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Abstract

This paper preliminarily reports an SMT for solving polynomial inequalities over real numbers. Our ap-
proach is a combination of interval arithmetic (over-approximation, aiming to decide unsatisfiability) and
testing (under-approximation, aiming to decide satisfiability) to sandwich precise results. In addition to
existing interval arithmetic, such as classical intervals and affine intervals, we newly design Chebyshev
Approximation Intervals, focusing on multiplications of the same variables, like Taylor expansions. When
testing cannot find a satisfiable instance, this framework is designed to start a refinement loop by split-
ting input ranges into smaller ones (although this refinement loop implementation is left to future work).
Preliminary experiments on small benchmarks from SMT-LIB are also shown.

Keywords: interval arithmetic, affine arithmetic, SAT modulo theories - SMT, polynomial constraints,
testing.

1 Introduction

Solving polynomial constraints plays an important role in program verification, e.g.,

roundoff/overflow error detection [16], termination proving [10], hybrid systems,

loop invariant generation, and parameter design of control.

Tarski proved that polynomial constraints over real numbers (algebraic numbers)

is decidable [21], and later Collins proposed Quantifier Elimination by Cylindri-

cal Algebraic Decomposition [4], which is nowadays implemented in Mathematica,

Maple/SynRac, Reduce/Redlog, and QEPCAD. However, it is DEXPTIME with

respect to the number of variables, and works fine in practice up to 5 variables and

lower degrees. For instance, eight variables with degree 10 require 20-30 hours by

supercomputer.
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SMT (SAT modulo theories) separates case analysis and the core computation

in the theory. RAHD [18] is such an example, which applies variations of QE-CAD

implementations (e.g., QEPCAD-B, Reduce/Redlog) as a background theory.

An alternative choice of theory is approximation, e.g., iSAT [8], MiniSmt [22],

Barcelogic [3], CVC3 [2], and CORD [9], in which bounded binary encoding,

CORDIC, and Interval arithmetic are examples of background theories. Among

them, MiniSmt and CVC3 have participated in QF NRA category of SMT-LIB [1].

This paper preliminarily reports an SMT for solving polynomial inequalities

over real numbers. Our approach is a combination of interval arithmetic (over-

approximation, aiming to decide unsatisfiability) and testing (under-approximation,

aiming to decide satisfiability) to sandwich precise results. In addition to existing

interval arithmetic, such as classical intervals and affine intervals, we newly design

Chebyshev Approximation Intervals (called CAI1 and CAI2), focusing on multipli-

cations of the same variables, like Taylor expansions. Chebyshev approximation in

interval arithmetic is not new, but we newly introduce noise symbols for absolute

values.

We apply very lazy theory learning [15] for interaction with MiniSat 2.2. Ini-

tially, an SAT instance given from SAT solver describes possible combinations of

input ranges. If interval arithmetic (IA) reports unsatisfiability (IA UNSAT), such

combinations are removed for next SAT searching by memorizing them as learnt

clauses to SAT solver. If IA reports validity (IA VALID), any instances in the

ranges is satisfiable. If IA finds neither validity nor unsatisfiability (IA SAT), each

polynomial is examined by testing.

If testing cannot find a satisfiable instance (Test UNSAT), such combinations of

input ranges can be memorized as a learnt clause by heuristics, and removed from

next searching.

When IA decides neither satisfiability nor unsatisfiability, this framework is de-

signed to start a refinement loop by splitting input ranges into smaller ones (al-

though this refinement loop implementation is left to future work).

The structure of paper is organized as follows. Section 2 describes the poly-

nomial constraints and theory learning strategy in terms of abstract DPLL [15].

Section 3 explains variations of interval arithmetic and newly proposes Chebyshev

Approximation Intervals, CAI1, CAI2. Section 4 describes testing strategies. The

framework of our SMT solver is described with examples in section 5. Preliminary

experiments on small examples from SMT-LIB benchmarks [1] are reported in sec-

tion 6. Section 7 discusses some related works, and section 8 concludes the paper

with future work.

