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Recent work by Webb et al. has provided indications of spatial variations of the fine-structure constant, 
α, at a level of a few parts per million. Using a dataset of 293 archival measurements, they further 
show that a dipole provides a statistically good fit to the data, a result subsequently confirmed by other 
authors. Here we show that a more recent dataset of dedicated measurements further constrains these 
variations: although there are only 10 such measurements, their uncertainties are considerably smaller. 
We find that a dipolar variation is still a good fit to the combined dataset, but the amplitude of such a 
dipole must be somewhat smaller: 8.1 ± 1.7 ppm for the full dataset, versus 9.4 ± 2.2 ppm for the Webb 
et al. data alone, both at the 68.3% confidence level. Constraints on the direction on the sky of such a 
dipole are also significantly improved. On the other hand the data can’t yet discriminate between a pure 
spatial dipole and one with an additional redshift dependence.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Testing the stability of nature’s fundamental couplings is among 
the most actively pursued topics in observational astrophysics [1]. 
In addition to the intrinsically fundamental nature of these tests, 
the measurements (whether they are detections of variations or 
null results) have deep consequences for cosmology and funda-
mental physics, an overview of which is provided in [2].

A recent analysis by Webb et al. of a large archival dataset has 
provided some evidence for spatial variations of the fine-structure 
constant, α, at the level of a few parts per million (ppm) [3,4]. The 
dataset includes a total of 293 measurements in the approximate 
redshift range 0.2 < z. < 4.2, obtained with ESO’s UVES spectro-
graph at the VLT and with the HIRES spectrograph at the Keck 
telescope. Both the analysis of Webb et al. and those of subse-
quent works [5–8] find evidence for a spatial dipole in the mea-
surements, at a statistical level of significance of more than four 
standard deviations.

Meanwhile some dedicated measurements of α (that is, those 
where the data was specifically taken for this purpose) have been 
obtained and further efforts in this direction are ongoing, such as 
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those of the UVES Large Program for Testing Fundamental Physics 
[9,10]. The number of currently available dedicated measurements 
is only a dozen or so, so they can’t yet be used on their own 
to search for spatial variations. Nevertheless, these measurements 
have statistical and systematic uncertainties that are nominally 
smaller than those of the archival measurements. (Note that in 
a large sample such as that of Webb et al. the systematic un-
certainties can be—and have been—estimated directly from the 
sample distribution, while this is not possible for individual mea-
surements.) Here, therefore, we carry out a first joint analysis of 
the Webb et al. and the more recent measurements, with the aim 
of ascertaining whether the evidence for the dipolar variation is 
preserved.

2. Available data and parameterizations

Previous studies of the spatial distribution of α measurements 
were restricted to the data of Webb et al. [3], which is a large 
dataset of archival data measurements. This dataset has been ex-
tensively described elsewhere (most notably in [4]), and we refer 
the reader to these works for additional details. There have been 
recent suggestions that the level of systematics in these measure-
ments may have been underestimated [11], but here we simply 
take the published values at face value, and calculate the total 
uncertainty for each measurement by adding in quadrature the sta-
tistical and systematic uncertainties.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Table 1
Recent dedicated measurements of α. Listed are, respectively, the object along each 
line of sight, the redshift of the measurement, the measurement itself (in parts 
per million), the spectrograph(s), and the original reference. The recent UVES Large 
Program measurements are [9,10]. The quoted errors include both statistical and 
systematic uncertainties (to the extent that these were estimated in the origi-
nal works), added in quadrature. The first measurement is the weighted average 
from 8 absorbers in the redshift range 0.73 < z < 1.53 along the lines of sight of 
HE1104−1805A, HS1700+6416 and HS1946+7658, reported in [13] without the 
values for individual systems, and therefore won’t be included in our analysis.

Object z �α/α (ppm) Spectrograph Ref.

3 sources 1.08 4.3 ± 3.4 HIRES [13]
HS1549+1919 1.14 −7.5 ± 5.5 UVES/HIRES/HDS [10]
HE0515−4414 1.15 −0.1 ± 1.8 UVES [14]
HE0515−4414 1.15 0.5 ± 2.4 HARPS/UVES [15]
HS1549+1919 1.34 −0.7 ± 6.6 UVES/HIRES/HDS [10]
HE0001−2340 1.58 −1.5 ± 2.6 UVES [16]
HE1104−1805A 1.66 −4.7 ± 5.3 HIRES [13]
HE2217−2818 1.69 1.3 ± 2.6 UVES [9]
HS1946+7658 1.74 −7.9 ± 6.2 HIRES [13]
HS1549+1919 1.80 −6.4 ± 7.2 UVES/HIRES/HDS [10]
Q1101−264 1.84 5.7 ± 2.7 UVES [14]

In our analysis we will also consider this data on its own (to 
check that we recover previously published results) but, more im-
portantly, we will for the first time combine it with the available, 
smaller and more recent, dataset of dedicated measurements listed 
in Table 1. This compilation includes the early results of the UVES 
Large Program for Testing Fundamental Physics [9,10], which is ex-
pected to be the one with a better control of possible systematics. 
The source of the data in this table is also further discussed in [12].

