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Abstract

Finite groups with the nonlinear irreducible characters of distinct degrees, were classified by the authors
and Berkovich. These groups are clearly of even order. In groups of odd order, every irreducible character
degree occurs at least twice. In this article we classify finite nonperfect groups G, such that χ(1) = θ(1)

if and only if θ = χ for any nonlinear χ �= θ ∈ Irr(G). We also present a description of finite groups in
which xG′ ⊆ class(x) ∪ class(x−1) for every x ∈ G − G′. These groups generalize the Frobenius groups
with an abelian complement, and their description is needed for the proof of the above mentioned result on
characters.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

A well-known conjecture states that S3 is the only nonabelian finite group with conjugacy
classes of distinct sizes. For solvable groups, this conjecture was proved by Zhang in [14] and in-
dependently by Knörr, Lempken and Thielcke in [12]. It is easy to see that a nonabelian group G

has conjugacy classes of distinct sizes if and only if it has noncentral conjugacy classes of distinct
sizes (see [8]).

* Corresponding author.
E-mail address: herzogm@post.tau.ac.il (M. Herzog).
0021-8693/$ – see front matter © 2006 Elsevier Inc. All rights reserved.
doi:10.1016/j.jalgebra.2005.07.039

https://core.ac.uk/display/82795355?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


D. Chillag, M. Herzog / Journal of Algebra 319 (2008) 716–729 717
A similar problem arises concerning degrees of the irreducible characters of finite nonabelian
groups. Here one investigates nonabelian groups with nonlinear characters of distinct degrees.
These groups were classified by Berkovich, Chillag and Herzog in [2]. It was shown, that a
group G satisfies that property if and only if it is of one of the following types: (i) An extraspe-
cial 2-group; (ii) A Frobenius group of order pn(pn − 1) for some prime power pn, with an
elementary abelian kernel G′ of order pn and a cyclic complement; (iii) The Frobenius group of
order 72, with a complement isomorphic to the quaternion group of order 8. All these groups are
of even order.

In the case of nonabelian groups of odd order, there are at least two nonidentity conjugacy
classes of each size and at least two nonprincipal irreducible characters of each degree. Therefore,
the corresponding problems for groups of odd order are:

(1) Characterize nonabelian groups of odd order with exactly two noncentral classes of each
size.

(2) Characterize nonabelian groups of odd order with exactly two nonlinear irreducible charac-
ters of each degree.

Herzog and Schönheim proved in [8] that the nonabelian group of order 21 is the only group
satisfying the conditions of problem (1).

In this paper we consider a more general case than problem (2). The finite groups G consid-
ered, which need not be of odd order, are nonperfect and satisfy the property that two distinct
irreducible characters of G are of the same degree if and only if they are complex conjugate to
each other. Denote by Irr(G) the set of all irreducible ordinary characters of G, and by Lin(G)

the subset of linear characters of G. Moreover, let Φ(G) denote the Frattini subgroup of G and
let Ω(G) denote the subgroup of a p-group G, generated by all elements of G of order p. Our
main result is:

Theorem 1. Let G be a nonabelian and nonperfect finite group in which χ(1) = θ(1) for dis-
tinct χ, θ ∈ Irr(G) − Lin(G) if and only if θ = χ . Then one of the following holds:

(1) G is an extraspecial 2-group, with Irr(G) − Lin(G) = {χ} and χ2(1) = |G|/2.
(2) G is a 2-group, |G′| = 2, Z(G) is a cyclic group of order 4, with Irr(G) − Lin(G) = {χ,χ},

and χ2(1) = |G|/4.
(3) G is an extraspecial 3-group, with Irr(G) − Lin(G) = {χ,χ} and χ2(1) = |G|/3.
(4) G is a Frobenius group, either of odd order pn−1

2 pn for some odd prime p, or of order
(pn − 1)pn for some prime p, with an abelian kernel G′ of order pn and a cyclic comple-
ment.

(5) G is a Frobenius group of order 72, with a complement isomorphic to the quaternion
group Q8 of order 8.

(6) G is a Frobenius group with a nonabelian kernel G′ and a complement H , where G′ is a
2-group and H is cyclic. If N = [G′,G′,G′], then G/N is a Frobenius group with the ker-
nel G′/N of order q2, where q = 2r , r is odd and r � 3 and a complement isomorphic to H

of order q − 1. Moreover, Z(G′/N) = G′′/N = Φ(G′)/N = Ω(G′/N) is an elementary
abelian 2-group of order q and of index q in G′/N .

We note that all the groups in conclusions (1)–(5) of Theorem 1 satisfy the assumptions of that
theorem and have at most two nonlinear irreducible characters. Also the groups G/N in conclu-
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sion (6) of Theorem 1 satisfy the assumptions of Theorem 1 and have three nonlinear irreducible
characters of degrees {q − 1, (q − 1)

√
q/2, (q − 1)

√
q/2 }. These groups are isomorphic to the

normalizers of the Sylow 2-subgroups of the Suzuki simple groups Sz(q). We do not know if
such groups exist with N �= 1.

The smallest example of a group of type (6) is a Frobenius group of order 7 · 64 = 448 with
the kernel isomorphic to the Suzuki 2-group of order 64. We are grateful to Professor Malka
Schaps for constructing the character table of such a group of order 448, using the Gap system,
which confirmed our theoretical arguments.

