

Available online at www.sciencedirect.com

Expo. Math. 27 (2009) 363-372

Expositiones Mathematicae

www.elsevier.de/exmath

Characterization of *BMO* in terms of rearrangementinvariant Banach function spaces

Kwok-Pun Ho

Department of Mathematics, Science, Social Science and Technology, The Hong Kong Institute of Education, 10 Lo Ping Road, Tai Po, Hong Kong, China

Received 18 September 2008

Abstract

The atomic decomposition of Hardy spaces by atoms defined by rearrangement-invariant Banach function spaces is proved in this paper. Using this decomposition, we obtain the characterizations of *BMO* and Lipschitz spaces by rearrangement-invariant Banach function spaces. We also provide the sharp function characterization of the rearrangement-invariant Banach function spaces. © 2009 Elsevier GmbH. All rights reserved.

MSC 2000: 42B30; 42B35

1. Introduction and preliminarily results

In this paper, we extend some of the main results from harmonic analysis to the setting of rearrangement-invariant (r.-i.) Banach function space. More precisely, we are interested in the atomic decomposition of Hardy space, $H^p(\mathbb{R}^n)$, 0 , the characterization of*BMO*and the characterization of r.-i. Banach function spaces by the sharp function. A study on using the r.-i. quasi-Banach function space together with the notions of other function spaces such as Triebel-Lizorkin spaces and Morrey spaces is given in Ho [5].

In Section 2, we show that the atoms for the non-smooth atomic decomposition of Hardy spaces can be defined via the r.-i. Banach function space instead only of the Lebesgue space. Using this decomposition, we provide a new characterization of *BMO* by r.-i. Banach

E-mail address: vkpho@ied.edu.hk.

^{0723-0869/\$ -} see front matter @ 2009 Elsevier GmbH. All rights reserved. doi:10.1016/j.exmath.2009.02.007

function spaces in Section 3. Finally, we present the sharp function characterization of r.-i. Banach function spaces in Section 4.

Our result is a combination of results from harmonic analysis and the theory of r.-i. Banach function space. Therefore, we first introduce some definitions and properties for the r.-i. Banach function spaces on \mathbb{R}^n .

For any Banach function space on \mathbb{R}^n , Y, let Y' be its associate space. We have the following Hölder inequality on Y.

Theorem 1. Let Y be a Banach function space on \mathbb{R}^n with associate space, Y'. If $f \in Y$ and $g \in Y'$, then fg is integrable and

$$\int_{\mathbb{R}^n} |f(x)g(x)| \, dx \leq \|f\|_Y \|g\|_{Y'}.$$

Theorem 2.9 in Chapter 1 of [1] gives the following result. Indeed, the following result is a consequence of the fact that the identification, Y = (Y')', is valid for any Banach function space.

Theorem 2. For any Banach function space on \mathbb{R}^n , *Y*, we have

$$||f||_{Y} = \sup_{\substack{h \in Y' \\ ||h||_{Y'} \leq 1}} \left| \int_{\mathbb{R}^{n}} f(x)h(x) dx \right|.$$

We use the definition of Boyd indices from [1], Chapter 3, Definitions 5.10 and 5.12.

Definition 1.1. For each t > 0 any Lebesgue measurable function f, let E_t denote the dilation operator defined by

$$(E_t f)(x) = f(tx), \quad x \in \mathbb{R}^n.$$

The Boyd indices of a r.-i. Banach function space Y are the numbers defined by

$$\underline{\alpha}_Y = \sup_{0 < t < 1} \frac{\log(\|E_{1/t}\|_{Y \to Y})}{n \log t}, \quad \overline{\alpha}_Y = \inf_{1 < t < \infty} \frac{\log(\|E_{1/t}\|_{Y \to Y})}{n \log t},$$

where $||E_{1/t}||_{Y \to Y}$ is the operator norm of the linear operator, $E_t : Y \to Y$.

