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Abstract

Every finite dimensional Hopf algebra is a Frobenius algebra, with Frobenius homomorphism given by an integral. The
Nakayama automorphism determined by it yields a decomposition with degrees in a cyclic group. For a family of pointed Hopf
algebras, we determine necessary and sufficient conditions for this decomposition to be strongly graded.
© 2006 Elsevier B.V. All rights reserved.

MSC: Primary: 16W30; secondary: 16W50

1. Introduction

Let k be a field, A a finite dimensional k-algebra and DA the dual space Homg (A, k), endowed with the usual
A-bimodule structure. Recall that A is said to be a Frobenius algebra if there exists a linear form ¢: A — Kk, such
that the map A — DA, defined by x — xg, is a left A-module isomorphism. This linear form ¢: A — k is called
a Frobenius homomorphism. It is well known that this is equivalent to saying that the map x +— ¢x, from A to DA,
is an isomorphism of right A-modules. From this it follows easily that there exists an automorphism p of A, called
the Nakayama automorphism of A with respect to ¢, such that xp = @p(x), for all x € A. It is easy to check that a
linear form @: A — Kk is another Frobenius homomorphism if and only if there exists an invertible element x in A,
such that ¢ = x¢. It is also easy to check that the Nakayama automorphism of A with respect to ¢ is the map given
by a > p(x)"'p(a)p(x).

Let A be a Frobenius k-algebra, ¢: A — k a Frobenius homomorphism and p : A — A the Nakayama
automorphism of A with respect to ¢.

Definition 1.1. We say that p has order m € N and we write ord, = m, if p"" =id4 and p” # ida, forall ¥ < m.

Let G be a group. Recall that a G-graded algebra is a k-algebra A together with a decomposition A = P ecG Ag
of A as a direct sum of subvector spaces, such that A;Ay C A, forall g,¢" € G. When AgA, = Agy for all
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g, & € G, the grading is called strong, and the algebra is said to be strongly graded. Assume that p has finite order
and that k has a primitive ord,th root of unity w. For n € N, let C,, be the group of nth roots of unity in k. Since the
polynomial X°d» — 1 has distinct roots o’ (0 < i < ordy), the algebra A becomes a Corq,-graded algebra

A=A 0@ B A o,-1, where A, ={a € A:pla)=za}. (1.1)

As is well known, every finite dimensional Hopf algebra H is Frobenius, any nonzero right integral ¢ € H* being a
Frobenius homomorphism. Let ¢ be a nonzero right integral of H. Let « € H* be the modular element of H, defined
by at = a(a)t (notice that this is the inverse of the modular element « considered in [6]). Forx € H*,letr, : H - H
be defined by 7, (b) = bx = x(b(1))b(2). Then, as follows from [6, Theorem 3(a)], we have

o) = ol (b(l))Sz(b(z)), ie. p = S%o To-1-

Since « is a group-like element, S? o r,,-1 = r,1 0 S? and therefore

pl =8 or,, e pl(h)=a"(ha)S" (hw) =o' (Sha)S* (he), (1.2)

for all [ € Z. Now, « has finite order and, by the Radford formula for S* (see [7] or [9, Theorem 3.8]), the antipode
S has finite order with respect to composition. Thus, the automorphism p has finite order, which implies that finite
dimensional Hopf algebras are examples of the situation considered above.

Notice that by (1.2), if p’ = id, then o/ = ¢ and then S¥ = id. The converse is obvious. So, the order of o is the
lem of those of o and S2. In particular, the number of terms in the decomposition associated with S> divides that in
the one associated with p. Also, from (1.2) we get that p = S? if and only if H is unimodular.

The main aim of the present work is to determine conditions for decomposition (1.1) to be strongly graded. Besides
the fact that the theory for algebras which are strongly graded over a group is well developed (see for instance [4]),
our interest in this problem originally came from the homological results in [3].