Since by Feit–Thompson theorem groups of odd order are solvable, Theorem 1 yields the
following answer to problem (2).

Corollary. Let G be a nonabelian group of odd order with exactly two nonlinear irreducible
characters of each degree. Then one of the following holds:

(1) G is an extraspecial 3-group, with Irr(G) − Lin(G) = {χ,χ} and χ2(1) = |G|/3.
(2) G is a Frobenius group of odd order pn−1

2 pn for some odd prime p, with an abelian kernel G′
of order pn.

We note that all the groups in the conclusion of the corollary have exactly two nonlinear
complex conjugate irreducible characters.

Most of our notation is standard, following Gorenstein’s book [7] and Isaacs’ book [11]. If G

is a Frobenius group, then by its kernel and its complement we mean the Frobenius kernel of G

and one of the Frobenius complements of G. The conjugacy class of x ∈ G in G will be denoted
by classG(x). Further notation will be introduced as needed.

In Section 2 we prove two preliminary lemmas. Section 3 is devoted to a proof of the follow-
ing theorem, describing p-groups in which at most two nonlinear irreducible characters share a
common degree.

Theorem 2. Let G be a nonabelian finite p-group and suppose that it has at most two nonlinear
irreducible characters of each degree. Then one of the following holds:

(1) p = 2, |G′| = |Z(G)| = 2 (so G is an extraspecial 2-group), with Irr(G) − Lin(G) = {χ}
and χ2(1) = |G|/2.

(2) p = 2, |G′| = 2, Z(G) is a cyclic group of order 4 with Irr(G) − Lin(G) = {χ,χ} and
χ2(1) = |G|/4.

(3) p = 2, |G′| = 2, Z(G) is an elementary abelian group of order 4, with Irr(G) − Lin(G) =
{χ1, χ2}, where both characters are real-valued and χ2

1 (1) = χ2
2 (1) = |G|/4.

(4) p = 3, |G′| = |Z(G)| = 3 (so G is an extraspecial 3-group), with Irr(G) − Lin(G) = {χ,χ}
and χ2(1) = |G|/3.

(5) p = 2, |G′| = 4, |Z(G)| = 2, Z2(G)/Z(G) is an elementary abelian group of order 4, with
Irr(G) − Lin(G) = {χ,χ1, χ2}, where the three characters are real-valued and χ2

1 (1) =
χ2

2 (1) = |G|/8, χ2(1) = |G|/2.

Moreover, in cases (1)–(4), χ,χ1, χ2 vanish on G − Z(G).

The assumption in Theorem 2 is, of course, more general than that of Theorem 1. The results
of Theorem 2 will be used in the proof of Theorem 1.
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There exist groups of each type mentioned in Theorem 2. The extraspecial groups of types (1)
and (4) certainly exist and there are exactly two such groups for each possible order. The central
product of an extraspecial 2-group with a cyclic group of order 4 is an example of a group
of type (2) and there is just one such group for each possible order. The direct product of an
extraspecial 2-group with a cyclic group of order 2 is an example for a group of type (3). There
are exactly two possibilities for each order. By checking the character tables from the Gap system,
prepared by Professor Malka Schaps, we found groups of type (5) of order 32. We do not know
if there exist larger examples of groups of type (5).

We also need a description of Frobenius groups which satisfy the assumptions of Theorem 1.
Propositions 5 and 6 in Section 4 supply the required information.

In the study [2] of nonabelian groups with nonlinear characters of distinct degrees, Camina
groups (which are generalizations of Frobenius groups) were used. In this paper we use extended
Camina pairs, which are generalizations of Camina pairs. These two notions will be defined and
discussed in the next two paragraphs.

A pair (G,K), where G is a finite group and 1 < K < G is a normal subgroup of G, is called
a Camina pair if xK ⊆ classG(x) for each x ∈ G − K . This is also equivalent to each of the
following two statements: (i) |CG(x)| = |CG/K(xK)| for each x ∈ G − K and (ii) all irreducible
characters of G not containing K in their kernel, vanish on G − K . A. Camina showed in [4]
that if (G,K) is a Camina pair, then either G is a Frobenius group with kernel K , or one of K

and G/K is a p-group for some prime p. Camina pairs (G,G′) were described in [6]. It was
shown that in this case one of the following three statements holds: (i) G is a Frobenius group
with kernel G′; (ii) G is a p-group; (iii) G is a Frobenius group with a complement isomorphic
to Q8, the quaternion group of order 8. This result was used in [2].

A pair (G,K), where G is a finite group and 1 < K < G is a normal subgroup of G, is called
an extended Camina pair if xK ⊆ classG(x) ∪ classG(x−1) for each x ∈ G − K . Camina pairs
are clearly also extended Camina pairs. Extended Camina pairs were introduced in [1], where
such pairs with K being a maximal normal subgroup of G were studied.

In this paper we study Camina pairs of type (G,G′), which generalize the Frobenius groups
with abelian complements. We show in Section 5 (Theorem 8) that if (G,G′) is an extended
Camina pair, then one of the following three statements holds: (i) G is a Frobenius group with
kernel G′; (ii) G is a p-group for some prime p; (iii) G/G′ is a 2-group.

Our final Section 6 is devoted to a proof of Theorem 1.

2. Preliminary lemmas

In these section we prove two lemmas about nonabelian and nonperfect finite groups.

