂u

∂ν
< ∂u

∂ν
on ∂Ω . The other inequality is obtained similarly.

By using its homotopy invariance, the degree we want to compute is equal to the degree at λ0.
But the latter was shown to be one in the proof of Proposition 5.2, which completes the proof of
the lemma. �

Now we can state a proposition on the existence of a branch of solutions for λ ∈ (−∞, λ],
whose proof is a direct consequence of Lemma 5.1 and general degree arguments.

Proposition 5.3. Assume f satisfies (F0) and (F2). Suppose there are functions u,u ∈ C1(Ω)

such that u is a super-solution and u is a sub-solution of (1.1) for all λ � λ, these functions
are not solutions of (1.1) and satisfy (5.1). Then there is a connected subset C1 of S such that
C1(λ) �= ∅ for all λ ∈ (−∞, λ) and each u ∈ C1(λ) is such that u � u � u.

Remark 5.1. In the next section we use this proposition with appropriately chosen sub-solutions
and super-solutions.

Remark 5.2. The branch C1 is isolated of other branches of solutions by the open set O, since
we know there are no solutions on ∂O.

6. Proofs of the main theorems

In this section we put together the bifurcation branches emanating from infinity obtained in
Theorem 4.1 with the bounded branches constructed in Section 5, and study their properties.

Proof of Theorem 1.1. This theorem is a consequence of Proposition 5.2, for the definition
of C1, and of Theorem 4.1, 1)–2), for the definition of C2 and C3. Both C2 and C3 curve to the right
of λ+

1 and λ−
1 , respectively – as a consequence of the a priori bounds obtained in Propositions 3.1

and 3.2. �
Proof of Theorem 1.2. We first construct the branch C1, through Proposition 5.3. In view of
(F1) we may take as a super-solution the function u ≡ 0. In order to define the corresponding
sub-solution we use Proposition 3.2, where a sub-solution is constructed for all λ ∈ (−∞, λ−

1 ].
We can rewrite inequality (3.2) in the following way

F [zn] + (
λ−

1 + δ
)
zn = t̃nϕ

+
1 + d, with t̃n(x) = δzn(x)

ϕ+(x)
+ tn.
1
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Since zn/‖zn‖∞ → ϕ−
1 < 0 in C1(Ω) we find that for some c > 0

|zn(x)|
‖zn‖∞ϕ+

1 (x)
� c, ∀x ∈ Ω.

Consequently, once n is chosen so that (3.3) holds, we can fix δ > 0 such that t̃n(x) � −δc +
t∗−(d) > 0, for all x ∈ Ω , which means that zn is a sub-solution also for F [u] + (λ−

1 + δ)u =
f (x,u), as in the proof of Proposition 3.2.

Now we define u = zn, chosen as above, and take λ = λ−
1 +δ in Proposition 5.3. Clearly u and

u satisfy also (5.1), so the existence of the branch C1 (with the properties stated in Theorem 1.2)
follows from Proposition 5.3.

Further, the branches C2 and C3 are given by Theorem 4.1 and both of them curve to the right
of λ+

1 and λ−
1 , respectively. Neither C2 or C3 connects to C1, since C1 is isolated from the exterior

of the open set O, see Remark 5.2. Observe that the elements of C2 (resp. C3) are outside O for
λ close to λ+

1 (resp. λ−
1 ).

Therefore the uniqueness statement of Proposition 5.1 excludes the alternatives in Theo-
rem 4.1, 3)(iii) and 4)(iii), since we already know that C1 contains solutions for arbitrary small λ.
We already noted cases 3)(ii) and 4)(ii) are excluded by (F1). Finally, case 3)(iv) in Theorem 4.1
is excluded by the a priori bound in Proposition 3.2, so only case 3)(i) remains. �
Proof of Theorem 1.3. We fix a small number ε > 0 and for each K > 0 consider a solution
uK of F [uK ] + (λ−

1 − ε)uK = K in Ω , uK = 0 on ∂Ω , uK < 0 in Ω . We know such a function
uK exists, by Theorem 1.9 in [36]. By (F0) we can fix K0 such that K0 > f (x,K0) in Ω , hence
u = uK0 is a sub-solution of (1.1), for all λ ∈ (−∞, λ−

1 − ε). The super-solution to consider is
u ≡ 0, as given by hypothesis (F1). Then Proposition 5.3 yields the existence of a branch Cε

1 such
that Cε

1(λ) �= ∅ for all λ ∈ (−∞, λ−
1 − ε).