2 Polynomial constraints and Abstract DPLL

Among polynomial constraints over real numbers, our current target problem is sat-

isfiable problem of polynomial inequality constraints, as in Definition 2.1. Handling

polynomial equality’s is left to future work. We assume input ranges are given by

intervals (as in the most of SMT-LIB benchmarks).
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Definition 2.1 A polynomial inequality constraint is in the form of

(∃x1 ∈ [l1, h1] · · ·xn ∈ [ln, hn].
∧
j
fj(x1, · · · , xn) > 0)

where li, hi ∈ R and fj(x1, · · · , xn) is a polynomial over variables x1, · · · , xn.

Satisfiability Modulo Theories (SMT) is a procedure to detect satisfiable

instances under a background theory. A typical arithmetic theory is Presburger

arithmetic (linear arithmetic) over integers and real numbers. It decomposes a

problem into SAT solving as case analysis and theory as arithmetic conjunctive

constraint solving. Interaction between SAT solving and theory has Lazy and Eager

strategies, which are described below as Abstract DPLL modulo theories [15].

As notation, l and li denote literals, a clause is a set of literals, and a Conjunctive

Normal Form (CNF) F is a set of clauses. M and M1 are (partial) assignments,

which are sequences of literals. =⇒ is a binary relation over states which are pairs

of an assignment M and a CNF F , denoted as M ‖ F . A clause C is true in M

if C ∩ M �= ∅. M is satisfied on F , denoted as M |= F , if all clauses of F are

true in M . If F ∪¬G is unsatisfiable in a background theory T which is denoted as

F |=T G.

• Very lazy theory learning interacts with theory T when an SAT instance is found,

and learns a clause ¬l1 ∨ ... ∨ ¬ln ∨ ¬l when the theory refutes l1 ∧ ... ∧ ln ∧ l.

MlM1 ‖ F =⇒ ∅ ‖ F ∧ (¬l1 ∨ ... ∨ ¬ln ∨ ¬l) if

⎧⎪⎨
⎪⎩

MlM1 |= F

{l1, ..., ln} ⊆ M

l1 ∧ ... ∧ ln |=T ¬l
• Eager theory propagation interacts with theory T during DPLL procedure of SAT,

and DPLL procedure continues when the theory admits the current decisions.

M ‖ F =⇒ Ml ‖ F if

⎧⎪⎨
⎪⎩

M |=T l

l is undefined in M

l or ¬l occurs in F

We adopt very lazy theory learning on MiniSat2.2, which naturally memo-

rizes unsatisfiable combination of input ranges for a polynomial as a learnt clause.

Certain combination with eager theory propagation would improve the efficiency.

However, it is left for future work, since it requires tighter interaction between SAT

solver and theory, which needs internal modification of MiniSat.

3 Interval Arithmetic

Interval arithmetic (IA) estimates bounds of polynomials under given input ranges,

and we use it as an over-approximation theory. For a closed existential polynomial

constraint

C = ∃x1 ∈ [l1, h1] · · ·xk ∈ [lk, hk] .
m∧
1
fi(x1, · · · , xk) > 0,
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f l
i (x1, · · · , xk) and fu

i (x1, · · · , xk) are lower and upper bounds estimated by IA,

we say

• C is IA VALID if ∀i ∈ [1,m]. f l
i (x1, · · · , xk) > 0,

• C is IA UNSAT if ∃i ∈ [1,m]. fu
i (x1, · · · , xk) ≤ 0 and

• C is IA SAT if ∃j ∈ [1,m]. f l
j(x1, · · · , xk) ≤ 0 ∧ (

∧
i
fu
i (x1, · · · , xk) > 0).

Note that IA VALID and IA UNSAT safely reason SAT and UNSAT, respec-

tively. However, IA SAT cannot conclude SAT, and treated as unknown.

A popular example of IA is Classical Interval (CI) [14], which keeps a lower

bound and an upper bound. The weakness of CI is loss of dependency among

values. For instance, if x ∈ [2, 4] then, x− x is evaluated to [−2, 2].

Affine interval (AF) introduces noise symbols ε, which is interpreted as a value in

[−1, 1] [5,6,7], for partial symbol manipulation. For instance, x ∈ [2, 4] is represented

as x = 3+ε, and x−x = (3+ε)−(3+ε) is safely evaluated to 0. The drawback is that

the multiplication without dependency may be less precise than CI. For instance, let

x ∈ [2, 4] and y ∈ [3, 7]. Then x = 3+ε and y = 5+2ε′, and xy = 15+5ε+6ε′+2εε′.
Choices are,

• εε′ is replaced with a fresh noise symbol [5,6],

• εε′ is replaced with [−1, 1]ε (or [−1, 1]ε′), called Extended Affine Interval

(EAI) [16], and

• εε′ is pushed into the fixed error noise symbol ε±, denoted AF1 [11].