The decomposition using S? instead of p was considered in [8]. We show below that if S> # id, then this
decomposition is not strongly graded. On the other hand, as shown in [8], under suitable assumptions its homogeneous
components are equidimensional. It is an interesting problem to know whether a similar thing happens with the
decomposition associated with p. For instance, all the liftings of quantum linear spaces have equidimensional
decompositions, as shown in Remark 4.4.

2. The unimodular case

Let H be a finite dimensional Hopf algebra with antipode S. In this brief section we first show that the
decomposition of H associated with S? is not strongly graded, unless S> = id (this applies in particular to
decomposition (1.1) when H is unimodular and ord, > 1). We finish by giving a characterization of unimodular
Hopf algebras in terms of decomposition (1.1).

Lemma 2.1. Let H be a finite dimensional Hopf algebra. Suppose H = @gGG Hyg is a graduation over a group.
Assume there exists g € G such that e(Hg) = 0. Then the decomposition is not strongly graded.
Proof. Suppose the decomposition is strongly graded. Then there are elements a; € Hg and b; € H,-1 such that
1 =7 ;aibj. Then 1 =¢e(1) =), e(a;)e(b;), a contradiction. [
Corollary 2.2. Assume that S* # id and that

H= @ H., where H, = {h € H : §*(h) = zh}.

zek*

Then this decomposition is not strongly graded.
Proof. Since ¢ 0 S = ¢, thene(H,) =0 forallz # 1. O

Let now ¢ € f;i* and " € fll{, such that (¢, I') = 1, and let «: H — k be the modular map associated with r = S(I").
Let p be the Nakayama automorphism associated with ¢. Assume that k has a root of unity w of order ord,. We
consider the decomposition associated with p, as in (1.1)

H=Ho® & H,oum,1. 2.1
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Corollary 2.3. If H is unimodular and S* # id, then the decomposition (2.1) is not strongly graded. [
Proposition 2.4. If h € H,;, then a(h) = o~ e(h).
Proof. By [6, Proposition 1(e)], or the proof of [9, Proposition 3.6], (¢, t) = 1. Then
e(h) = e(h) (g, 1) = (¢, th) = (¢, p(W)1) = (9, &' h1) = & a(h).

So, a(h) = w~'e(h), as we want. [J
Corollary 2.5. H is unimodular if and only if H,; C ker (¢), foralli > 0

Proof. (=): For h € H,;, we have €(h) = a(h) = o "e(h) and so €(h) = 0, since ' # 1.
(&): For h ¢ H, withi > 0, we have a(h) = o le(h) = 0 = €(h) and, for h € H,o, we also have
a(h) = % (h) =e(h). O

3. Bosonizations of Nichols algebras of diagonal type

Let G be a finite abelian group, g = g1, ..., 8, € G a sequence of elements in G and ¥ = x1,..., Xn € Ga
sequence of characters of G. Let V be the vector space with basis {x1, ..., x,} and let ¢ be the braiding given by
c(x; ® xj) = gijxj ® x;, where ¢;; = x;(g;). We consider the Nichols algebra R = B(V) generated by (V, ¢).
We give here one of its possible equivalent definitions. Let 7.(V) be the tensor algebra generated by V, endowed
with the unique braided Hopf algebra structure such that the elements x; are primitive and whose braiding extends c.
Then, R is obtained as a colimit of algebras R = h_n)l R;, where Ry = T.(V) and R;4 is the quotient of R; by the
ideal generated by its homogeneous primitive elements with degree > 2. See [1,2] for alternative definitions and main
properties of Nichols algebras. Assume that R is finite dimensional and let #p € R be a nonzero homogeneous element
of greatest degree. Let H = H(g, x) = R#kG be the bosonization of R (this is an alternative presentation for the
algebras considered by Nichols in [5]). We have:

A(gi) = g ® &i, Axi)) =8 ®xi +x ® 1,

S@=g" S =-g 'x

Se=g S =g 'xg=q;"x
The element 7o Y ¢eG 8 18 a nonzero right integral in H. Let « be the modular element associated with it. Since, for
all 7, the degree of x;1 dec g is bigger than the degree of fy, we have that x;1 dec g = 0, and so a(x;) = 0.
Moreover, o|¢ is determined by gfy = a(g)#og. Thus,

p(e) =a(g™hg and p(x) = alg Hg;; 'xi.