Next we pass to the limit as ε → 0, like in the proofs of Proposition 5.2 and Theorem 1.5.1
in [24], and obtain either a connected component of S which bifurcates from infinity to the left
of λ−

1 , or a bounded branch of solutions which “survives” up to λ−
1 , and hence “continues” in

some small right neighborhood of λ−
1 , again like in the proof of Proposition 5.2. The first of these

alternatives is (3)(i). In case the second alternative is realized there is a connected set of solutions
C3 bifurcating from minus infinity towards the left of λ−

1 , as predicted in Theorem 4.1. We claim
this branch contains only negative solutions. To prove this, we set

A =
{
(λ,u) ∈ C3

∣∣∣ λ ∈ (−∞, λ−
1

)
, max

Ω
u > 0

}
.

The set A is clearly open in C3, and A �= C3. Hence if A is not empty, then A is not closed in C3,
by the connectedness of C3. This means there is a sequence (λn,un) ∈ A such that λn → λ,
un → u, and the limit function u satisfies u � 0 in Ω , u vanishes somewhere in Ω , and solves
the equation F [u]+ (λ−c)u = f (x,u)−cu � 0 in Ω , for some large c. Hence by Hopf’s lemma
u ≡ 0, a contradiction with (F1).

Therefore C3 cannot connect with the branch bifurcating from plus infinity at λ+
1 . It is not

connected to C1 either – by the isolation property of C1(λ), see Remark 5.2. Further, C3 cannot
contain solutions for arbitrarily small λ, since C1 does, and we know solutions are unique for suf-
ficiently small λ. Hence C3 must eventually curve to the right, so extra solutions appear, proving
(3)(ii) and (4).
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Finally, a branch C2 bifurcating from plus infinity towards the left of λ+
1 exists thanks to

Theorem 4.1. This branch is kept away from C1 and C3, as we already saw, and, again by the
uniqueness of solutions for sufficiently small λ, C2 has to curve to the right. This completes the
proof. �

The occurrence of alternative (3)(ii) in Theorem 1.3 can be avoided if f satisfies some further
hypotheses.

Proposition 6.1. Under the hypotheses of Theorem 1.3, if in addition we make one of the follow-
ing assumptions

(1) f (x, s) is concave in s for s < 0,
(2) for each a0 > 0 there exists k0 > 0 such that

f (x,−kϕ+
1 )

k
< f

(
x,−aϕ+

1

)
, for all a ∈ (0, a0), k > k0, (6.1)

then alternative (3)(ii) in Theorem 1.3 does not occur.

Remark. Note the model example of a sub-linear nonlinearity which satisfies the hypotheses of
Theorem 1.3

f (x, s) = −s|s|α−1 + h(x), α ∈ (0,1), h � 0,

satisfies both hypotheses in the above proposition.

Proof of Proposition 6.1. We are going to prove the following stronger claim: under the hy-
potheses of the proposition, there cannot exist sequences λn, un, vn, such that λn < λn+1,
λn → λ−

1 , un, vn < 0 in Ω , ‖un‖ is bounded, ‖vn‖ → ∞ and un and vn are solutions of (1.1)
with λ = λn.

Assume this is false and (1) holds. Then (passing to subsequences if necessary) un is conver-
gent in C1(Ω), and vn/‖vn‖ → ϕ−

1 in C1(Ω), so there is n0 such that for all n � n0 we have
vn < un+1 in Ω . The negative function un+1 is clearly a strict sub-solution of F [u] + λnu =
f (x,u), and, since the zero function is a strict super-solution of this equation, it has a negative
solution which is above un+1. We define

vn = inf
{
v

∣∣ un+1 < v < 0, v is a super-solution of F [u] + λnu = f (x,u)
}
.

Then vn is a solution of F [u]+λnu = f (x,u) such that between un+1 and vn no other solution of
this problem exists. Indeed, vn is a super-solution (as an infimum of super-solutions), so between
un+1 and vn there is a minimal solution, with which vn has to coincide, by its definition. Note
Hopf’s lemma trivially implies that for some ε > 0 we have vn < un+1 − εϕ+

1 < vn − 2εϕ+
1 .