Lemma 3. Let G be a nonabelian and nonperfect finite group and let χ ∈ Irr(G) − Lin(G).
Suppose that χ(x) �= 0 for some x ∈ G − G′ and G has at most two irreducible characters of
degree χ(1). Then the following statements hold:

(1) All linear characters of G take the values ±1 on x.
(2) G′ ∪ xG′ = 〈x〉G′ and x2 ∈ G′.
(3) χ vanishes on G − {G′ ∪ xG′}.

Proof. As χ does not vanish on G − G′, χ does not vanish on G − ker(μ) for some μ ∈
Lin(G)−{1G}. Let θ = μχ . Then θ �= χ and by our assumptions χ and θ are the only irreducible
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characters of G of degree χ(1). It follows that μ2χ = χ . Let A = {α ∈ Lin(G) | αχ = χ}. We
claim that Lin(G) = A ∪ μA. To see that, let β ∈ Lin(G) − A. Then βχ �= χ , so βχ = θ = μχ .
Hence μ−1βχ = χ and μ−1β ∈ A, which is the same as β ∈ μA and our claim follows. Clearly
μ2 ∈ A.

As χ(x) �= 0, we get α(x) = 1 for all α ∈ A. As μ2 ∈ A, we get μ2(x) = 1. We claim that
μ(x) = −1. If not, then μ(x) = 1 and (μα)(x) = μ(x)α(x) = 1 for all α ∈ A, yielding x ∈⋂

λ∈Lin(G) ker(λ) = G′, a contradiction. Thus λ(x) = 1 for all λ ∈ A and λ(x) = −1 for all

λ ∈ Lin(G) − A, proving (1). This implies that x2 ∈ G′ and [〈x〉G′ : G′] = 2, yielding (2).
Let y ∈ G − G′ be another element with χ(y) �= 0. By repeating the arguments of the last

paragraph, we get λ(x) = λ(y) = ±1 for all λ ∈ Lin(G). It follows that λ(xy) = 1 for all λ ∈
Lin(G), implying that xy ∈ G′. So every element of G − G′ on which χ does not vanish lies in
the coset x−1G′ = xG′. This proves (3). �
Lemma 4. Let G be a nonabelian and nonperfect finite group and let χ ∈ Irr(G) − Lin(G).
Suppose that G has at most two irreducible characters of degree χ(1). Then χ2(1) � [G:G′]

2 and
if |G| is odd, then χ2(1) � [G : G′].

Proof. By Lemma 3, χ vanishes either on G − G′ or on G − 〈x〉G′, for some x ∈ G − G′ satis-
fying x2 ∈ G′. Moreover, in the latter case, [〈x〉G′ : G′] = 2. Therefore, in any case, χ vanishes
on G − X, where X is a subgroup of G satisfying G′ � X and [X : G′] � 2. By Lemma 2.29
in [11], [χX,χX] = [G : X]. Now a standard argument implies that [G : X] � χ2(1) (see [11,
p. 200]). The lemma follows. �
3. On p-groups

In this section we prove Theorem 2.

Proof. We show first that |G′| � p3 is impossible under our assumptions. If |G′| � p3, then
[G : G′] � |G|

p3 and the maximal possible degree in Irr(G) is (
|G|
p

)1/2. For p = 2, there could be

at most one irreducible character of degree (
|G|
2 )1/2, so

|G| � |G|
8

+ |G|
2

+ 2|G|
(

1

8
+ 1

32
+ · · ·

)
= |G|

(
1

8
+ 1

2
+ 2

1/8

3/4

)
= |G|

(
23

24

)
,

a contradiction. For p � 3 we get

|G| � |G|
p3

+ 2|G|
(

1

p
+ 1

p3
+ 1

p5
+ · · ·

)
= |G|

(
1

p3
+ 2p

p2 − 1

)
� |G|

(
1

27
+ 3

4

)
,

a contradiction.
Suppose, next, that |G′| = p. Then, by [10, Theorem 7.5, p. 82, and Example 7.6(a), p. 84],

Irr(G) − Lin(G) consists of |Z(G)| − |Z(G)/G′| characters of degree |G/Z(G)|1/2 and con-
sequently p � 3. Moreover, if p = 3, then we must have |Z(G)| = 3 and G is of type (4). So
suppose that p = 2. If |Z(G)| = 2, then G is of type (1). Otherwise, we must have |Z(G)| = 4
and by Theorem 7.5 in [10], the two nonlinear characters of G are real-valued if Z(G) is elemen-
tary abelian and they are complex conjugate to each other if Z(G) is cyclic. Thus G is either of
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type (3) or of type (2). Moreover, it follows again by Theorem 7.5 in [10] that in cases (1)–(4),
the characters χ,χ1, χ2 vanish on G − Z(G). This completes the analysis of the case |G′| = p.