This implies that the nonzero monomials x;, - - - x;,g are a set of eigenvectors for p (which generate H as a k-vector
space). In particular, p is diagonalizable, whence k has a primitive ord,th root of unity. Consider the subgroups

Ll - <q11a~~-aQnma(G)) and LZZ(X(G)s

of k*. Since ,o(xl-gl._l) = q;l)c,-gi_1 and p(g) = a(g), the group L; is the set of eigenvalues of p. As in the
introduction, we decompose

H= @ H,, where H,=1{h e H : p(h) = wh}.

welq
Proposition 3.1. The following are equivalent:

(1) @weLl H,, is strongly graded.

2) Ly = Ls.

(3) Each H,, contains an element in G.
(4) H is a crossed product Hy x KLj.
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Proof. It is clear that (2) = (3) and (4) = (1).
The proof of (3) = (4) is standard. We sketch it for the readers’ convenience. For each w € L1, pick g, € H,NG.
Define p: Ly x HH — Hyand f : Ly x L1 — H; by

w-a=pwa)=geag, and f(o o) =_guguws,,

Let H; |><£ KL be the algebra with underlying vector space H; ® kL1 and with multiplication (¢ ® w)(b ® o') =
a(w - b)f(w, o) ® wa'. It is easy to see that the map ¥ : H; l><£kL1 — H given by ¥(a ® w) = ag, is an
isomorphism of algebras. In particular, H; l><£ kL is associative with unit 1 ® 1, and so p is a weak action and f is a
normal cocycle that satisfies the twisted module condition.

We now prove that (1) = (2). Notice that H is also Ng-graded by deg(g) = O for all g € G, and deg(x;) = 1.
Call this decomposition H = @), .y H I, Since each H,, is spanned by elements which are homogeneous with respect
to the previous decomposition, we have:

H= O H), whereH,=H,nH.

i>0,wel
So, if B wel, H,, is strongly graded, then each H, must contain nonzero elements in H 0. Since HY C @we L H,,
we must have L; = L,. [
Quantum linear spaces
If the sequence of characters x satisfies
o xi(g) # 1,
o xi(gj)x;(g) =1fori # j,
then H (g, x) is the quantum linear space with generators G and x1, ..., x,, subject to the following relations:
e gx; = xi(8)Xig,
® XiXj = qijXjXi,
m
ox;' =0,
where m; = ord(g;;). For such algebras it is possible to give an explicit formula for p. In fact, the element
r = xi’”il ~-~x,r1""_1 decg is a right integral in H. Using this integral, it is easy to check that a(g) =
Xin]_l(g) oyl (o). Tn particular, a(g;) = q?l”_l . -ql.":l"_l. A straightforward computation, using that p(g) =

a(g Mg and p(x;) = oe(gi_l)qijlxi, shows that
(A=m j)ri—(1—mj)r; -
,O(X?-"X,Z’lg)z 1_[ C]l] mj)r m r"a(g 1)x;'~--x;”g.
1<i<j<n
Proposition 3.1 applies to this family of algebras.
Example 3.2. Let k be a field of characteristic #2 and let G = {1, g}. Set g; = g and x;(g) = —1fori € {1, ..., n}.

Then, g;j = —1foralli, j, and a(g) = (—1)". In this case, the algebra H is generated by g, x1, ..., x, subject to the
relations

e g2 =1,

° xiz =0,

® XjXj = —XjXj,
® gX; = —X; 4.

By Proposition 3.1, we know that H is strongly graded if and only if n is odd.
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4. Liftings of quantum linear spaces

In this section we consider a generalization of quantum linear spaces: that of their liftings. As above, G is a finite

abelian group, ¢ = g1,...,8: € G is a sequence of elements in G and x = xi1,..., xn» € G is a sequence of
characters of G, such that
Xi(gi) # 1, 4.1
xi(gj)xj(gi) =1, fori # j. (4.2)

Again, let g;; = x;(g;) and let m; = ord(g;;). Let now A; € kand A;; € kfori # j be such that
ri(x" —e) = Aij(xix; —e) =0.