Lemma 3. Let Y be a r.-i. Banach function space on \mathbb{R}^n and let Y' be its associated space. Then,

$$\|\chi_F\|_Y \|\chi_F\|_{Y'} = |E| \tag{1.1}$$

for any Lebesgue measurable set, E, with $|E| < \infty$.

The proof of the above lemma is given in [1], Chapter 2, Theorem 5.2.

For any Lebesgue measurable function on \mathbb{R}^n , f, let f^* be its decreasing-rearrangement. We recall the definition of joint weak type from [1], Chapter 3, Definitions 5.1 and 5.4.

Definition 1.2. Let $1 \le p < q \le \infty$. A quasilinear operator is said to be of joint weak type (p, p, q, q) if there exists a constant C > 0 such that

$$(Tf)^*(t) \leq C\left(t^{-1/p} \int_0^t s^{1/p} f^*(s) \frac{ds}{s} + t^{-1/q} \int_t^\infty s^{1/q} f^*(s) \frac{ds}{s}\right), \quad 0 < t < \infty.$$

We state the Lorentz and Shimogaki theorem on the boundedness of the maximal operator on the r.-i. Banach function space (see [1], Chapter 3, Theorem 5.17).

Theorem 4. Let Y be a r.-i. Banach function space on \mathbb{R}^n . Then, the Hardy–Littlewood maximal operator is bounded on Y if and only if the upper Boyd index of Y satisfies $\overline{\alpha}_Y < 1$.

Finally, we state the Boyd interpolation theorem. The proof of the following result can be found in [1], Chapter 3, Theorem 5.16.

Theorem 5. Let $1 \le p < q \le \infty$ and *Y* be a *r*-*i*. Banach function space on \mathbb{R}^n . Let *T* be a quasilinear operator of joint weak type (p, p; q, q). Then *T* is bounded on *Y* if and only if the Boyd indices of *Y* satisfy $1/q < \underline{\alpha}_Y \le \overline{\alpha}_Y < 1/p$.

At the end of this section, we present the notations used in this paper. For any $x_0 \in \mathbb{R}^n$ and r > 0, let $B(x_0, r) = \{x \in \mathbb{R}^n : |x - x_0| < r\}$ be a ball with center, x_0 , and radius, r. Define $\mathbb{B} = \{B(x_0, r) : x_0 \in \mathbb{R}^n, r > 0\}$. Let $\mathscr{S}(\mathbb{R}^n)$ be the Schwartz function space and $\mathscr{S}_0(\mathbb{R}^n) = \{f \in \mathscr{S}(\mathbb{R}^n) : \int_{\mathbb{R}^n} x^{\gamma} f(x) dx = 0, \forall \gamma \in \mathbb{N}^n\}$. Let \mathscr{P}_k denote the set of polynomials on \mathbb{R}^n with degree less than or equal to $k, k \in \mathbb{N}$ and $\mathscr{P} = \bigcup_{k \in \mathbb{N}} \mathscr{P}_k$.

2. Atomic decomposition of the Hardy space

The atoms in the "standard" non-smooth atomic decomposition of the Hardy space are defined to be a compactly supported function satisfying some vanishing moment condition and L^r -condition for some $1 < r \le \infty$. In this section, we extend the atomic decomposition of the Hardy space by replacing the L^r -condition with a condition on the norm, $\|\cdot\|_Y$, where *Y* is a r.-i. Banach function space fulfilling a mild condition on the Boyd indices. The precise condition is given in Theorem 6.

Definition 2.1. Let *Y* be a r.-i. Banach function space on \mathbb{R}^n . We call that function, A(x), a non-smooth (p, Y)-atom if there exists a $B \in \mathbb{B}$ such that

$$\operatorname{supp} A \subset 3B,\tag{2.1}$$

$$\int_{\mathbb{R}^n} x^{\gamma} A(x) dx = 0, \quad |\gamma| \leq \left[\frac{n}{p} - n\right], \quad \gamma \in \mathbb{N}^n,$$
(2.2)

$$\|A\|_{Y} \leq \|\chi_{B}\|_{Y} |B|^{-1/p}.$$
(2.3)

We call *B* the ball associated with the non-smooth (p, Y)-atom, A(x). We denote the set of non-smooth (p, Y)-atoms as $\mathscr{A}_{p,Y}$.