It remains to show that if |G′| = p2, then only case (5) is possible. Let m be the largest
squared irreducible character degree of G. Clearly m � |G|/p = p[G : G′] and the next smaller
possible squared irreducible degree is m/p2 � [G : G′]/p. By Lemma 4, an irreducible character
of squared degree m/p2 can exist only if m = p[G : G′] and p = 2. Moreover, there cannot exist
any smaller nonlinear squared degree in G. We recall that (|G′| − 1)[G : G′] = (p2 − 1)[G : G′]
is the sum of the squares of the degrees of the nonlinear irreducible characters of G. If p > 2,
then we get:

(
p2 − 1

)[G : G′] � 2m � 2p[G : G′],

a contradiction. Hence p = 2 and either m = |G|/2 and this squared degree appears exactly once
or m � |G|/4 and no smaller squared degree exists. In the latter case, the previous argument
yields 3[G : G′] = (3/4)|G| � 2m � |G|/2, a contradiction. So m = |G|/2 and we must have
3/4|G| = 2 · |G|/8 + |G|/2. Thus |G′| = 4, |Z(G)| = 2 and Irr(G) − Lin(G) = {χ,χ1, χ2} with
χ2

1 (1) = χ2
2 (1) = |G|/8 and χ2(1) = |G|/2. Now, by [9, Satz III, 2.13(a), p. 266], the exponent

of Z(G/Z(G)) divides the exponent 2 of Z(G), which implies that G/Z(G) is of type (3).
Thus Z2(G)/Z(G) is an elementary abelian group of order 4 and the three nonlinear irreducible
characters of G are real-valued, as claimed. �
4. Frobenius groups

The aim of this section is to investigate Frobenius groups satisfying the assumptions of The-
orem 1. First we deal with Frobenius groups with an abelian kernel.

Proposition 5. Let G be a Frobenius group with an abelian kernel K . Assume that χ(1) = θ(1)

for distinct characters χ, θ ∈ Irr(G) − Lin(G) if and only if θ = χ . Then K is an elementary
abelian p-group for some prime p and either |G| = (|K|− 1)|K| or G is of odd order |K|−1

2 |K|.

Proof. Let H be a complement in G. Then, by Theorem 18.7 in [10, p. 239], Irr(G) − Lin(G)

contains |K|−1
|H | characters of degree [G : K] and, by our assumptions, either |H | = |K|−1

2 or

|H | = |K| − 1. Hence K is an elementary abelian p-group for some prime p. If |H | = |K|−1
2

is even, then each a ∈ K is inverted by the involution in H and the two characters in Irr(G) −
Lin(G) are real and of equal degree, in contradiction to our assumptions. Hence, if |H | = |K|−1

2 ,
then |H | must be odd and clearly |K| must be odd. Thus either |G| = (|K| − 1)|K| or G is of
odd order |K|−1

2 |K|, as claimed. �
Conversely, the Frobenius groups mentioned in Proposition 5 indeed satisfy the assumptions

of that proposition. Next, we deal with Frobenius groups with a nonabelian kernel.

Proposition 6. Let G be a Frobenius group with a nonabelian kernel K and a complement H .
Assume that χ(1) = θ(1) for distinct χ, θ ∈ Irr(G) − Lin(G) if and only if θ = χ . Then K is a
2-group. If N = [K,K,K], then K/N is of order q2, where q = 2r , r is odd and r � 3. Moreover,
Z(K/N) = K ′/N = Φ(K)/N = Ω(K/N) is an elementary abelian 2-group of order q and
index q in K/N , and H is of order q − 1. Finally, if K = G′, then H is cyclic.
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Proof. Since K is nonabelian, |H | is odd and by Thompson’s theorem K is nilpotent. Since
G/K ′ is a Frobenius group with an abelian kernel K/K ′ satisfying our assumptions, it follows
by Proposition 5 that K/K ′ is an elementary abelian p-group for some prime p of order pr , say.
Hence K is a p-group satisfying K ′ = Φ(K).

Note that G/N is a Frobenius group with the nonabelian kernel K/N and a complement
isomorphic to H . So G/N satisfies the assumptions of this proposition, and in order to complete
our proof, we may assume that N = 1.

Clearly N = 1 implies that K is nilpotent of class 2 and, in particular, K ′ � Z(K). By apply-

ing Proposition 5 to G/K ′, it follows that either |H | = 1
2 (

|K|
|K ′| −1) and p is odd or |H | = |K|

|K ′| −1
and p = 2. In both cases [K : K ′] � 2|H | + 1.

By our assumptions, there are at most two H -orbits of irreducible characters of K of any given
degree, and if there are two orbits, then the characters in each orbit are the complex conjugates of
the characters in the other orbit. This and other facts used later about the irreducible characters
of Frobenius groups can be found in Theorem 18.7 in [10].

Now let λ be any nonprincipal irreducible character of K ′. Since K/K ′ is abelian, it follows
by Theorem 15 in Chapter 7 of [3] that all the irreducible constituents of λK have equal degrees.
No two of these can be in the same H -orbit since if, say, φh = θ , where φ and θ are distinct
irreducible characters of K lying over λ and 1 �= h ∈ H , then since both φK ′ and θK ′ are mul-
tiples of λ (as K ′ � Z(K)), we see that h fixes λ, which is false. It follows that λK has either
one or two distinct irreducible constituents, and these have degree f , say, and by the Frobenius
reciprocity theorem, also multiplicity f in λK . Thus either [K : K ′] = f 2, r is even and there is
just one irreducible constituent in λK , or else [K : K ′] = 2f 2 and there are exactly two distinct
constituents. In the first case, every nonlinear irreducible character of K vanishes on K −K ′ and
in the latter case, p = 2 and r is odd.