Either of treatments estimates that xy is in [2, 28], whereas CI results [6, 28]. We

will use the last choice as default except for AF.

a u b

Fig. 1. Chebyshev approximation
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Fig. 2. Chebyshev approximation of x2 and x |x|

We newly design Chebyshev Approximation Interval (CAI1, CAI2) and imple-

ment Classical Interval (CI), Affine Intervals (AF, AF1, AF2) [11], and Chebyshe-

vApproximation Intervals (CAI1, CAI2). Their forms are, e.g.,

AF1 x̂ = a0 +
n∑

i=1

aiεi + an+1ε±
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AF2 ẍ = a0 +

n∑
i=1

aiεi + an+1ε+ + an+2ε− + an+3ε±

CAI1 x̊ = ā0 +

n∑
i=1

āiεi +

n∑
i=1

āi+nεi+n + ā2n+1ε±

where ε+ and ε− are interpreted as values in [0, 1] and [−1, 0] respectively, ε± is the

error noise symbol interpreted as a value in [−1, 1] and εi+n represents the absolute

value |εi| of εi. Ideas behind are,

(i) introduction of noise symbols [5,6,11],

(ii) keeping products of noise symbols up to degree 2 (εiεj) [11] (beyond degree 2,

products are pushed into the error noise symbol ε±), and

(iii) Chebyshev approximation of x2 with noise symbols for absolute values.

(iii) comes from the observation that, for x ∈ [−1, 1],

|x| − 1
4 ≤ x2 = |x|2 ≤ |x| and x− 1

4 ≤ x|x| ≤ x+ 1
4

which are explained in Figure 2. This observation leads symbolic manipulation on

products of the same noise symbol ε as

εε = |ε||ε| = |ε|+ [−1
4 , 0] and ε|ε| = ε+ [−1

4 ,
1
4 ].

Remark 3.1 Introduction of Chebyshev approximation is not new. For instance,

Stolfi [20] proposed it based on the mean-value theorem, as in the left of Figure 2.

Miyajima et al. [13] applied not only for products of the same noise symbols but

also those of different noise symbols. However, their estimation on x2 is only in the

positive interval using the fact x − 1
4 ≤ x2 ≤ x for x ∈ [0, 1]. We newly introduce

noise symbols for absolute values. The advantage is, coefficients are half compared

to them, which reduce the effect of the offset [−1
4 , 0]. Currently, we only focus on

products of the same noise symbols, which is useful for computation like in Taylor

expansion.

Roughly speaking, AF and AF1 apply (i) only, AF2 applies (i) and (ii) [12],

CAI1 applies (i) and (iii), and CAI2 applies all. The definitions of CAI1 arithmetic

are found in Appendix.

Example 3.2 Given f = (x2 − 2y2 + 7)2 + (3x + y − 5)2 with x ∈ [−1, 1] and

y ∈ [−2, 0], the bounds of f computed by AF1, AF2, CAI1 and CAI2 are as follows:

• AF1 : [−98, 220]

• AF2 : [−53, 191]

• CAI1: [−4.6875, 163.25]

• CAI2: [3.3125, 147.25]

Example 3.3 Given sin(x) = x − x3

3! +
x5

5! − x7

7! +
x9

9! with x ∈ [0, 0.523598], the

bounds of sin(x) are as follows:

• AF1 : 10−6[−6290.49099241, 523927.832027]

• AF2 : 10−6[−6188.00580507, 514955.797111]
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• CAI1: 10−6[−1591.61467700, 503782.471931]

• CAI2: 10−6[−1591.61467700, 503782.471931]

In the example 3.2, CAI2 gives the best bound comparing with CAI1, AF2

and AF1 because it can keep information about εiεj . The example 3.3 is Taylor

expansion of sin(x). Bounds of sin(x) are estimated for x ranged from 0 to π
6 . In

this example, CAI1 and CAI2 give the same bound better than AF1 and AF2.