Next, by the convexity of F and the concavity of f we easily check that the function uα =
αvn + (1 − α)vn is a super-solution of F [u] + λnu = f (x,u), for each α ∈ [0,1]. This gives a
contradiction with the definition of vn, for α small enough but positive.
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Assume now our claim is false and (2) holds. We again have −C0ϕ
+
1 � un � −c0ϕ

+
1 < 0 and

vn/‖vn‖ → ϕ−
1 , so the numbers

εn := sup{ε > 0 | un � εvn in Ω}

clearly satisfy εn > 0 and εn → 0. Hypothesis (6.1) implies that for sufficiently large n we have
εnf (x, vn) < f (x,un), that is, F [εnvn] + λnεnvn < F [un] + λnun, and Hopf’s lemma yields a
contradiction with the definition of εn. �
7. Discussion and examples

The main point of this section is to provide some examples showing that when (F1) or (F2)
fails, then the bifurcation diagram for (1.1) may look very differently from what is described in
Theorems 1.2–1.3. However, we begin with some general comments on our hypotheses and their
use.

Hypothesis (F0) is classical sub-linearity for f , which guarantees bifurcation from infinity
and also ensures the solutions of (1.1) tend to zero as λ → −∞. Condition (F1) guarantees the
existence of a strict super-solution of (1.1) for all λ, while (F2) is used in some comparison
statements and to prove uniqueness of solutions of (1.1) for sufficiently negative λ.

Further, conditions (F
+)–(F
−) and (F r+)–(F r−) are the Landesman–Lazer type hypotheses
which give a priori bounds when λ stays on one side of the eigenvalues, and thus provide a
solution at resonance and determine on which side of each eigenvalue the bifurcation from in-
finity takes place. The strict inequalities in (F
+)–(F r−) are important and cannot be relaxed in
general – for instance the problem F [u]+ λ+

1 u = −√
max{1 − u,0} has no solutions (and hence

Theorem 1.1 fails), as Theorems 1.6 and 1.4 in [36] show, even though the nonlinearity satis-
fies the hypotheses of Theorem 1.1, except for the strict inequality in (F
+). On the other hand,
for F = � it is known that in the case of equalities in (F
+)–(F r−) one can give supplementary
assumptions on f and the rate of convergence of f to its limits f±, f ±, so that results like The-
orem 1.1 still hold, see for instance Remark 21 in [5]. Extensions of these ideas to HJB operators
are out of the scope of this work and could be the basis of future research.

Now we discuss examples where (F1) or (F2) fails.

Example 1. Our first example shows that for all sufficiently small δ > 0 we can construct a
nonlinearity f which does not satisfy (F1) and for which the set S(λ+

1 + δ) is empty. This means
that, in the framework of Theorems 1.1–1.2, the branch bifurcating from infinity to the right of
λ+

1 “turns back” before it reaches λ+
1 + δ. A similar situation can be described for the branch

bifurcating from minus infinity to the left of λ−
1 that “turns right”, before reaching λ−

1 − δ. In
particular there cannot be a continuum of solutions along the gap between λ+

1 and λ−
1 .

Consider the Dirichlet problem

F [u] + λu = tϕ+
1 + h in Ω, u = 0 on ∂Ω, (7.1)

at resonance, that is, for λ = λ+
1 . When t = t∗+(h) Eq. (7.1) may or may not have a solution,

depending on F and h. An example of such a situation was given in [7] and we recall it here. Take
F [u] = max{�u,2�u}, and h ∈ C(Ω) such that

∫
Ω

hϕ1 = 0 and h changes sign on ∂Ω . Here
λ+ = λ1, λ− = 2λ1, ϕ+ = −ϕ− = ϕ1, where λ1 and ϕ1 are the first eigenvalue and eigenfunction
1 1 1 1
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of the Laplacian. Then (see Example 4.3 in [7]) under the above hypotheses on h we have t∗+ = 0
and problem (7.1) has no solutions if λ = λ+

1 and t = t∗+. By exactly the same reasoning it is
possible to show that problem (7.1) has no solutions if λ = λ−

1 and t = t∗−.