Suppose r is even. Since the nonlinear irreducible characters of K vanish on K − K ′, the
second orthogonality relation yields |CK(x)| = [K : K ′] for each x ∈ K − K ′. As K ′ � Z(K),
it follows that p|K ′| � |CK(x)| = [K : K ′] � 1 + 2|H |. But the action of H on K ′ is Frobenius,
so |K ′| > |H |, contradicting the previous inequality.

Thus r is odd, p = 2 and [K : K ′] − 1 = |H |. In this case, each nonprincipal linear character
of K ′ determines two irreducible characters of K of degree f , and so the number of these is
even and they form two H -orbits. The number of nonprincipal linear characters of K ′ is thus
|H | and |K ′| = 1 + |H | = [K : K ′] = 2r � 23. By applying Proposition 5 to G/Z(K), it follows
that [K : K ′] − 1 = |H | � [K : Z(K)] − 1. Thus |K ′| � |Z(K)| � |K ′|, implying Z(K) = K ′.
Finally, if K = G′, then H is abelian and hence cyclic. The proof is complete. �

It follows from our proof that if K = G′, then G/N has q − 1 linear characters, one character
of degree q − 1 (induced by the nonprincipal linear characters of G′/N ) and two conjugate
characters of degree (q − 1)

√
q/2 (induced by the characters in Irr(G′/N) − Lin(G′/N)).

5. Extended Camina pairs

Let G be a nonabelian and nonperfect finite group. In this section we investigate extended
Camina pairs (G,G′). Recall that (G,G′) is an extended Camina pair if 1 < G′ < G and xG′ ⊆
classG(x)∪ classG(x−1) for each x ∈ G−G′. Camina pairs (G,G′), satisfying xG′ ⊆ classG(x)

for each x ∈ G − G′, are clearly also extended Camina pairs.
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Let (G,G′) be an extended Camina pair and let x ∈ G − G′. We say that x is of type 1 if
xG′ ⊆ classG(x) and it is of type 2 if xG′ ⊆ classG(x) ∪ classG(x−1), but xG′ � classG(x). If
all x ∈ G − G′ are of type 1, then clearly (G,G′) is a Camina pair.

Lemma 7. Let G be a nonabelian and nonperfect finite group and let (G,G′) be an extended
Camina pair. Then:

(1) If x ∈ G − G′ is of type 1, then xG′ = classG(x) and |CG(x)| = [G : G′].
(2) If x ∈ G − G′ is of type 2, then xG′ = classG(x) ∪ classG(x−1), |CG(x)| = 2[G : G′], x is

not real and x2 ∈ G′.
(3) If y ∈ G − G′ and yG′ is a p-element in G/G′ for some prime p, then y is a p-element and

CG′(y) is a p-group. In particular, elements of type 2 are 2-elements and their centralizers
in G′ are 2-groups.

(4) If (G,G′) is not a Camina pair, then both |G′| and [G : G′] are even integers.

Proof. Note that if a ∈ G − G′, then classG(a) ⊆ aG′ (as g−1ag = a(a−1g−1ag) ∈ aG′ for all
g ∈ G).

(1) Here xG′ ⊆ classG(x) ⊆ xG′, yielding xG′ = classG(x) and |CG(x)| = |G|/
|classG(x)| = [G : G′].

(2) Here xG′ ⊆ classG(x) ∪ classG(x−1), but xG′ � classG(x). Hence x is nonreal and there
exists z ∈ xG′ ∩ classG(x−1). Thus

classG

(
x−1) = classG(z) ⊆ zG′ = xG′

and consequently xG′ ⊆ classG(x) ∪ classG(x−1) ⊆ xG′, forcing xG′ = classG(x) ∪
classG(x−1). Since |classG(x)| = |classG(x−1)|, it follows that |G′| = 2[G : CG(x)] and hence
|CG(x)| = 2[G : G′]. Finally, x−1 ∈ xG′ implies that x2 ∈ G′.

(3) Let y = yp × yp′ , where yp and yp′ are the p and p′ parts of y, respectively. Since yG′
is a p-element in G/G′, some p-power of y lies in G′ and hence yp′ ∈ G′. So yG′ = ypG′ and
since y is either of type 1 or of type 2, we get that y is conjugate either to yp or to y−1

p . Either
way o(y) = o(yp), so y is a p-element.

Now, let g ∈ CG′(y). Then ygG′ = yG′ and so yg is conjugate either to y or to y−1. Therefore
o(yg) = o(y) and 1 = (yg)o(y) = yo(y)go(y) = go(y), forcing g to be a p-element as well.

Finally, if x ∈ G − G′ is of type 2, then, by (2), x2 ∈ G′ and as shown above, x is a 2-element
and CG′(x) is a 2-group.

(4) There exists x ∈ G − G′ of type 2, which by (3) is a 2-element. Hence [G : G′] is even.
Since, by (2), |G′| = 2[G : CG(x)], it follows that |G′| is also even. �

We are ready now for a general description of extended Camina pairs of type (G,G′).

Theorem 8. Let G be a nonabelian and nonperfect finite group and let (G,G′) be an extended
Camina pair. Then one of the following holds:

(1) G is a p-group for some prime p.
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(2) G is a Frobenius group with the kernel G′.
(3) G/G′ is a 2-group. In particular, CG(u) is a 2-group for every u ∈ G − G′.

In particular, if (G,G′) is not a Camina pair, then (3) holds.

