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Abstract

Every finite dimensional Hopf algebra is a Frobenius algebra, with Frobenius homomorphism given by an integral. The
Nakayama automorphism determined by it yields a decomposition with degrees in a cyclic group. For a family of pointed Hopf
algebras, we determine necessary and sufficient conditions for this decomposition to be strongly graded.
c© 2006 Elsevier B.V. All rights reserved.

MSC: Primary: 16W30; secondary: 16W50

1. Introduction

Let k be a field, A a finite dimensional k-algebra and D A the dual space Homk(A, k), endowed with the usual
A-bimodule structure. Recall that A is said to be a Frobenius algebra if there exists a linear form ϕ: A → k, such
that the map A → D A, defined by x 7→ xϕ, is a left A-module isomorphism. This linear form ϕ: A → k is called
a Frobenius homomorphism. It is well known that this is equivalent to saying that the map x 7→ ϕx , from A to D A,
is an isomorphism of right A-modules. From this it follows easily that there exists an automorphism ρ of A, called
the Nakayama automorphism of A with respect to ϕ, such that xϕ = ϕρ(x), for all x ∈ A. It is easy to check that a
linear form ϕ̃: A → k is another Frobenius homomorphism if and only if there exists an invertible element x in A,
such that ϕ̃ = xϕ. It is also easy to check that the Nakayama automorphism of A with respect to ϕ̃ is the map given
by a 7→ ρ(x)−1ρ(a)ρ(x).

Let A be a Frobenius k-algebra, ϕ: A → k a Frobenius homomorphism and ρ : A → A the Nakayama
automorphism of A with respect to ϕ.

Definition 1.1. We say that ρ has order m ∈ N and we write ordρ = m, if ρm
= idA and ρr

6= idA, for all r < m.

Let G be a group. Recall that a G-graded algebra is a k-algebra A together with a decomposition A =
⊕

g∈G Ag

of A as a direct sum of subvector spaces, such that Ag Ag′ ⊆ Agg′ for all g, g′
∈ G. When Ag Ag′ = Agg′ for all
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g, g′
∈ G, the grading is called strong, and the algebra is said to be strongly graded. Assume that ρ has finite order

and that k has a primitive ordρ th root of unity ω. For n ∈ N, let Cn be the group of nth roots of unity in k. Since the
polynomial Xordρ − 1 has distinct roots ωi (0 ≤ i < ordρ), the algebra A becomes a Cordρ -graded algebra

A = Aω0 ⊕ · · · ⊕ Aωordρ−1 , where Az = {a ∈ A : ρ(a) = za}. (1.1)

As is well known, every finite dimensional Hopf algebra H is Frobenius, any nonzero right integral ϕ ∈ H∗ being a
Frobenius homomorphism. Let t be a nonzero right integral of H . Let α ∈ H∗ be the modular element of H , defined
by at = α(a)t (notice that this is the inverse of the modular element α considered in [6]). For x ∈ H∗, let rx : H → H
be defined by rx (b) = bx = x(b(1))b(2). Then, as follows from [6, Theorem 3(a)], we have

ρ(b) = α−1(b(1))S2(b(2)), i.e. ρ = S2
◦ rα−1 .

Since α is a group-like element, S2
◦ rα−1 = rα−1 ◦ S2 and therefore

ρl
= S2l

◦ rα−l , i.e. ρl(h) = α−l(h(1))S2l(h(2)) = αl(S(h(1)))S2l(h(2)), (1.2)

for all l ∈ Z. Now, α has finite order and, by the Radford formula for S4 (see [7] or [9, Theorem 3.8]), the antipode
S has finite order with respect to composition. Thus, the automorphism ρ has finite order, which implies that finite
dimensional Hopf algebras are examples of the situation considered above.

Notice that by (1.2), if ρl
= id, then αl

= ε and then S2l
= id. The converse is obvious. So, the order of ρ is the

lcm of those of α and S2. In particular, the number of terms in the decomposition associated with S2 divides that in
the one associated with ρ. Also, from (1.2) we get that ρ = S2 if and only if H is unimodular.

