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Abstract--ln this note, we derive an asymptotic lower bound for the size of constant weight 
binary codes that is exponential in the code length, if both the minimum distance and the weight 
grow in proportion to the code length. We use this bound to find new lower bounds for the Hadwiger 
and weak Hadwiger numbers of d-dimensional Ip balls in the case I _< p < 2. (~) 1999 Elsevier 
Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

We denote d-dimensional real vector space by R d. A convex body C C_ R d is a closed convex subset 
of R d with nonempty interior. The Hadwiger number h(C) (weak Hadwiger number h~(C)) of C 
is the maximum cardinality of a set S C R d such that  the sets {s + C : s E S or s = 0} have 
disjoint interiors (are disjoint, respectively). Obviously, hw(C) <_ h(C). 

The H~lwiger number h(X) = h(B) of the unit ball B of a finite dimensional normed space (or 
Minkowski space) X gives a tight upper bound on the maximum degree of a Minimum Spanning 
Tree (MST) of a set of points in X. More precisely, we have the following. Let A(T)  denote 
the maximum degree of a tree T. Then h(X) = maxs maxT A(T), where the first maximum is 
over all finite point sets S in X,  and the second maximum over all MSTs of S [1,2]. Also, as 
proved in [3], for the weak Hadwiger number h~(X) = hw(B) of the unit ball of X it holds that  
h~(X) = maxs m i n t  A(T),  where again S ranges over all finite point sets in X,  and T over all 
MSTs of S. Thus, for any finite set of points in X,  there exists an MST with maximum degree 
at most h~(X).  The weak Hadwiger number may be substantially smaller than the Hadwiger 
number, see [3] for examples. 

The d-dimensional gp space (1 < p < co), denoted by ~up, is ~d with the p-norm 
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In [3], it is shown that  the weak Hadwiger number of g~ has the lower bound 

20"0312d+°(d), i fp  = 1, 

h~(gd) > 2 d(1-H(2-~))+°(d), if 1 < p < ~ ,  

where H(x)  = - x  log 2 x -  (1 - x)log2(1 - x), 0 < x < 1 is the binary entropy function. We 
improve these bounds in the range 1 < p < 2. 

THEOREM 1. 
20'0941'''d, for 1 <: p < 1.62107. . . ,  

h~(~ d) 
( ./i--U-b-:~ ,21-p!2v .  . , - d ,  for 1 . 6 2 1 0 7 . , . < p _ < 2 .  

• Note that both bounds hold in the whole interval 1 ~_ p <_ 2. We indicate the cut-off point 
p = 1.62107. . . ,  below which the first bound is better, and above which the second bound is 
better. 

The first bound follows from a lower bound on constant weight binary codes, derived in Sec- 
tion 2. This lower bound follows essentially from the analogue of the Gilbert-Varshamov lower 
bound for constant weight codes, noted in [4]. 

The second bound is found as follows. Use the Wyner lower bound for euclidean spherical 
codes [5] to find at least (21-p/2x/1 - 2-v) -d unit vectors in Euclidean space ~ with minimum 
Euclidean distance larger than 21-v/2. Then use the following well-known (nonlinear) norm- 
preserving map 

d 

which satisfies [[1/2(f(x) -f(y))Pp >_ [[1/2(x - y ) 2  i l l  < p _< 2 (see [6-S]). 
In Section 3, we finish the proof of Theorem 1. 

2. C O N S T A N T  W E I G H T  B I N A R Y  C O D E S  

We let A(n, d, w) denote the largest cardinality of a constant weight binary code of length n, 
weight w, and minimum (Hamming) distance strictly larger than the real number d. Define 
f (a, /3)  := H(t3) - 13H(~) -- (1 - ~ ) H ( ~ / ( 1  - 8)) for ~, ~ > 0, ~ + ~ < 1. Note that  since H' is 
a decreasing function, - H  is strictly convex on (0, 1), hence we may take convex combinations 
to obtain 

/~H(a) + (1 - t3)H ( l a _ - ~ )  

< H (~3(1 - a)  + (1 1 t3~aj3) 

= H(13) 

and it follows that  f is strictly positive. 