4 Testing

Testing is a popular methodology to find satisfiable instances. For real numbers,

only finitely many instances can be tested, and we use it as an under-approximation

theory. For a closed existential polynomial constraint

C = ∃x1 ∈ [l1, h1] · · ·xk ∈ [lk, hk] .
∧
j
fj(x1, · · · , xk) > 0

and finite set Θ of substitutions, we denote �test(Θ) C if
∧
j
fj(θ(x1), · · · , θ(xk)) > 0

holds for some θ ∈ Θ with θ(x1) ∈ [l1, h1] · · · θ(xk) ∈ [lk, hk]. Then, �testΘ C implies

� C holds, but not vice versa. We say

• C is Test SAT if �testΘ C and

• C is Test UNSAT if �testΘ C.

Test UNSAT does not imply UNSAT, but we will use its information for com-

puting leanrn clauses as heuristics.

There are two immediate strategies to generate random test cases.

Definition 4.1 For an interval [l, h] and k ≥ 1,

• the k-random ticks are {c1, · · · , ck}, and
• the k-periodic ticks are {c, c+Δ, · · · , c+ (k − 1)Δ},
where Δ = h−l

k , and c ∈ [l, l+Δ], ci ∈ [l+ (i− 1)Δ, l+ iΔ] are randomly generated

(with i ∈ {1, ..., k}).
Reducing the number of unnecessary test cases is an important task to improve

efficiency. For instance, if we consider 10 variables and each has 2 test cases, then

we have 210 instances as a total. In solving that problem, we divides constraints

into small groups (constraints in a group share some variables) and we compute

satisfiable test cases for each group first.

5 SMT on polynomial inequality constraints

The main idea of our SMT solver is applications of two theories, IA (CI, AF1,

AF2, CAI1, CAI2) for over-approximation and testing for under-approximation to

sandwich the precise results. Although currently not implemented yet, we plan an

automatic decomposition of input ranges to refine the detected results as in [17].

Fig 3 describes its design framework.
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Fig. 3. Framework of SMT solver

• Initial interval decomposition: An interval of a variable is split into small

intervals, which are represented as disjunction. For instance, x ∈ [a, b] is repre-

sented by x ∈ [a, a1]∨x ∈ [a1, a2]∨· · ·∨x ∈ [an, b] for a < a1 < a2 < · · · < an < b.

After encoding x ∈ [ai, ai+1] and a polynomial fi(x1, · · · , xk) > 0 (initially, not

appearing in CNF) by atomic propositions, we obtain a CNF, which is sent to

SAT solver.

• SAT solver: We use MiniSat2.2 as a backend SAT solver. The SAT solver finds

a satisfiable combination of input ranges of all variables. A satisfiable (SAT)

instance is sent to IA for checking. If the SAT solver returns unsatisfiability, we

conclude unknown if testing is applied, otherwise we conclude UNSAT for the

final result.

• Interval Arithmetic (IA): We implement CI, AF1, AF2, CAI1 and CAI2 as

IA. IA decides each polynomial fi(x1, · · · , xk) > 0 either IA VALID, IA UNSAT,

or IA SAT, under given input ranges. If some of them are IA UNSAT, we return

IA UNSAT and a negation of a combination computed by Learning analysis is

added to the SAT solver as a learnt clause. If each of them is IA VALID, we

have done. If some of them remain IA SAT, all IA SAT polynomials are sent to

testing (still memorizing polynomials detected to be IA VALID).

• Testing: In current implementation, 2-random ticks are generated for each vari-

able to test a polynomial fi(x1, · · · , xk) > 0. If all polynomials are Test SAT

for a test case, we have done. If it cannot find a successful test case, it returns

Test UNSAT.
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Fig. 4. Solver working on Example 5.1

• Testing propagation: When testing of polynomials returns Test UNSAT, a

negation of a combination of input ranges is computed and then it is added to

CNF as a learnt clause. This is heuristics to narrow the search and intends to

find other SAT instances for next evaluation.

The SMT solver will perform Dynamic interval decomposition to split in-

put ranges into smaller ones, and refine the search. In current implementation,

Dynamic interval decomposition is left to future work.