Suppose that A;; + ;A j; = 0 whenever i # j. The lifting of the quantum affine space associated with this data is the

algebra H = H (g, x, A), with generators G and x1, ..., X, subject to the following relations:
gxi = xi(g)xig, (4.3)
XixXj = qijXjxi + ij(1 = gigj), (4.4)
X = a1 =g, 4.5)

It is well known that the set of monomials {XII ~-x'g 10 <r; <m;, ge G}isabasisof H.Itis a Hopf algebra
with comultiplication defined by

A(g) =g®g, forallg e G, (4.6)
Ax) =8 Qxi +x; ® 1. (4.7
The counit ¢ satisfies e(g) = 1, forall g € G, and £(x;) = 0. Moreover, the antipode S is given by S(g) = g~ !, for

all g € G,and S(x;) = —gflx,'. We note that S?(g) = g and S?(x;) = q;]xi.
Let S, be the symmetric group on n elements. For o € S, let

Mg, —1 Mme, —1
geG
Note that ¢, # 0.

Lemma 4.1. The following hold:

(1) Xjigigj lies in the center of H(g, x,A) fori # j.
(2) Xig;" lies in the center of H(g, X, \).

3) tsg =t5, forall g € G.

4) toxs, =0.

Proof. For (1) it is sufficient to see that A j; g; g ; commutes with x;. If A ;; = O the result is clear. Assume that A ;; # 0.
Then, x; = Xj_l, and thus
Ajigig&ixi = hjixi(8i)xi(gj)xi&i &g
= rixi(e)  xj(e) T xigig;
= AjiXi8i8j-
The proof of (2) is similar to that of (1) and (3) is immediate. For (4), we have:

mnlfl ma'n_l
tgxgn = Xoy cc o Xoy, E 8Xo,
geG

Mo —1 Mg, —1

= X, c X" Xo, Z X0, (8)8
geG
me, —1 mg, _;—1 m

= )\’O'n'xo'l o 'xO'n_n| (1 - go_n”n) § XO'” (8)87

geG
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and the result follows on noticing that

(=20 D X0 (©)8 = D X0u ()8 = D _ 80" X0, (8)8

geG geG geG
= Z Xon (ga g)gan 8 — Z Xon (g)go g=0,
geG geG

Mgy,

since o, (gg,lf") =d4o,0, = 1. U

Proposition 4.2. 1, is a right integral.
Proof. Let M = (m; — 1) +--- + (m, — 1). Let
A={f:{1,.... My > {1,...,n}: #f7'() = m; — 1 forall i}.

For f € A, let Xf = Xf()XfQ2) " Xf(M)- We claim that if f,h € A, then Xf deG g = Bxp deG g for some
B € k*. To prove this claim, it is sufficient to check it when f and & differ only in i, i + 1 for some 1 <i < M, that
is, when i = f o 7;, where 7; € Sy is the elementary transposition (i, i + 1). But, in this case, we have:

XfY 8=y Y8

geG geG
= Qna+ D Xn Y 8+ MG+ Dh) X, 7757 — 8h)8hai+1) D e
geG geG
= qh(i+Dh(i)Xh Z 8
geG

where XTI = KR XRG=1)XR+2) * Xh(M)- The second equality follows from relation (4.4) and item (1) in the

previous lemma. The proposition follows now using items (3) and (4) in the lemma. [
Now we see that

o 0(x;) =0,

—1
e a(g) = x{"

@ o).

