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Abstract 

Conventional methods of signal decomposition are observed to fail in power system applications and computationally intensive 
algorithms like EMD, VMD, EWT are found to give better performance. The heavy computations associated with them restricts 
their use in real time applications and stream processing. This paper presents a recursive block processing technique for real time 
signal decomposition. The use of recursive FFT and the clever initializations of the center frequencies in the existing VMD 
algorithm helps in reducing the computational complexity and hence speeds up the process. This low complexity algorithm was 
tested on synthetically generated power signals and the results were observed to be consistent with the existing VMD algorithm. 
© 2015 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

The advent of smart grid technology and the modern day electronics has introduced many sensitive devices to our 
electrical distribution networks and this makes the maintenance of power quality a critical issue. Deviations from the 
standard power signal parameters results in poor device performance and may even lead to permanent damages in 
certain situations.  Hence, there is the need for efficient real time power quality monitoring systems which can 
identify even slight variations in the signal parameters and thus take preventive action to avoid damages due to 
abnormal system behaviour. Power quality is typically a function of power signal parameters and hence a signal 
processing technique to identify signal variations can effectively identify distortions in the power signal. Signal 
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analysis and inference is a widely explored field of signal processing. One of the oldest and simplest methods for the 
frequency analysis of a stationary signal is the analysis of the signals Fourier spectra, however this method 
essentially fails in the case of power signals with distortions which are non-stationary in nature. Methods like the 
short time fourier transform (STFT) analyses the signal over fixed sized windows over which the signal 
characteristics are assumed to be stationary and hence offers good time resolution but poor frequency resolution 
(uncertainty principle). The Fast Fourier Transform (FFT) introduced formerly by Gauss came to be used widely 
after the paper by Cooley and Tukey [9] in 1965 accelerated the heavy computations behind Fourier transform and 
made the real time implementation of these algorithms imaginable. Then came up the wavelet transform which uses 
size adjustable windows for analysis and thus offers better resolution as compared to methods like STFT and also 
offers better denoising methodologies. However the performance heavily relies on the choice of wavelet and the 
number of decomposition levels chosen for analysis. [2], [3] discusses methods for implementation of algorithms 
using wavelet transforms in real time. All these methods decomposes the signal into a set of fixed basis and hence 
proves to be the wrong choice of decomposition technique in many instances. Further, they may lead to misleading 
inferences in many cases due to their poor adaptability to the signal nature. Basis functions which could adapt to 
signal nature would thus be a better choice for representation of all types of signals. It was with this idea that the 
Empirical Mode Decomposition was proposed by Huang et.al [11], and gave satisfactory results in certain cases 
where the conventional methods failed; but there was no strong mathematical reasoning behind the framework. [4], 
[5] and many more works tried to develop a mathematical reasoning for the same and arrived at similar techniques 
with slight variations and different interpretations. One such work by Daubechies [10] resulted in the synchro-
squeezed wavelet transform which proved to be a good decomposition technique but is a heavily time consuming 
task and hence a real time realization of the same is a challenge. Then came up methods like Variational Mode 
Decomposition (VMD), Empirical Wavelet Transform (EWT) [6], [1] which also take up an adaptive basis for 
signal representation. Letter [8] discusses the use of these methods for power signal analysis and proves that they are 
good choice for the study of power signal distortions. Significant energy is present in only a very small number of 
frequency components in power signals and this facilitates the easy decomposition of power signal into Intrinsic 
Mode Function (IMF) as in VMD. Further the prior knowledge about the possible frequency components of the 
power signals allows us to fix the modes in decomposition of these signals and thus facilitates easy identification of 
presence of noise and other signal distortions and the exact time of onset of these distortions. Further, the 
components responsible for distortion can be captured and hence analysed for identification of the sources for these 
distortions. One major factor which prevents the real time implementation of these methodologies is the heavy 
computations involved behind these decompositions. This paper proposes a modification to the VMD algorithm by 
introducing the method of recursive FFT to estimate the Fourier transform as part of the VMD algorithm. In the real 
time implementation of the algorithm one new sample is introduced to the frame in each iteration to replace the 
oldest sample in that frame. Implementation of the recursive FFT for the Fourier transform calculation in each stage 
saves a lot of calculation overheads and hence results in an algorithm implementable in a real time system.  

2. Algorithm 

Variational Mode Decomposition decomposes a signal into a set of Intrinsic Mode Functions (IMF) such that each 
IMF has a compact frequency support around a central frequency and the sum of these components exactly gives the 
original signal. The problem of identifying these IMFs is formulated as an optimization problem and solved using 
the Alternating Direction Method of Multipliers (ADMM) [12]. The optimization routine tries to minimize the sum 
of bandwidths of ‘K’ IMFs subject to the condition that the sum of the components is equal to the original signal. 
‘K’, the number of components to be involved in the decomposition is chosen prior to the optimization routine. The 
detailed formulation and the algorithm are given in [1]. The corresponding optimization problem is given by 
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where ( )ku t represents the k th IMF with centre frequency at k and x  is the original signal. The corresponding 