Example 5.1 Fig 4 describes how the SMT solver works on a polynomial constraint

∃x ∈ [−1, 4] y ∈ [−1, 4] . 4x+ 3y − xy > 12. Its input format is

x = [-1,4] and y = [-1,4]

(assert (f = 4x + 3y -xy > 12))

First, by Initial interval decomposition, the input ranges [−1, 4] of variables x

and y are split into 5 small input ranges. By IA, the red areas (x ∈ [−1, 2] and

y ∈ [−1, 3]) are detected to be IA UNSAT. The remaining areas remain white, which

means IA SAT. Then, testing is applied, for instance on x ∈ [3, 4] and y ∈ [1, 2],

and fortunately finds a satisfiable instance with x = 3.33821 and y = 1.31143.

With Dynamic interval decomposition, for instance the area x ∈ [2, 3] and y ∈
[−1, 0] is split into quarters. By IA, two left quarters are detected to be IA UNSAT.

Similarly, in the area x ∈ [3, 4] and y ∈ [3, 4], the right below quarter is detected to

be IA VALID (light blue) by IA.

6 Preliminary experiment

In this section, we show preliminary results with the problem P1

∃x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 ∈ [0, 3] x11 ∈ [−3, 4] x12 ∈ [−1, 3].

x1x3 − x1x3x7 > 0 ∧ x1x2 − x1x6 − x1x2x7 > 0 ∧ x1x3 − x3x5 > 0 ∧
x0 + x1x2 − x4 − x2x5 > 0 ∧ x8 − x2 + x10x9 − x10x3 > 0 ∧ x3x7 > 1 ∧
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x6 + x2x7 > 0 ∧ x311 − 2x211(1 + x212)− 2x12(x11 + x12) + x12 − 6.5 > 0,

P2 (P2 is just changed the input of x11 from P1 into x11 ∈ [-3,2]) and 18

problems in the division QF NRA of SMT-LIB [1] benchmarks. We choose problems

with up to 20 variables.

P1 was checked by AF1, AF2, CAI1 and CAI2, all of them give SAT results.

For the problem P2, while AF1 and AF2 detect unknown, CAI1 and CAI2 detect

UNSAT because CAI1 and CAI2 give better results for over - approximation than

AF1 and AF2 in this problem. The Initial interval decomposition divides given

ranges of variables into ranges with the width 1.

Division QF NRA of SMT-LIB benchmarks consists of a family zankl, which

comes from termination analysis of term rewriting. All variables in problems are

originally set a lower bound with ≥ 0. In this experiment, we set an upper bound

for these variables and evaluate these problems with a range [0, 2.5]. The range

[0, 2.5] is split into 5 ranges with the width 0.5.

We apply IA depending on the number of variables in a problem, e.g., CAI2 for

< 10, CAI1 for ≤ 15 (except the problem matrix-1-all-21) and AF1, AF2 for > 15,

due to efficiency reason of preliminary implementation. Efficiency of CAI1 can be

compared to AF1 and AF2, but CAI2 is much slower.

Table 1 includes 6 columns of the problem name, number of variables, number

of constraints, type of interval arithmetic, result, and time in second.

7 Related work

There are several choices of theories among SMTs for polynomial constraints, e.g.,

• QE-CAD (Quantifier Elimination by Cylindrical Algebraic Decomposition) [4],

• interval arithmetic (as over approximation),

• bounded binary encoding (as under approximation), and

• reduction to linear constraints, e.g., bounded integer coefficients and CORDIC

(COordinate Rotation DIgital Computer).

RAHD [18] separates case analysis and the core computation of QE-CAD origi-

nated by Tarski. It applies different versions of QE-CAD implementations such as

QEPCAD-B, Reduce/Redlog.

Interval arithmetic is an over-approximation, but sufficiently fine decomposition

of input ranges will correctly find satisfiability of polynomial inequalities. Input

range decomposition has proposed in RSOLVER [19] and implemented in RSOLVER

[19] and iSAT [8]. While RSOLVER develops a pruning algorithm to remove un-

satisfied elements, iSAT applies a tight interaction of SAT solver and eager theory

propagation. Thus, conflict detection and theory propagation are directly applied

for SAT solver to provide new assignments. Our approach is combining testing (as

under-approximation) with interval arithmetic. It will supply more opportunity to

conclude satisfiability, furthermore it will guide more likely range decomposition.