For the first assertion, by Proposition 4.2, we can take o such that o1 = i. Then,

. Mg, on—
Xile = x;"’ Xoy * x:,r; Z g
geG
Mo, =1 on—1 i
=Xo,?  xp Mi(1— gl Y g =0,
geG
where the second equality follows from item (2) of Lemma 4.1. In particular, a(g;) = ¢, =ho qi’:'l”_l. Since

p(h) = a(S(h1))S*(h)), we have:

e p(g) =a(g g, ]
o p(i) =g Vg ki =Tli<j<n 4 "%

J#i
Thus, as p is an algebra map,
Py xrg) = ay (g g e O g
(I=mj)ri—(1—mj)r; _
= I @ " Ta(g ™Dt g.
1<i<j<n

So, the basis {x{ b -x,{" g} is made up of eigenvectors of p. Consider the groups
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Using that p(x,-gi_l) = q;l)cigi_1 and p(g) = a(g~ Vg, itis easy to see that L is the set of eigenvalues of p and that
the order of p is the l.c.m. of the numbers m1, ..., m, and the order of the character | € G (in particular, k has a
primitive ord,th root of unity). As before, we decompose H = H(g, x, A) as

H= @ H,, where H, ={he H : p(h) = wh}.

weL

The following result is the version of Proposition 3.1 for the present context.

Theorem 4.3. The following are equivalent:

(1) Dyer, Ho is strongly graded.

2) Ly = L.

(3) Each component H,, contains an element in G.
(4) H is a crossed product Hy x KLj.

Proof. Clearly (2) and (3) are equivalent and (4) = (1). The proof of (3) = (4) is the same as for Proposition 3.1.
Next we prove that (1) = (3). Letw € L;. By Lemma 2.1, we know that e (H,,) # 0. Since H,, has a basis consisting
of monomials x{' ... x;"g and e(x;) = 0, there must be an element g € G inside H,. O

Remark 4.4. We next show that for liftings of quantum linear spaces, the components in the decomposition H =
D1 | H,, are equidimensional. In fact, in this case we can take the basis of H given by

(g D™ - (g, N)"g 10 <10 <mi, g € G).
Since p(xigi_l) = qi;lxigi_l, the map
0:Zm, X -+ X Ly, x G — K*,

taking (r1,...,7,, g) to the eigenvalue of (xlglfl)’l -~(xngn_1)r"g with respect to p, is a well defined group
homomorphism. From this it follows immediately that all the eigenspaces of p are equidimensional.

5. Computing H;

Assume we are in the setting of the liftings of QLS. Suppose H is a crossed product or, equivalently, that L1 = L».

Then, there exist elements 1, ..., ¥, € G, such that a(y;) = ¢;;. Set y; = 8 13’1’_1 and let y; = x;y;. It is immediate
that y; € Hi. Let N = ker(ojg) € G. It is easy to see that H; has a basis given by {yil --y'g g € N}
Furthermore, H; can be presented by generators N, yi, ..., y, and relations

o 8yi = Xi(8)i8, 1 L
© Vivi =qijxj Vi x; Vyjyi + xj Vo ijVivi —vi v )

o = hix" TR GG =y,
Notice that if A; # 0, then X?i(m[_l)/z(fi) = 41. We claim that
MijViVis  hijvivi,  Ay™ and Ay™
belong to kN. It is clear that y™ € N, since a(y™) = q?; " = 1. We now prove the remaining part of the claim.

Assume that A;; # 0. Then x; x; = €. Hence,

o If 1 i, j, then xi(gig)) = quqji = a5 'q;; = xixj(g ) = 1.
o gi=xi(e) =xi(& ) =a; =qji =qj;-

Thus, m; = ord(g;;) = ord(g;;) = m, and then

i—1 i—1 o
X (gigj)X;n’ (¢i&)) = (qiiqijqjiq;)"™ ' =1 and a(yiy)) = qiiqjj = 1.
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It is now immediate that (g; g;) = X{"l_l(gigj) e Xr',""_l(gigj) =1, and so

a@ivp =alg vy g7y =atgjgn ey T = 1.
It remains to check that 1; ™ € kN. Assume now that A; % 0. Then X;"" = ¢. Thus,

o If/ 75 i, then X[mlil(g;ni) = qi(lmlil)m" = ql(iliml)m" = X,‘mi (gllim’) =1.
mi(m;—1)
ii

&) xm gy = 1,

Since Xl.'""_l(g;"") =gq = 1, this implies that

; —1
a(g!") = x"

and so
ey =a(ig)” =a) la@g) T = 1.
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