Theorem 6. Let $0 and Y be a r.-i. Banach function space on <math>\mathbb{R}^n$ with its Boyd indices satisfying $\overline{\alpha}_Y \neq 1/p$. Then,

$$\|f\|_{H^p(\mathbb{R}^n)} \approx \inf \left\{ \|\{r_i\}_{i \in \mathbb{N}} \|_{l^p} : f = \sum_{i \in \mathbb{N}} r_i A_i, \text{ and } A_i \in \mathscr{A}_{p,Y} \right\},\tag{2.4}$$

where $f = \sum_{i \in \mathbb{N}} r_i A_i$ converges in $H^p(\mathbb{R}^n)$.

Proof. From the standard non-smooth atomic decomposition for $H^p(\mathbb{R}^n)$, there exists a family of non-smooth (p, L^{∞}) -atoms, $\{A_i\}_{i \in \mathbb{N}}$ and a sequence of scalars, $\{r_i\}_{i \in \mathbb{N}}$, such that $f = \sum_{i \in \mathbb{N}} r_i A_i$ and $\|\{r_i\}_{i \in \mathbb{N}}\|_{l^p} \leq C \|f\|_{H^p(\mathbb{R}^n)}$ where the constant C > 0 is independent of f. By applying $\|\cdot\|_Y$ on both sides of the inequality, $|A_i(x)| \leq \|A_i\|_{L^{\infty}} \chi_{3B_i}$ where B_i is the ball associated with A_i in Definition 2.1, we find that

$$||A_i||_Y \leq ||A_i||_{L^{\infty}} ||\chi_{3B_i}||_Y \leq 3 ||\chi_{B_i}||_Y ||B_i|^{-1/p}$$

Therefore, A_i is a constant multiple of a non-smooth (p, Y)-atom. The convergence of the expansion $f = \sum_{i \in \mathbb{N}} r_i A_i$ in $H^p(\mathbb{R}^n)$ is given by the standard non-smooth atomic decomposition (see [6], Chapter III, Section 2.3.2).

Hence, it is sufficient to prove that there exists a constant, C > 0, such that, for any non-smooth (p, Y)-atom, A, we have

$$\|A\|_{H^p(\mathbb{R}^n)} \leqslant C. \tag{2.5}$$

We first consider the case when $0 . Notice that the condition, <math>\overline{\alpha}_Y < 1/p$, is satisfied by all r.-i. Banach function spaces (see [1], Chapter 3, Proposition 5.13). Given a (p, Y)-atom, A, using Theorem 1, we have a constant C > 0 independent of A such that

$$\|A\|_{L^{1}(\mathbb{R}^{n})} \leq \|A\|_{Y} \|\chi_{3B}\|_{Y'} \leq C \|\chi_{B}\|_{Y} \|\chi_{B}\|_{Y'} |B|^{-1/p} = C|B|^{1-1/p}.$$

For the last equality, we use identity (1.1). Hence, *A* is a constant multiple of a (p, L^1) -atom for $H^p(\mathbb{R}^n)$, 0 . Therefore, the <math>(p, Y)-atom, *A*, satisfies (2.5).

For the case p = 1, we do not have atomic decomposition with $(1, L^1)$ -atom (in this connection, see [3], Chapter III, Definition 4.2 and Theorem 4.10), so, we use the maximal function characterization of Hardy space to prove (2.5).

As Y is rearrangement-invariant, to prove (2.5), we can assume that the center of the ball associated with A is the origin.