Proof. Assume, first, that (G,G′) is a Camina pair. By [4], either (1) or (2) holds, or one of G′
and G/G′ is a p-group for some prime p. So suppose that G is not as described in (1) or (2).
If G′ is a p-group, then, by Lemma 4.4 in [5], Op′(G/G′) = 1 and since G/G′ is abelian, this
forces G to be a p-group, a contradiction. Finally, if G/G′ is a (abelian) p-group, then by the
corollary in [6], G is a Frobenius group with a complement Q8 and [G : G′] = 4. So G/G′ is a
2-group, satisfying (3).

It remains only to prove the “in particular” part. So assume that (G,G′) is not a Camina pair
and hence there are elements of type 2 in G−G′. We shall use Lemma 7 freely, in order to show
that G/G′ is a 2-group, satisfying (3). Suppose, to the contrary, that p is an odd prime divisor
of |G/G′|. Let yG′ be a nontrivial p-element in G/G′. Then y is a p-element and CG′(y) is a
p-group. As p �= 2, y is of type 1, whence |CG(y)| = [G : G′]. By Lemma 7(4), |CG(y)| is even.

Let R be a Sylow 2-subgroup of CG(y) and let P be a Sylow 2-subgroup of G containing R.
Note that P ∩G′ is a Sylow 2-subgroup of G′ and P ∩G′ � P . Furthermore, R ∩G′ � CG(y)∩
G′ = CG′(y). However, R ∩ G′ is a 2-group and CG′(y) is a p-group, so R ∩ G′ = R ∩ (P ∩
G′) = 1 and R is isomorphic to RG′/G′. Hence R is an abelian group. Furthermore

∣∣R(P ∩ G′)
∣∣ = |R||P ∩ G′| = ∣∣CG(y)

∣∣
2|G′|2 = [G : G′]2|G′|2 = |G|2.

Thus R(P ∩G′) is a Sylow 2-subgroup of G contained in P , which implies that P = R(P ∩G′).
Let r ∈ R be an involution. Then R ∩ G′ = 1 implies that r /∈ G′. Also, as r is a real element,

r is of type 1, so |CG(r)| = [G : G′]. This implies that |R| = [G : G′]2 = |CG(r)|2 and since R

is abelian, we get R � CG(r) ∩ P = CP (r). Thus

|R| � ∣∣CP (r)
∣∣ �

∣∣CG(r)
∣∣
2 = |R|

which implies that R = CP (r). In particular, Z(P ) � R and as R ∩ G′ = 1, we get Z(P ) ∩
G′ = 1. Hence Z(P ) ∩ P ′ = 1, which implies that P is abelian. Thus P � CG(r) and since
[G : G′] = |CG(r)|, |G′| is odd, in contradiction to Lemma 7(4). It follows that if (G,G′) is not
a Camina pair, then G/G′ is a 2-group.

Finally, if (G,G′) is an extended Camina pair and G/G′ is a 2-group, let u ∈ G − G′. Then,
by Lemma 7(3), u is a 2-element and CG′(u) is a 2-group. Thus CG(u) − CG′(u) consists of
2-elements and hence CG(u) is also a 2-group. �
6. Proof of Theorem 1

We start the proof of Theorem 1 with two preliminary lemmas.

Lemma 9. Let G be a nonabelian and nonperfect finite group in which χ(1) = θ(1) for dis-
tinct χ, θ ∈ Irr(G) − Lin(G) if and only if θ = χ . Suppose that x ∈ G − G′ and there exists
χ ∈ Irr(G) − Lin(G) such that χ(x) �= 0. Then the following statements hold:

(1) x is nonreal.
(2) xG′ = classG(x) ∪ classG(x−1), |CG(x)| = 2[G : G′] and x2 ∈ G′.
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(3) χ(x) = ±i
√[G : G′]/2 (here i = √−1 ).

(4) All characters in Irr(G) − {Lin(G) ∪ {χ,χ}} vanish on x.
(5) χ vanishes on G − {G′ ∪ xG′}.
(6) Every linear character takes the values ±1 on x.

Proof. By Lemma 3, statements (5) and (6) hold and x2 ∈ G′.
As χ does not vanish on G − G′, χ does not vanish on G − ker(μ) for some μ ∈ Lin(G) −

{1G}. Therefore μχ �= χ , μχ �= χ and by our assumptions μχ = χ . Note that μ(x)χ(x) = χ(x)

implies that −χ(x) = χ(x) and so χ(x) = bi for some real nonzero number b. Hence x is
nonreal, proving (1).

Let θ1, θ2, . . . , θs be all the nonlinear irreducible characters of G nonvanishing on x. Set
θj (x) = bj i. Then

∣∣CG(x)
∣∣ = [G : G′] +

s∑
j=1

∣∣θj (x)
∣∣2 = [G : G′] +

s∑
j=1

b2
j . (∗)

Consider, now, the element x−1. Clearly θ1, θ2, . . . , θs are all the nonlinear irreducible characters
of G nonvanishing on x−1. Moreover, θj (x

−1) = −bj i and by (6), λ(x) = λ(x−1) for all λ ∈
Lin(G). Applying the second orthogonality relation to x and x−1 we obtain:

0 =
∑

χ∈Irr(G)

χ(x)χ
(
x−1

) =
∑

χ∈Irr(G)

(
χ(x)

)2 = [G : G′] +
s∑

j=1

(
θj (x)

)2

= [G : G′] +
s∑

j=1

(bj i)
2 = [G : G′] −

s∑
j=1

b2
j .