We note that the first measurement listed on the table is the 
weighted average from measurements in 8 absorption systems in 
the redshift range 0.73 < z < 1.53 along lines of sight that are 
widely separated on the sky (HE1104−1805A, HS1700+6416 and 
HS1946+7658) [13]; the authors only report this average and not 
the individual measurements. For this reason we listed the result 
in Table 1 for completeness but naturally it won’t be included in 
our analysis. Our more recent dataset therefore has 10 different 
measurements, all in the redshift range 1 < z < 2.

We will fit this data to two different phenomenological pa-
rameterizations. The first is a pure spatial dipole for the relative 
variation of α

�α

α
(A,�) = A cos�, (1)

which depends on the orthodromic distance � to the north pole 
of the dipole (the locus of maximal positive variation) given by

cos� = sin θi sin θ0 + cos θi cos θ0 cos (φi − φ0), (2)

with (θi, φi) being the Declination and Right Ascension of the i-th 
measurement and (θ0, φ0) those of the north pole. These latter two 
coordinates, together with the overall amplitude A, are our free pa-
rameters. Such a parameterization has been considered in all pre-
vious analyses of the Webb et al. data [3–8] and thus serves as a 
simple test of our analysis. We note that we do not consider an ad-
ditional monopole term, both because there is no strong statistical 
preference for it in previous analyses [3,4] and because physically 
such term would be understood as being due to the assumption 
of terrestrial isotopic abundances, in particular of Magnesium—we 
refer the interested reader to [17] for a detailed discussion of this 
point.

Additionally we will also consider a parameterization where 
there is an implicit time dependence in addition to the spatial 
variation. Previous analyses considered the case of a dependence 
on look-back time [3,4], but this has the disadvantage of requir-
ing a specific assumption of a cosmological model, and moreover 
Table 2
One- and three-sigma constraints on the Amplitude and coordinates of maximal 
variation (Right Ascension and Declination) for a pure spatial dipole variation of α. 
The ‘all data’ case corresponds to using the data of Webb et al. [3] together with the 
10 individual measurements presented in Table 1. These results are also graphically 
displayed in Fig. 2.

Dataset & c.l. Amplitude (ppm) Right Ascension (h) Declination (◦)

Webb et al. (68.3%) 9.4 ± 2.2 17.2 ± 1.0 −61 ± 10
Webb et al. (99.7%) 9.4 ± 6.4 17.2+4.4

−5.3 < −28

All data (68.3%) 8.1 ± 1.7 17.2 ± 0.7 −58 ± 7
All data (99.7%) 8.1 ± 5.0 17.2 ± 2.9 < −37

it’s not clear how such a dependence would emerge from realistic 
varying α models. We will instead assume a logarithmic depen-
dence on redshift

�α

α
(A, z,�) = A ln (1 + z) cos�; (3)

this has the advantage of not requiring any additional free parame-
ters, but such dependencies are also typical of dilaton-type models 
[18]. As in previous analyses, this parameterization is mainly con-
sidered as a means to assess the ability of the data to discriminate 
between models.

3. Results

We used standard likelihood techniques to fit the two parame-
terizations to our datasets. We considered grids of size 2003, for 
the Amplitude of the dipole and the Right Ascension and Dec-
lination of its north pole. We assumed a positive value of the 
amplitude and uniform priors on all three parameters. It is intu-
itively clear (but we have nevertheless explicitly checked it, as a 
further test of our analysis pipeline) that allowing also for nega-
tive values of the amplitude would lead to degenerate plots, with 
a specific amplitude and its negative equally likely and two oppo-
site points on the sky also equally likely as the best-fit poles.