Let $\Phi \in \mathscr{G}(\mathbb{R}^n)$ satisfy supp $\Phi \in B(0, 1)$ and $\int_{\mathbb{R}^n} \Phi(x) dx \neq 0$. For any locally integrable function, f, we consider the mapping

$$\mathbf{M}_{\Phi}(f) = \sup_{t>0} |f * \Phi_t|,$$

where $\Phi_t(x) = t^{-n} \Phi(x/t)$, t > 0. As the Boyd indices of Y satisfy $\overline{\alpha}_Y < 1$ and $M_{\Phi}(f) < CM(f)$ for some constant C > 0, where M is the Hardy–Littlewood maximal operator (see [7], Chapter III, Section 1.2.1), by applying Theorem 4, we find that there exists a constant, C > 0, such that

$$\|\mathbf{M}_{\Phi}(f)\|_{Y} \leqslant C \|f\|_{Y}, \quad \forall f \in Y.$$

$$(2.6)$$

We split the estimate of $||A||_{H^1(\mathbb{R}^n)}$ into two components as follows:

$$\begin{aligned} \|A\|_{H^{1}(\mathbb{R}^{n})} &= \|\mathbf{M}_{\Phi}(A)\|_{L^{1}} \leq 2(\|\chi_{2B}\mathbf{M}_{\Phi}(A)\|_{L^{1}} + \|(1-\chi_{2B})\mathbf{M}_{\Phi}(A)\|_{L^{1}}) \\ &= I + II. \end{aligned}$$

For the estimate of I, Theorem 1 asserts that

$$I \leq \|\mathbf{M}_{\Phi}(A)\|_{Y} \|\chi_{2B}\|_{Y'} \leq C \|\mathbf{M}_{\Phi}(A)\|_{Y} \|\chi_{B}\|_{Y'}.$$

According to the definition of a non-smooth (1, Y)-atom and (2.6), we obtain

$$I \leqslant C \|A\|_{Y} \|\chi_{B}\|_{Y'} \leqslant C \|\chi_{B}\|_{Y} \|\chi_{B}\|_{Y'} |B|^{-1} \leqslant C.$$
(2.7)

We now consider *II*. As $x \notin 2B$ and $\sup \Phi \in B(0, 1)$, we use the vanishing moment condition for *A*, and find that, for any N > 0,

$$\begin{aligned} |(A * \Phi_t)(x)| &= t^{-n} \left| \int_{3B} A(y)(\Phi_t(x - y) - \Phi_t(x)) dy \right| \\ &\leqslant t^{-n} \int_{3B} |A(y)| \frac{C_N |y/t|}{(1 + |x/t|)^N} dy \\ &\leqslant \frac{C_N t^{-(1+n)}}{(1 + t^{-1} |x|)^N} \int_{3B} |A(y)| |y| dy, \end{aligned}$$

where C_N depends on *n* and *N* only. Using Theorem 1 and (1.1) again, we obtain

$$|(A * \Phi_t)(x)| \leqslant \frac{C_N t^{-(1+n)} |B|^{1/n}}{(1+t^{-1}|x|)^N} ||A||_Y ||\chi_B||_{Y'} \leqslant C_N \frac{t^{-(1+n)} |B|^{1/n}}{(1+t^{-1}|x|)^N}.$$

By choosing N > 1 + n, we assert that

$$\sup_{t>0} |(A * \Phi_t)(x)| \leqslant C_N \frac{|B|^{1/n}}{|x|^{2(1+n)}}.$$
(2.8)

Let $l(B) = 2^a$ where $a \in \mathbb{Z}$. Applying $\|\cdot\|_{L^1}$ on both sides of (2.8), we find that

$$II \leqslant C2^{a} \left(\sum_{j=a}^{\infty} \frac{2^{jn}}{2^{j(1+n)}} \right) \leqslant C$$

$$(2.9)$$

for some constant C > 0 independent of A. Thus, (2.7) and (2.9) prove (2.5). \Box

If we consider $Y = L^r(\mathbb{R}^n)$, then, $\overline{\alpha}_Y = 1/r$. Thus, the conditions in the above atomic decomposition of Hardy space reduce to the usual condition imposed on the (p, L^r) -atom. Furthermore, in terms of the Boyd indices, this is the best condition on Y. An obvious example is given by the Hardy space $H^1(\mathbb{R}^n)$ as it does not have non-smooth atomic decomposition with $(1, L^1)$ -atom.