The main aim of the present work is to determine conditions for decomposition (1.1) to be strongly graded. Besides
the fact that the theory for algebras which are strongly graded over a group is well developed (see for instance [4]),
our interest in this problem originally came from the homological results in [3].

The decomposition using S2 instead of ρ was considered in [8]. We show below that if S2
6= id, then this

decomposition is not strongly graded. On the other hand, as shown in [8], under suitable assumptions its homogeneous
components are equidimensional. It is an interesting problem to know whether a similar thing happens with the
decomposition associated with ρ. For instance, all the liftings of quantum linear spaces have equidimensional
decompositions, as shown in Remark 4.4.

2. The unimodular case

Let H be a finite dimensional Hopf algebra with antipode S. In this brief section we first show that the
decomposition of H associated with S2 is not strongly graded, unless S2

= id (this applies in particular to
decomposition (1.1) when H is unimodular and ordρ > 1). We finish by giving a characterization of unimodular
Hopf algebras in terms of decomposition (1.1).

Lemma 2.1. Let H be a finite dimensional Hopf algebra. Suppose H =
⊕

g∈G Hg is a graduation over a group.
Assume there exists g ∈ G such that ε(Hg) = 0. Then the decomposition is not strongly graded.

Proof. Suppose the decomposition is strongly graded. Then there are elements ai ∈ Hg and bi ∈ Hg−1 such that
1 =

∑
i ai bi . Then 1 = ε(1) =

∑
i ε(ai )ε(bi ), a contradiction. �

Corollary 2.2. Assume that S2
6= id and that

H =

⊕
z∈k∗

Hz, where Hz = {h ∈ H : S2(h) = zh}.

Then this decomposition is not strongly graded.

Proof. Since ε ◦ S2
= ε, then ε(Hz) = 0 for all z 6= 1. �

Let now ϕ ∈
∫ r

H∗ and Γ ∈
∫ l

H , such that 〈ϕ,Γ 〉 = 1, and let α: H → k be the modular map associated with t = S(Γ ).
Let ρ be the Nakayama automorphism associated with ϕ. Assume that k has a root of unity ω of order ordρ . We
consider the decomposition associated with ρ, as in (1.1)

H = Hω0 ⊕ · · · ⊕ Hωordρ−1 . (2.1)
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Corollary 2.3. If H is unimodular and S2
6= id, then the decomposition (2.1) is not strongly graded. �

Proposition 2.4. If h ∈ Hωi , then α(h) = ω−iε(h).

Proof. By [6, Proposition 1(e)], or the proof of [9, Proposition 3.6], 〈ϕ, t〉 = 1. Then

ε(h) = ε(h)〈ϕ, t〉 = 〈ϕ, th〉 = 〈ϕ, ρ(h)t〉 = 〈ϕ, ωi ht〉 = ωiα(h).

So, α(h) = ω−iε(h), as we want. �

Corollary 2.5. H is unimodular if and only if Hωi ⊆ ker (ε), for all i > 0

Proof. (⇒): For h ∈ Hωi , we have ε(h) = α(h) = ω−iε(h) and so ε(h) = 0, since ωi
6= 1.

(⇐): For h ∈ Hωi with i > 0, we have α(h) = ω−iε(h) = 0 = ε(h) and, for h ∈ Hω0 , we also have
α(h) = ω0ε(h) = ε(h). �

3. Bosonizations of Nichols algebras of diagonal type

Let G be a finite abelian group, g = g1, . . . , gn ∈ G a sequence of elements in G and χ = χ1, . . . , χn ∈ Ĝ a
sequence of characters of G. Let V be the vector space with basis {x1, . . . , xn} and let c be the braiding given by
c(xi ⊗ x j ) = qi j x j ⊗ xi , where qi j = χ j (gi ). We consider the Nichols algebra R = B(V ) generated by (V, c).
We give here one of its possible equivalent definitions. Let Tc(V ) be the tensor algebra generated by V , endowed
with the unique braided Hopf algebra structure such that the elements xi are primitive and whose braiding extends c.
Then, R is obtained as a colimit of algebras R = lim