Lemma 7.1. If Eq. (7.1) with λ = λ+
1 and t = t∗+ does not have a solution then there exists δ0

such that t∗λ > t∗+ provided λ ∈ (λ+
1 , λ+

1 + δ0). Similarly, if (7.1) with λ = λ−
1 and t = t∗− does

not have a solution then there exists δ0 such that t∗λ > t∗− whenever λ ∈ (λ−
1 − δ0, λ

−
1 ).

Before proving the lemma, we use it to construct a nonlinearity with the desired properties.
For λ sufficiently close to λ+

1 we have t∗+ < t∗λ so that we can choose t ∈ (t∗+, t∗λ ). We then define

f (x,u) =

⎧⎪⎨
⎪⎩

tϕ+
1 + h if u � −M,

(
t−t∗++ε

M
(u + M) + t)ϕ+

1 + h if −2M � u � −M,

(t∗+ − ε)ϕ+
1 + h if u � −2M,

(7.2)

where ε and M are some positive constants. We readily see that f satisfies (F0) and (F
+), the
hypotheses of Theorem 1.1, but S(λ) is empty. Indeed, if u ∈ S(λ), then u is a super-solution for
(7.1). On the other hand, by Theorem 1.9 in [36], the equation F [u] + λu = K‖tϕ+

1 + h‖L∞(Ω)

with λ < λ−
1 has a solution uK , for each K > 0. Moreover, for large K , uK is a sub-solution of

(7.1) and uK < u. Then by Perron’s method (7.1) has a solution, a contradiction.
Similarly, for λ < λ−

1 sufficiently close to λ−
1 we choose t ∈ (t∗−, t∗λ ) and define f (x,u) being

equal to tϕ+
1 +h if u � M and to (t∗− − ε)ϕ+

1 +h if u � 2M . By the same reasoning we find that
S(λ) is empty.

We summarize: with these choices of λ and f there is a region of non-existence in the gap
between λ+

1 and λ−
1 . In other words, the connected sets of solutions of (1.1) C2 (resp. C3), pre-

dicted in Theorem 1.1, do not extend to the right (resp. to the left) of λ. The first graph at the end
of this section is an illustration of this situation.

We observe that if we take M sufficiently large then all solutions of (7.1) and (1.1), with f

as given in (7.2), coincide. In fact, we can take −M to be a lower bound for all solutions of the
inequality F [u] + λu � c + h, where c is such that f (x,u) � c + h in Ω . Such an M exists by
the one-sided ABP inequality given in Theorem 1.7 in [36]. Now we see that (1.1) with this f

has a unique solution for λ < λ+
1 , as an application of Theorem 1.8 in [36], and then the branch

of solutions bifurcating from plus infinity must turn left and go towards infinity near the λ-axis,
as drawn on the picture.

Proof of Lemma 7.1. Given λ ∈ (λ+
1 , λ−

1 ), let v∗
λ be a solution of

F [u] + λu = t∗λϕ+
1 + h in Ω, (7.3)

whose existence is guaranteed by the results in [39]. We notice that ‖v∗
λ‖ is unbounded as

λ ↘ λ+
1 , as otherwise v∗

λ a subsequence of v∗
λ would converge to a solution of (7.1) with λ = λ+

1
and t = t∗+, which is excluded by assumption. That t∗λ → t∗+ as λ → λ+

1 was proved in Proposi-
tion 2.3. Then, by the simplicity of λ+

1 , we find that v∗
λ/‖v∗

λ‖∞ → ϕ+
1 as λ → λ+

1 , in particular,
v∗ becomes positive in Ω , for λ larger than and close enough to λ+. Suppose for contradiction
λ 1
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that t∗+ � t∗λ , then v∗
λ � 0 satisfies

F
(
v∗
λ

) + λ+
1 v∗

λ � F
(
v∗
λ

) + λv∗
λ = t∗λϕ+

1 + h � t∗+ϕ+
1 + h,

so v∗
λ is a super-solution for (7.1) with λ = λ+

1 and t = t∗+. As we already showed above, (7.1)
has a sub-solution below v∗

λ , providing a contradiction.
In the same way, we see that v∗

λ/‖v∗
λ‖∞ → ϕ−

1 as λ ↗ λ−
1 and then v∗

λ becomes negative in Ω ,
for λ < λ−

1 and close enough to λ−
1 . Then t∗− � t∗λ would imply that v∗

λ � 0 satisfies

F
(
v∗
λ

) + λ−
1 v∗

λ � F
(
v∗
λ

) + λv∗
λ = t∗λϕ+

1 + h � t∗−ϕ+
1 + h,

so v∗
λ is a super-solution for (7.1) with λ = λ−

1 and t = t∗−. To construct a sub-solution we
consider vε a solutions of F [vε] + λ−