Here is a simple application of the above atomic decomposition on the boundedness of linear operator.

Corollary 7. Let 0 and <math>Y be a r.-i. Banach function space on \mathbb{R}^n with its Boyd indices satisfying $\overline{\alpha}_Y \neq 1/p$. Let $p \leq r \leq 1$ and X be a r-Banach function space and T be a linear operator such that for any (p, Y)-atom, A, $||T(A)||_X \leq C$ for some constant C > 0 independent of A. Then, T can be extended to be a bounded linear operator from $H^p(\mathbb{R}^n)$ to X.

Proof. For any $f \in H^p(\mathbb{R}^n)$, we have $f = \sum_{i \in \mathbb{N}} r_i A_i$ for a family of non-smooth (p, Y)atoms, $\{A_i\}_{i \in \mathbb{N}}$ and a sequence of scalars, $\{r_i\}_{i \in \mathbb{N}}$, such that $\|\{r_i\}_{i \in \mathbb{N}}\|_{l^p} \leq C \|f\|_{H^p(\mathbb{R}^n)}$. Thus, T(f) can be defined as $T(f) = \sum_{i \in \mathbb{N}} r_i T(A_i)$. It is well-defined and bounded from $H^p(\mathbb{R}^n)$ to X because

$$\begin{aligned} \|T(f)\|_X^r &\leq \sum_{i \in \mathbb{N}} |r_i|^r \|T(A_i)\|_X^r \leq C \sum_{i \in \mathbb{N}} |r_i|^r \\ &\leq C \left(\sum_{i \in \mathbb{N}} |r_i|^p\right)^{r/p} \leq C \|f\|_{H^p(\mathbb{R}^n)}^r. \quad \Box \end{aligned}$$

3. Characterization of BMO

Let f_B denote the mean value of f over $B \in \mathbb{B}$; that is, $f_B = (1/|B|) \int_B f(x) dx$.

Definition 3.1. Let *Y* be a r.-i. Banach function space. The function space, BMO_Y , consists of those locally integrable function, *f*, satisfying

$$\|f\|_{BMO_Y} = \sup_{B \in \mathbb{B}} \frac{\|(f - f_B)\chi_B\|_Y}{\|\chi_B\|_Y} < \infty.$$
(3.1)

Similar to BMO, BMO_Y endowed with the norm, $\|\cdot\|_{BMO_Y}$, is a Banach space.

We say that two Banach spaces, A_1 and A_2 , are equal if $A_1 = A_2$ as sets and we have the continuous embedding $A_1 \hookrightarrow A_2$ and $A_2 \hookrightarrow A_1$. The following theorem is our main result.

Theorem 8. Let Y be a r.-i. Banach function space on \mathbb{R}^n having Boyd indices satisfying $0 < \underline{\alpha}_Y$. Then, BMO is equal to BMO_Y.

Proof. Let $f \in BMO_Y$. For any $B \in \mathbb{B}$, according to the Hölder inequality on Y and using Lemma 3, we have

$$\frac{1}{|B|} \int_{B} |f(x) - f_B| dx \leq \frac{\|(f - f_B)\chi_B\|_{Y}\| \|\chi_B\|_{Y'}}{|B|} = \frac{\|(f - f_B)\chi_B\|_{Y}}{\|\chi_B\|_{Y}}.$$

Thus, we establish the continuous embedding, $BMO_Y \hookrightarrow BMO$.

We use Theorem 2 and the fact that the dual space of $H^1(\mathbb{R}^n)$ is equal to *BMO* to prove the reserve direction.