−→
Ri , where R0 = Tc(V ) and Ri+1 is the quotient of Ri by the

ideal generated by its homogeneous primitive elements with degree ≥ 2. See [1,2] for alternative definitions and main
properties of Nichols algebras. Assume that R is finite dimensional and let t0 ∈ R be a nonzero homogeneous element
of greatest degree. Let H = H(g, χ) = R#kG be the bosonization of R (this is an alternative presentation for the
algebras considered by Nichols in [5]). We have:

∆(gi ) = gi ⊗ gi , ∆(xi ) = gi ⊗ xi + xi ⊗ 1,

S(g) = g−1, S(xi ) = −g−1
i xi ,

S2(g) = g, S2(xi ) = g−1
i xi gi = q−1

i i xi .

The element t0
∑

g∈G g is a nonzero right integral in H . Let α be the modular element associated with it. Since, for
all i , the degree of xi t0

∑
g∈G g is bigger than the degree of t0, we have that xi t0

∑
g∈G g = 0, and so α(xi ) = 0.

Moreover, α|G is determined by gt0 = α(g)t0g. Thus,

ρ(g) = α(g−1)g and ρ(xi ) = α(g−1
i )q−1

i i xi .

This implies that the nonzero monomials xi1 · · · xi` g are a set of eigenvectors for ρ (which generate H as a k-vector
space). In particular, ρ is diagonalizable, whence k has a primitive ordρ th root of unity. Consider the subgroups

L1 = 〈q11, . . . , qnn, α(G)〉 and L2 = α(G),

of k∗. Since ρ(xi g−1
i ) = q−1

i i xi g−1
i and ρ(g) = α(g), the group L1 is the set of eigenvalues of ρ. As in the

introduction, we decompose

H =

⊕
ω∈L1

Hω, where Hω = {h ∈ H : ρ(h) = ωh}.

Proposition 3.1. The following are equivalent:

(1)
⊕

ω∈L1
Hω is strongly graded.

(2) L1 = L2.
(3) Each Hω contains an element in G.
(4) H is a crossed product H1 n kL1.
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Proof. It is clear that (2) ⇒ (3) and (4) ⇒ (1).
The proof of (3) ⇒ (4) is standard. We sketch it for the readers’ convenience. For each ω ∈ L1, pick gω ∈ Hω ∩G.

Define ρ : L1 × H1 → H1 and f : L1 × L1 → H1 by

ω · a = ρ(ω, a) = gωag−1
ω and f (ω, ω′) = gωgω′ g−1

ωω′ .

Let H1 n f
ρ kL1 be the algebra with underlying vector space H1 ⊗ kL1 and with multiplication (a ⊗ ω)(b ⊗ ω′) =

a(ω · b) f (ω, ω′) ⊗ ωω′. It is easy to see that the map Ψ : H1 n f
ρ kL1 → H given by Ψ(a ⊗ ω) = agω is an

isomorphism of algebras. In particular, H1 n f
ρ kL1 is associative with unit 1 ⊗ 1, and so ρ is a weak action and f is a

normal cocycle that satisfies the twisted module condition.
We now prove that (1) ⇒ (2). Notice that H is also N0-graded by deg(g) = 0 for all g ∈ G, and deg(xi ) = 1.

Call this decomposition H =
⊕

i∈N H i . Since each Hω is spanned by elements which are homogeneous with respect
to the previous decomposition, we have:

H =

⊕
i≥0,ω∈L1

H i
ω, where H i

ω = Hω ∩ H i .

So, if
⊕

ω∈L1
Hω is strongly graded, then each Hω must contain nonzero elements in H0. Since H0

⊆
⊕

ω∈L2
Hω,

we must have L1 = L2. �

Quantum linear spaces

If the sequence of characters χ satisfies

• χi (gi ) 6= 1,
• χi (g j )χ j (gi ) = 1 for i 6= j ,

then H(g, χ) is the quantum linear space with generators G and x1, . . . , xn , subject to the following relations:

• gxi = χi (g)xi g,
• xi x j = qi j x j xi ,
• xmi

i = 0,

where mi = ord(qi i ). For such algebras it is possible to give an explicit formula for ρ. In fact, the element
t = xm1−1

1 · · · xmn−1
n

∑
g∈G g is a right integral in H . Using this integral, it is easy to check that α(g) =

χ
m1−1
1 (g) · · · χ

mn−1
n (g). In particular, α(gi ) = qm1−1

i1 · · · qmn−1
in . A straightforward computation, using that ρ(g) =

α(g−1)g and ρ(xi ) = α(g−1
i )q−1

i i xi , shows that

ρ(xr1
1 · · · xrn

n g) =

∏
1≤i< j≤n

q
(1−m j )ri −(1−mi )r j
i j α(g−1)xr1

1 · · · xrn
n g.