Figs. 1 and 2 and Table 2 summarize the results of our analy-
sis for the case of the pure spatial dipole. For the Webb et al. data 
alone we confirm the results of previous analyses. However, the 
addition of the more recent measurements has a significant impact 
on the results. While the statistical preference for a non-zero am-
plitude remains above the four-sigma level, the most likely value 
(and the corresponding uncertainty) for this amplitude decreases 
considerably, from 9.4 to 8.1 ppm. On the other hand the preferred 
direction of the north pole does not change significantly, but the 
corresponding uncertainties are reduced by about thirty percent in 
each coordinate.

Figs. 3 and 4 and Table 3 contain analogous results for the 
redshift-dependent dipole. Again the statistical preference for a 
non-zero dipole is at more than four standard deviations, in this 
case with a slightly larger value of the preferred amplitude. The 
uncertainties in all three fitted parameters also increase slightly, as 
compared to the pure spatial dipole case. In any case we find, in 
agreement with previous works, that current data cannot strongly 
discriminate between the two classes of models.

4. Outlook

We have revisited recent indications of spatial variations of the 
fine-structure constant, α, by considering the impact of the current 
set of dedicated measurements listed in Table 1 on this analy-
sis. While this dataset is currently still small, it has already been 
shown that it plays a significant role in obtaining constraints on 
dark energy and Weak Equivalence Principle violations [19]. Here 
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Fig. 1. 2D likelihood contours for the Amplitude and coordinates of maximal varia-
tion (Right Ascension and Declination), with the remaining parameter marginalized, 
for a pure spatial dipole variation of α, see Eq. (1). The black contours correspond 
to the data of Webb et al. [3], while in the red ones that data is combined with the 
one presented in Table 1. One, two and three sigma confidence levels are displayed 
in all cases. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

Fig. 2. 1D likelihood for the Amplitude and coordinates of maximal variation (Right 
Ascension and Declination), with the other parameter marginalized, for a pure spa-
tial dipole variation of α, see Eq. (1). The black contours correspond to the data of 
Webb et al. [3], while in the red ones that data is combined with the one presented 
in Table 1. The �χ2 = χ2 −χ2

min is displayed in all cases. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)
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Fig. 3. 2D likelihood contours for the Amplitude and coordinates of maximal varia-
tion (Right Ascension and Declination), with the remaining parameter marginalized, 
for a redshift-dependent dipole variation of α, see Eq. (3). The black contours cor-
respond to the data of Webb et al. [3], while in the red ones that data is combined 
with the one presented in Table 1. One, two and three sigma confidence levels are 
displayed in all cases. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Fig. 4. 1D likelihood for the Amplitude and coordinates of maximal variation (Right 
Ascension and Declination), with the other parameter marginalized, for a redshift-
dependent dipole variation of α, see Eq. (3). The black contours correspond to the 
data of Webb et al. [3], while in the red ones that data is combined with the one 
presented in Table 1. The �χ2 = χ2 − χ2

min is displayed in all cases. (For interpre-
tation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)
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Table 3
Same as Table 2, but for a dipolar variation with an additional redshift dependence, 
as given by Eq. (3). These results are also graphically displayed in Fig. 4.

Dataset & c.l. Amplitude (ppm) Right Ascension (h) Declination (◦)

Webb et al. (68.3%) 9.9 ± 2.3 17.2 ± 1.0 −61 ± 11
Webb et al. (99.7%) 9.9 ± 6.9 17.2+5.0

−5.9 < −27

All data (68.3%) 8.7 ± 1.7 17.2 ± 0.7 −59 ± 8
All data (99.7%) 8.7 ± 5.1 17.2 ± 3.1 < −38

we have confirmed that they also have a noticeable impact on con-
straints on spatial variations, thereby updating the original analysis 
of Webb et al.

Our analysis shows that a dipolar variation is still a good fit 
to the combined dataset, with the statistical preference for a non-
zero amplitude remaining above the four-sigma level. However the 
addition of the new data reduces the best-fit amplitude as well as 
its uncertainty. The direction on the sky of the north pole of such 
a dipole remains almost unchanged, but its uncertainty is reduced 
by about thirty percent in each coordinate. Even with this addi-
tional data one can’t yet statistically discriminate between a pure 
spatial dipole and one with an additional redshift dependence.

Naturally the key concern regarding these measurements is the 
possible presence of hidden systematics [11]. Additional measure-
ments from the ongoing UVES Large Program should shed further 
light on this subject. The dawn of a new generations of high-
resolution ultra-stable spectrographs, of which ESPRESSO is the 
first example [20], will be a key development, allowing measure-
ments not only with significantly smaller statistical uncertainties 
but also with a much better control over possible systematics. 
A roadmap for this field can be found in [2].
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