ADMM update functions as discussed in [1] is as follows: 
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where ˆˆ ˆ, ,
k

u x  are the fourier transforms of the components, original signal and the Lagrangian multiplier (part of 

the optimization routine) respectively.  
In the case of real time analysis of power signals, the signal can be sampled at a fixed rate and analyzed in blocks of 
fixed size. The energy in the VMD components of each block can be separately analyzed to identify variations in 
signal behaviour and hence identify distortions. The computation of the VMD algorithm for each block is quite 
computation intensive and hence direct application of the real time scenario is a difficult task. As mentioned earlier 
in (1), the VMD algorithm requires the computation of the fourier transform of each block of signal and here we 

propose to compute this transform using recursive FFT to save computations [7] . Let 
Nx R represent the samples 

corresponding to one block of signal taken for analysis using VMD. In each block a new sample is introduced into 
x  to replace the oldest sample so that the sequence remains unchanged except for a single shift and change in value 
at one location. Once the Fourier transform of the initial sequence is computed then the transforms of successive 
blocks can be estimated without explicitly computing all the coefficients by FFT algorithm. This formulation can be 
arrived at by making use of the properties of Fourier transform. The initial set of N samples can be represented as 
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 Then in the next instant the block for processing would be [ (1) (2) ...... ( 1) ( )]
next

x x x x N x N  which can in fact be 

visualized as the sum of two sequences 1
x , 2

x NR  given by 1
[ ( 1) (1) ...... (0)]x x N x x  and 



543 K.P. Soman et al.  /  Procedia Technology   21  ( 2015 )  540 – 546 

 

2
[0 0 ...........( ( ) (0))]x x N x  where 1

x  is the original signal shifted by 1 sample and 2
x  is the difference between 

initial
x  and 

next
x . Now, by the linearity property of Fourier transforms the transform coefficients of 

next
x  is the sum of 

the corresponding coefficients of 1
x  and 2

x . The transform coefficients of 1
x  is given by the shifting property of 

Fourier transform expressed as and the coefficients corresponding to 2
x  is given by multiplying ( ( ) (0))x N x  with 

the last column of N
W . Thus in each stage the Fourier transform of the present block can be calculated as 
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where 
Na R  is a vector of all ones.  In the algorithm (.)R  represents the FFT computed using this 

method. This step essentially avoids the computation intensive FFT and replaces it by far lesser number of additions 

and multiplications. The computation of an N  point FFT requires 
2

log
2

N N  complex multiplications and 

2
logN N complex additions whereas in the proposed approach we require only N  multiplications and N additions. 

Another computation intensive section of the algorithm is the ADMM portion which continuously iterates until 
convergence at the solution for the optimization routine. This rate of convergence depends on the initial values of 

,
k k

u  and and can be enhanced if the initializations are more close to the original solution. After the 

computations for the first block are done, these values of  ˆ ,
k k

u w  can provide a rough estimate of the corresponding 

values for the upcoming blocks and can then be used as initializers to ensure faster convergences.   
 

 
 

Fig.1. Decomposition Components 
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The corresponding algorithm is given below: 
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3. Discussion 

The performance of the algorithm was tested on synthetically generated signals of the form 
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where 
f

f representing the fundamental frequency was taken to be 50Hz , 
s

f the sampling frequency was taken as 

1024Hz and t  corresponds to the sample index. The number of IMF’s ‘K’ was set to be 3 for the analysis and the 
energy of all the components after decomposition of each block was taken as an indicator for signal distortions. 
Further the block size was set to be 20 for analysis. The block size typically decides how much short lived 
distortions will be evident in the analysis and hence can be varied for different applications in different contexts. 
The corresponding components observed for a typical block is given in Fig. 1.  
 
It was observed that the algorithm could perform as efficiently as usual VMD in terms of signal decomposition and 
at a better rate in terms of time taken for computations. Further, the algorithm was also tested on signals with 
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voltage sag and swell existing for a duration of 0.01 seconds and it was found that the decomposition was proper 
even in regions of signal transitions and the corresponding plot of energy of blocks clearly reveals the presence of 
distortion. Further, the effect of signal distortion will be evident in the energy plot as soon as the first effected 
sample is introduced into the analysis block. Thus by observing the variation trend of the energy signal we can 
identify the presence of abnormal signal variations and use this as an indicator for various precautionary actions. 
The corresponding energy plot for a signal with voltage sag and swell are respectively given in Fig. 2  and  Fig. 3 .  
 

 
 

Fig. 2. Energy plot for sag signal components 
 

 
 

Fig. 3. Energy plot for swell signal components 

4. Conclusion 

This algorithm addresses the issue of real time power signal decomposition. The performance of the proposed 
algorithm was compared with the existing VMD algorithm and was found to give consistent results with 
considerable speedup owing to the reduced computational complexity and modified initialization procedure. The 
algorithm also offers (1 (2 log( ))) 100 %n  decrease in the number of complex multiplications and 
(1 (1 log( ))) 100 %n decrease in complex additions. Sensitivity to short lived distortions depends on the block 
size and could be varied according to the application. This idea could be extended with slight variations to speed up 
the decomposition process in other contexts. This allows the algorithm to be used in real time power quality 
analysis, to detect and analyze voltage/current swells and sags and so on. 
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