So [G : G′] = ∑s
j=1 b2

j and therefore, by (∗), |CG(x)| = 2[G : G′]. It follows that |classG(x)| =
|classG(x−1)| = |G′|

2 . Since classG(x) ∪ classG(x−1) ⊆ xG′ = x−1G′, we may conclude that
xG′ = classG(x) ∪ classG(x−1). The proof of (2) is now also complete.

Next we compute
∑

g∈G |χ(g)|2, using (2), (5) and the fact that χ(x) = bi:

|G| =
∑
g∈G

∣∣χ(g)
∣∣2 = b2|G′|/2 + b2|G′|/2 +

∑
g∈G′

∣∣χ(g)
∣∣2 = b2|G′| +

∑
g∈G′

∣∣χ(g)
∣∣2

.

We also note that μχ = χ implies that χG′ = χG′ , so χ is real on G′. Thus

0 = |G|(χ,χ) =
∑
g∈G

(
χ(g)

)2 = (bi)2|G′|/2 + (−bi)2|G′|/2 +
∑
g∈G′

(
χ(g)

)2

= −b2|G′| +
∑
g∈G′

∣∣χ(g)
∣∣2

.

We conclude from these computation that b2 = [G:G′] , which implies (3).
2
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Finally,

∣∣CG(x)
∣∣ = 2[G : G′] = [G : G′] + 2b2 = [G : G′] + ∣∣χ(x)

∣∣2 + ∣∣χ(x)
∣∣2

.

This means that all elements of Irr(G)− Lin(G) other than χ and χ vanish on x, proving (4) and
finishing the proof of the lemma. �
Lemma 10. Let G be a nonabelian and nonperfect finite group in which χ(1) = θ(1) for distinct
χ, θ ∈ Irr(G) − Lin(G) if and only if θ = χ . Then the following statements hold:

(1) (G,G′) is an extended Camina pair.
(2) If x ∈ G − G′ is of type 2, then there exists χ ∈ Irr(G) − Lin(G) such that χ(x) �= 0, and

therefore x and χ satisfy the six statements of Lemma 9.

Proof. Let x ∈ G − G′. If every χ ∈ Irr(G) − Lin(G) vanishes on x, then classG(x) = xG′. If,
on the other hand, there exists χ ∈ Irr(G) − Lin(G) satisfying χ(x) �= 0, then by Lemma 9(2)
classG(x) ∪ classG(x−1) = xG′. Therefore (G,G′) is an extended Camina pair. If x ∈ G − G′ is
of type 2, then there exists χ ∈ Irr(G)− Lin(G) satisfying χ(x) �= 0 and by Lemma 9 the second
claim of Lemma 10 holds. �

Next we quote two lemmas which will be needed for the proof of Theorem 1. Here O(G)

denotes the largest normal subgroup of G of odd order.

Lemma 11. Let G be a finite group and suppose that G has a nonreal element g of order 4
satisfying CG(g) = 〈g〉. Then G = O(G)〈g〉.

Proof. See Lemma 2.9 in [1]. �
Lemma 12. Let P be a finite p-group of class at most 2 and suppose that P acts on some
nontrivial finite p′-group Q such that CP (x) � P ′ for all 1 �= x ∈ Q. Then P is either cyclic or
isomorphic to Q8.

Proof. See Lemma 10.1, p. 245 in [13]. �
We are ready now for the proof of Theorem 1.

Proof of Theorem 1. By Lemma 10(1), (G,G′) is an extended Camina pair. We shall break the
proof into a series of steps.

Step 1. Proof of the theorem in the case that either G is a p-group for some prime p or (G,G′)
is a Camina pair.

Proof. If G is a p-group, then G is one of the groups of Theorem 2. Only groups in conclu-
sions (1), (2) and (4) satisfy our assumptions, and these groups appear in conclusions (1)–(3) of
our theorem. So assume that (G,G′) is a Camina pair and G is not a p-group. In this case [4]
implies that either G is a Frobenius group with the kernel G′ or one of G′ and G/G′ is a p-group
for some prime p.
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Consider, first, the case when G is a Frobenius group with the kernel G′. Then, either G′ is
abelian and Proposition 5 implies that G is included in conclusion (4) of our theorem, or G′ is
nonabelian, and by Proposition 6 G is included in conclusion (6) of our theorem.

If G′ is a p-group, then, by Lemma 4.4 of [5], Op′(G/G′) = 1 and as G/G′ is abelian, this
forces G to be a p-group. This case had been discussed above. Finally, if G/G′ is a (abelian)
p-group, then, by the Corollary in [6], G is a Frobenius group with a complement Q8. Hence the
kernel K of G is abelian, and by Proposition 5 G is of order 72 and is included in conclusion (5)
of our theorem. �

From now on we shall assume that neither G is a p-group nor (G,G′) is a Camina pair. In
particular, G − G′ contains elements of type 2 and Theorem 8 implies that G/G′ is a 2-group
and CG(u) is a 2-group for every u ∈ G − G′. Our aim is to reach a contradiction.

Step 2. [G : G′] �= 2.