1 vε = (t∗− + ε)ϕ+
1 + h, with ε > 0. By our assumption,

vε/‖vε‖∞ → ϕ−
1 as ε → 0 (see also Theorem 1.4 in [24]). Hence there exists ε = ε(λ) such that

vε < v∗
λ and F [vε]+λ−

1 vε � t∗−ϕ+
1 +h and then Perron’s method gives a contradiction again. �

Remark 7.1. The claim gives an idea of the behavior of t∗λ , with respect to λ, near the extremes of
the interval [λ+

1 , λ−
1 ]. However we do not have any idea about the global behavior of t∗λ , actually

we do not even know how t∗+ and t∗− compare.

For completeness we give a direct proof of the fact that in the above examples condition (F1)
is not satisfied by nonlinearities like in (7.2). In this direction we have the following lemma,
which is of independent interest.

Lemma 7.2. For any h ∈ Lp(Ω), p > N , which is not a multiple of ϕ+
1 ,

(a) if h � 0 and h �≡ 0 then t∗+(h) < 0 and t∗−(h) < 0;
(b) if h � 0 and h �≡ 0 then t∗+(h) > 0 and t∗−(h) > 0;
(c) the functions t∗+(h)ϕ+

1 + h and t∗−(h)ϕ+
1 + h change sign in Ω .

Proof. (a) If t∗+(h) � 0 then, as h � 0, by Theorem 1.9 in [36] the problem F [u] + λ+
1 u =

t∗+(h)ϕ+
1 + h has a solution. Then by Theorem 1.2 in [24] u + kϕ+

1 is a solution of the same
problem, for all k > 0. Since u + kϕ+

1 is positive for sufficiently large k, by Theorem 1.2 in [36]
we get that u is a multiple of ϕ+

1 , a contradiction, since h �= 0.
If t∗−(h) � 0, by Theorem 1.5 in [24] either there exist sequences εn → 0 and un of solutions

of the problem F [un]+λ−
1 un = (t∗−(h)+εn)ϕ

+
1 +h such that un is unbounded and un is negative

for large n, or F [u+kϕ−
1 ]+λ−

1 (u+kϕ−
1 ) = t∗−(h)ϕ+

1 +h for some u and all k > 0. In both cases
we get a negative solution of F [u] + λ−

1 u � 0, which by Theorem 1.4 in [36] is then a multiple
of ϕ−

1 , a contradiction.
(b) If t∗+(h) � 0 then F [u] + λ+

1 u = t∗+(h)ϕ+
1 + h has no solution by Theorems 1.6 and 1.4

in [36], since t∗+(h)ϕ+
1 +h � 0. If t∗−(h) � 0 we again have t∗−(h)ϕ+

1 +h � 0, then F [u]+λ−
1 u =

t∗−(h)ϕ+
1 + h has no solutions by the anti-maximum principle, see for instance Proposition 4.1

in [24]. Hence by Theorems 1.2 and 1.4 in [24] there exist sequences εn → 0, u+
n and u−

n of
solutions of F [u±

n ] + λ±
1 u±

n = (t∗±(h) + εn)ϕ
+
1 + h such that u±

n /‖u±
n ‖∞ → ϕ±. Fix w to be the

solution of the Dirichlet problem F(w) − γw = −h in Ω . This problem is uniquely solvable,
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with w < 0 in Ω , since by (H1) the operator F − γ is decreasing in u (see for instance [17]
and [36]). Then by the maximum principle and Hopf’s lemma εnϕ

+
1 + (λ+

1 + γ )w < 0 in Ω ,
if n is sufficiently large. Hence u+

n + w is positive and F [u+
n + w] + λ+

1 (u+
n + w) < 0 in Ω ,

which is a contradiction with Theorem 1.4 in [36]. Similarly, u−
n + w is negative and satisfies

F [u−
n + w] + λ−

1 (u−
n + w) < 0 in Ω , which is a contradiction with Theorem 1.2 in [36].