Proposition 3.1 applies to this family of algebras.

Example 3.2. Let k be a field of characteristic 6=2 and let G = {1, g}. Set gi = g and χi (g) = −1 for i ∈ {1, . . . , n}.
Then, qi j = −1 for all i, j , and α(g) = (−1)n . In this case, the algebra H is generated by g, x1, . . . , xn subject to the
relations

• g2
= 1,

• x2
i = 0,

• xi x j = −x j xi ,
• gxi = −xi g.

By Proposition 3.1, we know that H is strongly graded if and only if n is odd.
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4. Liftings of quantum linear spaces

In this section we consider a generalization of quantum linear spaces: that of their liftings. As above, G is a finite
abelian group, g = g1, . . . , gn ∈ G is a sequence of elements in G and χ = χ1, . . . , χn ∈ Ĝ is a sequence of
characters of G, such that

χi (gi ) 6= 1, (4.1)
χi (g j )χ j (gi ) = 1, for i 6= j. (4.2)

Again, let qi j = χ j (gi ) and let mi = ord(qi i ). Let now λi ∈ k and λi j ∈ k for i 6= j be such that

λi (χ
mi
i − ε) = λi j (χiχ j − ε) = 0.

Suppose that λi j + qi jλ j i = 0 whenever i 6= j . The lifting of the quantum affine space associated with this data is the
algebra H = H(g, χ , λ), with generators G and x1, . . . , xn , subject to the following relations:

gxi = χi (g)xi g, (4.3)
xi x j = qi j x j xi + λi j (1 − gi g j ), (4.4)

xmi
i = λi (1 − gmi

i ). (4.5)

It is well known that the set of monomials {xr1
1 · · · xrn

n g : 0 ≤ ri < mi , g ∈ G} is a basis of H . It is a Hopf algebra
with comultiplication defined by

∆(g) = g ⊗ g, for all g ∈ G, (4.6)
∆(xi ) = gi ⊗ xi + xi ⊗ 1. (4.7)

The counit ε satisfies ε(g) = 1, for all g ∈ G, and ε(xi ) = 0. Moreover, the antipode S is given by S(g) = g−1, for
all g ∈ G, and S(xi ) = −g−1

i xi . We note that S2(g) = g and S2(xi ) = q−1
i i xi .

Let Sn be the symmetric group on n elements. For σ ∈ Sn let

tσ = x
mσ1−1
σ1 · · · xmσn −1

σn

∑
g∈G

g.

Note that tσ 6= 0.

Lemma 4.1. The following hold:

(1) λ j i gi g j lies in the center of H(g, χ , λ) for i 6= j .
(2) λi g

mi
i lies in the center of H(g, χ , λ).

(3) tσ g = tσ , for all g ∈ G.
(4) tσ xσn = 0.

Proof. For (1) it is sufficient to see that λ j i gi g j commutes with xl . If λ j i = 0 the result is clear. Assume that λ j i 6= 0.
Then, χi = χ−1

j , and thus

λ j i gi g j xl = λ j iχl(gi )χl(g j )xl gi g j

= λ j iχi (gl)
−1χ j (gl)

−1xl gi g j

= λ j i xl gi g j .