Proof. Suppose that [G : G′] = 2 and let x ∈ G−G′ be of type 2. By Lemma 10(2) x is not real,
so, in particular, x is not an involution and |CG(x)| = 2[G : G′] = 4. Hence x is of order 4 and
CG(x) = 〈x〉. It follows then by Lemma 11 that |G/O(G)| = 4 and G′ � O(G), contradicting
our assumption that [G : G′] = 2. So [G : G′] �= 2. �
Step 3. We show that χG′ is not irreducible for each χ ∈ Irr(G) − Lin(G).

Proof. Suppose, to the contrary, that χG′ is irreducible for some χ ∈ Irr(G) − Lin(G). If χ

vanishes on G − G′, then

|G| =
∑
g∈G

∣∣χ(g)
∣∣2 =

∑
g∈G′

∣∣χ(g)
∣∣2 = |G′|

which is impossible. So there exists y ∈ G − G′ such that χ(y) �= 0 and by Lemma 9(2)
|classG(y)| = |classG(y−1)| = |G′|

2 . By Lemma 9, χ(y) = ±i
√[G : G′]/2 and χ vanishes on

G − {G′ ∪ classG(y) ∪ classG(y−1)}. So

|G| =
∑
g∈G

∣∣χ(g)
∣∣2 =

∣∣∣∣i
√ [G : G′]

2

∣∣∣∣
2

· |G′|
2

· 2 +
∑
g∈G′

∣∣χ(g)
∣∣2

= [G : G′]|G′|
2

+ |G′| = |G|
2

+ |G′|.

This implies [G : G′] = 2, contradicting Step 2. �
Step 4. O(G) is the normal 2-complement of G, O(G) ⊆ G′ and every character in Irr(G) −
Irr(G/O(G)) vanishes on G − G′.

Proof. If χ ∈ Irr(G) − Lin(G), then χG′ = e(θ1 + θ2 + · · · + θt ), where θi ∈ Irr(G′) have the
same degree and since χG′ is reducible by Step 3, we have et > 1. Now χ(1) = etθ(1) and
both e and t divide [G : G′] (see [10, p. 82]), which is a power of 2. So χ(1) is even for each
χ ∈ Irr(G) − Lin(G) and by Thompson’s theorem (see [10, Corollary 12.2, p. 199]) G has a
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normal 2-complement, which is equal to O(G). As G/G′ is a 2-group, O(G) ⊆ G′. Finally, let
u ∈ G − G′. By Theorem 8(3), CG(u) is a 2-group and hence CG(u) ∩ O(G) = 1. It follows
that |CG/O(G)(uO(G))| � |CG(u)|. Since the opposite inequality always holds (see [10, Corol-
lary 2.24, p. 26]), we get equality and consequently every character in Irr(G) − Irr(G/O(G))

vanishes on u. The proof of Step 4 is complete. �
Let T be a Sylow 2-subgroup of G. By Step 4 G = O(G)T , a semi-direct product, and since

G is not a p-group, O(G) > 1.

Step 5. T ′ = G′ ∩ T .

Proof. Since by Lemma 7(3) elements of type 2 are 2-elements, T contains an element v of
type 2. By Lemma 10(2), there exists χ ∈ Irr(G) − Lin(G) such that χ(v) is nonreal. By Step 4
χ ∈ Irr(G/O(G)). Since O(G) � ker(χ), we get

|G| =
∑
t∈T

∑
h∈O(G)

∣∣χ(ht)
∣∣2 =

∑
t∈T

∑
h∈O(G)

∣∣χ(t)
∣∣2 = ∣∣O(G)

∣∣∑
t∈T

∣∣χ(t)
∣∣2

.

It follows that |T | = |G|
|O(G)| = ∑

t∈T |χ(t)|2 and so χT ∈ Irr(T ) − Lin(T ). Moreover, χT is non-
real and T is nonabelian.

Clearly G/O(G) ∼= T satisfies the assumptions of Theorem 1 and since T is a 2-group, it
must be one of the four 2-groups of the conclusion of Theorem 2. However, only one of them
(of type (2)) has a nonreal nonlinear irreducible character. Thus |T ′| = 2 and Z(T ) is cyclic of
order 4. Moreover, by Theorem 7.5 in [10, p. 82], the nonreal nonlinear irreducible characters
of T get nonreal values only on the two elements of order 4 of Z(T ). Thus v ∈ Z(T ).

As v is of type 2, we know by Lemma 10(2) that |CG(v)| = 2[G : G′]. Since v ∈ Z(T ) and
CG(v) is a 2-group, it follows that |CG(v)| = 2[G : G′] = |T |. But G = O(G)T = G′T , so

|T | = 2

∣∣∣∣G
′T

G′

∣∣∣∣ = 2

∣∣∣∣ T

G′ ∩ T

∣∣∣∣,

which implies that |G′ ∩ T | = 2 = |T ′|. Hence T ′ = G′ ∩ T , proving Step 5. �
Step 6. The final contradiction.

Proof. Let b ∈ O(G) − {1} and let c ∈ CT (b). Then b ∈ CG(c), so CG(c) is not a 2-group.
Therefore, by Theorem 8(3), c ∈ G′. By Step 5, CT (b) � G′ ∩ T = T ′ and Lemma 12 implies
that T is either cyclic or isomorphic to Q8. This is a contradiction, since T is nonabelian and
|Z(T )| = 4. �
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