(c) This is an immediate consequence of (a) and (b). Indeed, if (c) is false we just replace h

by t∗±(h)ϕ+
1 + h in (a) or (b). �

Remark 7.2. The statements on t∗+ in the preceding lemma also follow from Theorem 1.1 and
formula (1.12) in [7].

The following example illustrate the role of hypothesis (F2), which allows the use of the
method of sub- and super-solutions, and prevents the branches which bifurcate from infinity to
survive for arbitrarily negative λ.

Example 2. Consider the function ω(u) = u√|u| , ω(0) = 0 and the problem

�u + λu = −ω(u) in Ω. (7.4)

This problem is variational and its associated functional is

J (u) =
∫
Ω

(|∇u|2 − λu2 − |u|3/2)dx,

which is even, bounded below, takes negative values and attains its minimum on H 1
0 (Ω), for

each λ < λ1. The same is valid for J+(u) = J (u+) and J−(u) = J (u−), whose minima are then
a positive and a negative solutions of (7.4).

In the context of nonlinear HJB operators we may consider

max{�u,2�u} + λu = −ω(u), in Ω, u = 0 on ∂Ω. (7.5)

For this problem we have bifurcation from plus infinity to the left of λ1 and from minus infinity
to the left of 2λ1. These branches cannot reach the trivial solution set R × {0}, since bifurcation
of positive or negative solutions from the trivial solution does not occur for (7.4). Exactly as in
the proof of Theorem 1.3 (see the definition of the set A in the previous section) we can show
that they contain only positive or negative solutions. Actually these branches are curves which
can never turn, since positive and negative solutions of (7.5) are unique – this can be proved in
the same way as Proposition 7.1 below.

Example 3. Finally, let us look at an example of a sub-linear nonlinearity f which satisfies (F2)
but f (x,0) ≡ 0. For any HJB operator F satisfying our hypotheses consider

F [u] + λu = f̃ (u) :=
{−u if |u| � 1,

−ω(u) if |u| � 1.
(7.6)

In this situation we have positive (resp. negative) bifurcation from zero at λ = λ+
1 − 1 (resp.

λ = λ− − 1), more precisely, (λ+ − 1, kϕ+) and (λ− − 1, kϕ−) are solutions for k ∈ [0,1] (for
1 1 1 1 1



4180 P. Felmer et al. / Journal of Functional Analysis 258 (2010) 4154–4182
more general results on bifurcation from zero see [13]). Further, note that there are only positive
(resp. negative) solutions on these branches, as well on the branches which bifurcate from plus
(resp. minus) infinity, given by Theorem 1.3. This is a simple consequence of the strong max-
imum principle and the fact that the right-hand side of (7.6) is positive (resp. negative) if u is
negative (resp. positive), so if u � (�) 0 and u vanishes at one point then u is identically zero.
The bifurcation branches connect, as shown by the following uniqueness result.

Proposition 7.1. If u and v are two solutions of (7.6) having the same sign and ‖u‖ > 1 or
‖v‖ > 1 then u ≡ v. If ‖u‖ � 1 and ‖v‖ � 1 then (by the simplicity of the eigenvalues) λ = λ±

1 −1
and u = v + kϕ±

1 for some k ∈ [0,1].

Proof. Say u > 0, v > 0, ‖v‖ > 1. Set

τ := sup{μ > 0 | u � μv in Ω}.

By Hopf’s lemma τ > 0 and we have u � τv.
First, suppose τ < 1. By the definition of f̃ in (7.6) and ‖v‖ > 1 we easily see that

f̃ (u) � f̃ (τv) � τ f̃ (v) in Ω.

Hence (7.6) and the hypotheses on F imply

M−
λ,Λ

(
D2(u − τv)

) − γ
∣∣D(u − τv)

∣∣ − (γ + λ)(u − τv) � 0

and u − τv � 0 in Ω , so Hopf’s lemma implies u � (τ + ε)v for some ε > 0, a contradiction
with the definition of τ .

Second, if τ � 1 we repeat the above argument with u and v interchanged. This leaves u � v

and v � u as the only case not excluded. �
The following picture summarizes the above examples.
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