The proof of (2) is similar to that of (1) and (3) is immediate. For (4), we have:

tσ xσn = x
mσ1−1
σ1 · · · xmσn −1

σn

∑
g∈G

gxσn

= x
mσ1−1
σ1 · · · xmσn −1

σn xσn

∑
g∈G

χσn (g)g

= λσn x
mσ1−1
σ1 · · · x

mσn−1−1
σn−1 (1 − gmσn

σn )
∑
g∈G

χσn (g)g,
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and the result follows on noticing that

(1 − gmσn
σn )

∑
g∈G

χσn (g)g =

∑
g∈G

χσn (g)g −

∑
g∈G

gmσn
σn χσn (g)g

=

∑
g∈G

χσn (g
mσn
σn g)gmσn

σn g −

∑
g∈G

χσn (g)gmσn
σn g = 0,

since χσn (g
mσn
σn ) = qmσn

σnσn = 1. �

Proposition 4.2. tσ is a right integral.

Proof. Let M = (m1 − 1) + · · · + (mn − 1). Let

A = { f : {1, . . . , M} → {1, . . . , n} : # f −1(i) = mi − 1 for all i}.

For f ∈ A, let x f = x f (1)x f (2) · · · x f (M). We claim that if f, h ∈ A, then x f
∑

g∈G g = βxh
∑

g∈G g for some
β ∈ k∗. To prove this claim, it is sufficient to check it when f and h differ only in i, i + 1 for some 1 ≤ i < M , that
is, when h = f ◦ τi , where τi ∈ SM is the elementary transposition (i, i + 1). But, in this case, we have:

x f
∑
g∈G

g = xh◦τi

∑
g∈G

g

= qh(i+1)h(i)xh
∑
g∈G

g + λh(i+1)h(i)xh ,̂i ,̂ i+1(1 − gh(i)gh(i+1))
∑
g∈G

g

= qh(i+1)h(i)xh
∑
g∈G

g

where xh ,̂i ,̂ i+1 = xh(1) · · · xh(i−1)xh(i+2) · · · xh(M). The second equality follows from relation (4.4) and item (1) in the
previous lemma. The proposition follows now using items (3) and (4) in the lemma. �

Now we see that

• α(xi ) = 0,
• α(g) = χ

m1−1
1 (g) · · · χ

mn−1
n (g).

For the first assertion, by Proposition 4.2, we can take σ such that σ1 = i . Then,

xi tσ = xmi
i x

mσ2−1
σ2 · · · xmσn −1

σn

∑
g∈G

g

= x
mσ2−1
σ2 · · · xmσn −1

σn λi (1 − gmi
i )

∑
g∈G

g = 0,

where the second equality follows from item (2) of Lemma 4.1. In particular, α(gi ) = qm1−1
i1 · · · qmn−1

in . Since
ρ(h) = α(S(h(1)))S2(h(2)), we have:

• ρ(g) = α(g−1)g,
• ρ(xi ) = α(g−1

i )q−1
i i xi =

∏
1 ≤ j ≤ n

j 6= i
q

1−m j
i j xi .

Thus, as ρ is an algebra map,

ρ(xr1
1 · · · xrn

n g) = q−r1
11 · · · q−rn

nn α(g−r1
1 · · · g−rn

n g−1)xr1
1 · · · xrn

n g

=

∏
1≤i< j≤n

q
(1−m j )ri −(1−mi )r j
i j α(g−1)xr1

1 · · · xrn
n g.

So, the basis {x j1
1 · · · x jn

n g} is made up of eigenvectors of ρ. Consider the groups

k∗
⊇ L1 = 〈q11, . . . , qnn, α(G)〉 ⊇ L2 = α(G).
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Using that ρ(xi g−1
i ) = q−1

i i xi g−1
i and ρ(g) = α(g−1)g, it is easy to see that L1 is the set of eigenvalues of ρ and that

the order of ρ is the l.c.m. of the numbers m1, . . . , mn and the order of the character α|G ∈ Ĝ (in particular, k has a
primitive ordρ th root of unity). As before, we decompose H = H(g, χ , λ) as

H =

⊕
ω∈L1

Hω, where Hω = {h ∈ H : ρ(h) = ωh}.

The following result is the version of Proposition 3.1 for the present context.

Theorem 4.3. The following are equivalent:

(1)
⊕

ω∈L1
Hω is strongly graded.

(2) L1 = L2.
(3) Each component Hω contains an element in G.
(4) H is a crossed product H1 n kL1.