We also apply Chebyshev Affine Intervals, instead of using CI in RSOLVER and
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Problem name
No. No. Interval

Result Time (s)
variables constraints arithmetic

P1 13 8 AF1 SAT 0.109

P1 13 8 AF2 SAT 0.14

P1 13 8 CAI1 SAT 1.687

P1 13 8 CAI2 SAT 338.593

P2 13 8 AF1 unknown 0.125

P2 13 8 AF2 unknown 0.046

P2 13 8 CAI1 UNSAT 1.062

P2 13 8 CAI2 UNSAT 159.546

matrix-1-all-01 19 22 AF2 unknown 0.093

matrix-1-all-2 14 9 CAI1 SAT 8.328

matrix-1-all-3 19 21 AF1 SAT 175.968

matrix-1-all-4 16 20 AF2 SAT 20.328

matrix-1-all-11 19 17 AF1 SAT 17.687

matrix-1-all-14 14 16 CAI1 SAT 66.484

matrix-1-all-15 10 14 CAI1 unknown 26.656

matrix-1-all-18 6 10 CAI2 SAT 14.156

matrix-1-all-20 16 16 AF2 SAT 1.062

matrix-1-all-21 13 17 AF1 SAT 2753.72

matrix-1-all-24 11 12 CAI1 unknown 50.828

matrix-1-all-33 13 6 CAI1 SAT 68.765

matrix-1-all-34 20 14 AF2 SAT 3349.89

matrix-1-all-36 18 19 AF2 SAT 54.015

matrix-1-all-37 19 46 AF2 unknown 3730.66

matrix-1-all-39 19 23 AF2 unknown 85.781

matrix-1-all-43 16 9 AF2 unknown 0.343

matrix-2-all-6 17 10 AF2 unknown 15.75

Table 1
Experimental results with P1, P2 and QF NRA

iSAT.

MiniSmt [22] applies bundled bit encoding, which encodes non-linear arithmetic

over rational numbers (i.e., pairs of integers) under given bounds, and reduced to

SAT solving. To handle limited use of polynomial equality, it introduces the fixed

number of algebraic numbers symbolically. MiniSmt can show satisfiability quickly,

but due to the bound of the search, it cannot conclude unsatisfiability. CVC3 [2] is

also a popular SMT, participating NRA category of SMT-LIB as well as MiniSmt.

However, we could not find references that provide its technical details.

Barcelogic [3] assumes finite input ranges on integers, and reduces polynomial

constraints to linear ones by instantiating one of arguments in multiplications with

finitely many possible integers in bounded ranges. These linear constraints are

solved by Yices (Presburger arithmetic over integers).

CORD [9] uses another reduction to linear constraints, called CORDIC (COordi-

nate Rotation DIgital Computer), which translates a non-linear operation to linear

forms by n iterative steps. One of two arguments of a multiplication is normalized to

(−2, 2), then the multiplication is approximated by the sum of n positive/negative
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shifters, in which the kth shifter corresponding to the half of the (k − 1)th shifter.

Initially, the first shifter is set to the value of unnormalized argument. Each itera-

tive step of a CORDIC translation is encoded as linear constraints, and some linear

constraints are added to account for all inaccuracies in approximation of CORDIC.

Finally, these linear constraints are solved by Yices (Presburger arithmetic over real

numbers).

8 Conclusion and future work

This paper preliminarily reported an SMT for solving polynomial inequalities

over real numbers. Our approach is a combination of interval arithmetic (over-

approximation, aiming to decide unsatisfiability) and testing (under-approximation,

aiming to decide satisfiability) to sandwich precise results. In addition to existing

interval arithmetic, such as classical intervals and affine intervals, we newly designed

Chebyshev Approximation Intervals.

Interval arithmetic can indicate unsatisfiable areas (IA UNSAT) and remove

these areas from search space. Testing only focus on areas that IA decides neither

validity nor unsatisfiability. When testing cannot find a satisfiable instance in an

area, heuristics is applied to make the solver not to search that area again. The re-

sult of preliminary experiments on small examples including SMT-LIB benchmarks

is encouraging. Our status is preliminary, and there is much future work to be

undertaken.

• Test data generation strategy: When the number of variables becomes large,

the number of test cases to generate is a serious matter. Fortunately, interval

arithmetic with noise symbols keeps sensitivity on variables. For instance, if an

input range of xi is described by a noise symbol εi, the coefficient of εi in the

result reflects strength of its influence. We can generate more test cases for such

sensitive variables. This was proposed in [17] under the program analysis context

and we hope to apply to our SMT.