THEOREM 2. For each a, 13 > 0 such that ~ + ~ < 1 there exist c > 0 and no >_ 1 such that 
A(n, 2 ~ n ,  L~n]) > C2f(a'~)n/V~ for MI n >_ no. 

PROOf. Given n _> 1, define a graph on {x E {0, 1} n : x has weight w}, where w := [/3nJ, by 
joining two words if they are at Hamming distance < 2aBn. This graph is regular, of degree 

l < k < a f l n  
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)(n-~ (~ We now bound rn from above. Note tha t  (kw_l k-x,  <- k)(n-k~°) iff k _< (w + 1)(n - w 

+ 1) / (n  + 2). But  we have k N a/3n, and it is easily checked tha t  

a/3n < (/3n - O + l)(n - /3n + O + l) f o r a n y O < 0 < l .  
n + 2  

Thus,  k < (w + 1)(n - w + 1) / (n  + 2), the last te rm in the sum is the largest, and 

Therefore, 

A(n, 2oL/3n, w) >_ 

(n) 

By Stirling's formula we now obtain 

=: G(a, /3, n). (1) 

log2 G(a, /3, n) = n ( H (/3) - /3H (oO - (1 -  /3)H ( ]-°t --/3B ) ) 

1 
2 l°g2 n + O(1) 

1 
= f (c~ , /3 )n  - ~ log 2 n + O(1 ) .  

For fixed a ,  we now want to choose a/3 so as to maximize f(c~,/3). Define g(a) = max0<B<l-a  

f (a , /3 ) .  We now give an analysis of g, showing tha t  it is smooth and strictly decreasing on (0, 1). 
The approximate  values of g were calculated and graphed using Mathematica. See Figure 1. 

g 

0 1 
0.1 0.574061 o .8  

0.2 0.369609 
0.3 0.240239 o .6  
0.4 0.153444 
0.5 0.094158 o.4  
0.6 0.053899 
0.7 0.027378 
0.8 0.011074 o .2  

0.9 0.002536 

1 0 0 . 2  0 . 4  0 . 6  0 . 8  

(a) (b) 

Figure 1. 

For fixed 0 < a < 1, 

lim f(~, /3)  = lim f(c~,13) = 0, 
~--.0+ j3--.1-~_ 

lim Of 
/3---*l-a_ ~-~ = 0, 



60 K . J .  SWANEPOEL 

and 
02 /  1 - a 
Of~2 > 0, iff f~ > 1 +--'--~' 

as can be verified by calculation. Thus, as ~ increases from 0, ~ decreases until /3 reaches 

(1 -a ) / ( l+a) ,  then increases t o 0  as ft ~ l - a _ .  Thus, ~ = 0 at a u n i q u e B  = h(a)  < 

(1 - a ) / (1  + (~) in the interval 0 < ~ < 1 - a,  and f ( a ,  .) attains its maximum here. The implicit 
function theorem gives that  h is smooth. Since now g(a)  = f ( a ,  h(a)) ,  g is also smooth. Since 

[~=h(a) = 0, we obtain 

( 9 ' (a)  = Oa I~ H ' ( a )  + 

Also, g(0+) -- 1 and g ( l_ )  -- 0. Note that  H'(1 - 5) = -H'(c~).  Since 1 - ft > a,  - H ' ( 1  - /3 )  > 
- g ' ( a )  and a ~ / ( 1  - f~) < /3. Thus, H ' ( a Z / ( 1  - ~)) > H ' (~ )  = " H ' ( 1  - / 3 )  > -H'(c~),  and 
a-L < 0. It  follows that  g is strictly decreasing. 0a 

3.  P R O O F  O F  T H E O R E M  1 

We now finish the proof of Theorem 1. Let /3  -- h(1/2) and 7 = 0.094158 < g(1/2). To bound 
the weak Hadwiger number from below, it is sufficient to find a set of at least 27d unit vectors in id, 
such that  the distance between any two vectors is strictly greater than 1, see [3]. By Theorem 2 
there is a binary code of length d, weight [f~dJ, minimum distance greater than f~d, and size at 
least 2 ~d. Considering the words in the code as (0, 1) vectors in R d, we find Ilxllp = [/3dJ t/p for 
each word x, and I]x - YI[p > (~d) 1/p for distinct words x and y. A rescaling gives the required 
unit vectors. 
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