Proof. Clearly (2) and (3) are equivalent and (4) ⇒ (1). The proof of (3) ⇒ (4) is the same as for Proposition 3.1.
Next we prove that (1) ⇒ (3). Let ω ∈ L1. By Lemma 2.1, we know that ε(Hω) 6= 0. Since Hω has a basis consisting
of monomials xr1

1 · · · xrn
n g and ε(xi ) = 0, there must be an element g ∈ G inside Hω. �

Remark 4.4. We next show that for liftings of quantum linear spaces, the components in the decomposition H =⊕
ω∈L1

Hω are equidimensional. In fact, in this case we can take the basis of H given by

{(x1g−1
1 )r1 · · · (xng−1

n )rn g : 0 ≤ ri < mi , g ∈ G}.

Since ρ(xi g−1
i ) = q−1

i i xi g−1
i , the map

θ : Zm1 × · · · × Zmn × G → k∗,

taking (r1, . . . , rn, g) to the eigenvalue of (x1g−1
i )r1 · · · (xng−1

n )rn g with respect to ρ, is a well defined group
homomorphism. From this it follows immediately that all the eigenspaces of ρ are equidimensional.

5. Computing H1

Assume we are in the setting of the liftings of QLS. Suppose H is a crossed product or, equivalently, that L1 = L2.
Then, there exist elements γ1, . . . , γn ∈ G, such that α(γi ) = qi i . Set γ̃i = g−1

i γ −1
i and let yi = xi γ̃i . It is immediate

that yi ∈ H1. Let N = ker (α|G) ⊆ G. It is easy to see that H1 has a basis given by {yr1
1 · · · yrn

n g : g ∈ N }.
Furthermore, H1 can be presented by generators N , y1, . . . , yn and relations

• gyi = χi (g)yi g,
• yi y j = qi jχ j (γ̃i )χ

−1
i (γ̃ j )y j yi + χ j (γ̃i )λi j (γ̃i γ̃ j − γ −1

i γ −1
j ),

• ymi
i = λiχ

mi (mi −1)/2
i (γ̃i )(γ̃

mi
i − γ

−mi
i ).

Notice that if λi 6= 0, then χ
mi (mi −1)/2
i (γ̃i ) = ±1. We claim that

λi j γ̃i γ̃ j , λi jγiγ j , λi γ̃
mi and λiγ

mi

belong to kN . It is clear that γ mi ∈ N , since α(γ mi ) = qmi
i i = 1. We now prove the remaining part of the claim.

Assume that λi j 6= 0. Then χiχ j = ε. Hence,

• If l 6= i, j , then χl(gi g j ) = qilq jl = q−1
li q−1

l j = χiχ j (g−1
l ) = 1.

• qi i = χi (gi ) = χ j (g−1
i ) = q−1

i j = q j i = q−1
j j .

Thus, mi = ord(qi i ) = ord(q j j ) = m j , and then

χ
mi −1
i (gi g j )χ

m j −1
j (gi g j ) = (qi i qi j q j i q j j )

mi −1
= 1 and α(γiγ j ) = qi i q j j = 1.
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It is now immediate that α(gi g j ) = χ
m1−1
1 (gi g j ) · · · χ

mn−1
n (gi g j ) = 1, and so

α(γ̃i γ̃ j ) = α(g−1
i γ −1

i g−1
j γ −1

j ) = α(g j gi )
−1α(γ jγi )

−1
= 1.

It remains to check that λi γ̃
mi ∈ kN . Assume now that λi 6= 0. Then χ

mi
i = ε. Thus,

• If l 6= i , then χ
ml−1
l (gmi

i ) = q(ml−1)mi
il = q(1−ml )mi

li = χ
mi
i (g1−ml

l ) = 1.

Since χ
mi −1
i (gmi

i ) = qmi (mi −1)
i i = 1, this implies that

α(gmi
i ) = χ

m1−1
1 (gmi

i ) · · · χmn−1
n (gmi

i ) = 1,

and so

α(γ̃
mi
i ) = α(γi gi )

−1
= α(γi )

−1α(gi )
−1

= 1.
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