• Dynamic interval decomposition and refinement loop: In Figure 3, dynamic

interval composition is connected with dotted lines, which means it is not yet im-

plemented. Depending on interval arithmetic and testing results, we can focus on

areas more likely to be unsatisfiable or contain satisfiable instances. For instance,

even if fi(θ(x1), · · · , θ(xn)) fails to be positive, we can expect that θ would be

nearer to satisfiable instances if fi(θ(x1), · · · , θ(xn)) is nearer to 0. If the result

of interval arithmetic has smaller overlap with positive values, it is more likely

to be unsatisfiable. This kind of refinement loop was proposed in [17] under the

program analysis context and we hope to apply to our SMT.

• Polynomial equality: Currently, we can handle polynomial inequalities only. How-

ever, for instance

∃x1 ∈ [l1, h1] · · ·xn ∈ [ln, hn].
∧
j
fj(x1, · · · , xn) > 0 ∧ g(x1, · · · , xn) = 0

can be decomposed into two phases. First, find some areas [l1k, h1k] ⊆
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[l1, h1] · · · [lnk, hnk] ⊆ [ln, hn] (by interval arithmetic) such that

∀x1 ∈ [l1k, h1k] · · ·xn ∈ [lnk, hnk].
∧
j
fj(x1, · · · , xn) > 0.

and find two instances (by testing) in that areas such that g(a1, · · · , an) > 0

and g(b1, · · · , bn) < 0. By Intermediate value theorem, we can conclude ∃x1 ∈
[l1, h1] · · ·xn ∈ [ln, hn]. g(x1, · · · , xn) = 0.

• Scalability and practical experiments: Scalability is very important in

practice, and we expect the partial use of eager theory propagation will improve

efficiency.
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Appendix

Definition of CAF1 Given x̊, ẙ are represented by CAI1 form:

x̊ = ā0 +
n∑

i=1

āiεi +
n∑

i=1

āi+nεi+n + ā2n+1ε±

ẙ = b̄0 +

n∑
i=1

b̄iεi +

n∑
i=1

b̄i+nεi+n + b̄2n+1ε±

and c̄ = [−1, 1]. Standard operations {+̊, −̊, ×̊} of CAI1 arithmetic are defined as

follows (for simplicity we denote āb̄ for ā×̄b̄):

• x̊+̊ẙ = (ā0+̄b̄0) +

2n∑
i=1

(āi+̄b̄i)εi + (c̄ā2n+1+̄c̄b̄2n+1)ε±

• x̊−̊ẙ = (ā0−̄b̄0) +
2n∑
i=1

(āi−̄b̄i)εi + (c̄ā2n+1+̄c̄b̄2n+1)ε±

• x̊×̊ẙ = K0 +
n∑

i=1

(ā0b̄i+̄āib̄0+̄āib̄i+n+̄āi+nb̄i)εi

+̄

n∑
i=1

(ā0b̄i+n+̄āi+nb̄0+̄āib̄i+̄āi+nb̄i+n)εi+n +Kε±,

where {+̄, −̄, ×̄} are CI arithmetic, and

· K0 = ā0b̄0+̄

n∑
i=1

(āib̄i[−1

4
, 0]+̄āib̄i+n[−1

4
,
1

4
]+̄b̄iāi+n[−1

4
,
1

4
]+̄āi+nb̄i+n[−1

4
, 0])
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· K = (c̄ā0b̄2n+1+̄c̄b̄0ā2n+1)+̄

n∑
i=1

n∑
j=1,j �=i

c̄āib̄j+̄

n∑
i=1

n∑
j=1,j �=i

c̄āib̄j+n+̄

n∑
i=1

c̄āib̄2n+1

+̄

n∑
i=1

n∑
j=1,j �=i

c̄āi+nb̄j+̄

n∑
i=1

n∑
j=1,j �=i

c̄āi+nb̄j+n+̄

n∑
i=1

c̄āi+nb̄2n+1+c̄ā2n+1b̄2n+1

Note that ε± is propagated from unknown sources, then its coefficient is propa-

gated by applying multiplication other coefficients with c̄ = [−1, 1].
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