For any $f \in BMO$ and $B \in \mathbb{B}$, by Theorem 2 we have a $h \in Y'$ satisfying $||h||_{Y'} \leq 1$, supp $h \subseteq B$ and

$$\|(f-f_B)\chi_B\|_Y \leq 2 \left| \int_B h(x)(f(x)-f_B) dx \right|.$$

It is obvious that there exists a $\tilde{B} \in \mathbb{B}$ such that $|B| = |\tilde{B}|, B \cap \tilde{B} = \emptyset$ and $dist(B, \tilde{B}) = 0$. Define A by

$$A(x) = \begin{cases} h(x), & x \in B, \\ -\frac{1}{|B|} \int_{B} h(y) dy, & x \in \tilde{B}, \\ 0, & x \in \mathbb{R}^{n} \setminus (B \cup \tilde{B}) \end{cases}$$

Thus, A fulfills conditions (2.1) and (2.2) with $\gamma = 0$. Moreover, by Lemma 3, we obtain

$$\|A\|_{Y'} \leq \|h\|_{Y'} + \left|\frac{1}{|B|} \int_{B} h(y) \, dy\right| \|\chi_{\tilde{B}}\|_{Y'}$$

$$\leq \|h\|_{Y'} + \frac{1}{|B|} \|h\|_{Y'} \|\chi_{B}\|_{Y} \|\chi_{\tilde{B}}\|_{Y'} \leq 2\|h\|_{Y'} \leq 2$$

as *Y'* is rearrangement-invariant. Hence, *A* is a constant multiple of a (1, Y')-atom. Since $\overline{\alpha}_{Y'} = 1 - \underline{\alpha}_Y < 1$, using Lemma 3 again, we conclude that *A* belongs to $H^1(\mathbb{R}^n)$ with

$$||A||_{H^1} \leq C \frac{|B|}{||\chi_B||_{Y'}} = C ||\chi_B||_Y$$

for some constant C > 0 independent of h.

Using the fact that *BMO* is the dual space of $H^1(\mathbb{R}^n)$, we assert that

$$\frac{\|(f - f_B)\chi_B\|_Y}{\|\chi_B\|_Y} \leqslant \frac{2}{\|\chi_B\|_Y} \left| \int_B h(x)(f(x) - f_B) dx \right|$$

$$= \frac{2}{\|\chi_B\|_Y} \left| \int_{\mathbb{R}^n} A(x)(f(x) - f_B)\chi_B(x) dx \right|$$

$$\leqslant \frac{2\|A\|_{H^1} \|f\|_{BMO}}{\|\chi_B\|_Y} \leqslant C \|f\|_{BMO}$$

because *BMO* is a lattice. \Box

The above theorem generalizes the following well-known result of BMO: the norm,

$$\|f\|_{*,p} = \sup_{B \in \mathbb{B}} \left(\frac{1}{|B|} \int_{B} |f - f_{B}|^{p} dx \right)^{1/p}, \quad 1 \le p < \infty$$

is an equivalent norm on BMO.

In Theorem 8, the condition, $0 < \underline{\alpha}_Y$, cannot be removed. For instance, if we consider BMO_Y with $Y = L^{\infty}(\mathbb{R}^n)$, we find that for any $f \in BMO_{L^{\infty}}$, there exists a constant C > 0

such that for any $Q \in \mathcal{Q}$, $|f(x) - f(y)| \leq C$, $x, y \in Q$. This is only possible when f is essentially bounded. That is, $BMO_{L^{\infty}} = L^{\infty}(\mathbb{R}^n)$.

The proof of Theorem 8 relies on the atomic decomposition, Theorem 6, and the duality, $(H^1(\mathbb{R}^n))^* = BMO$. When $0 , the dual space of <math>H^p(\mathbb{R}^n)$ is the homogeneous Lipschitz space, \dot{A}^{α} , $\alpha = n(1/p - 1)$. It is also a special case of the Campanato space. In fact, for any $\alpha > 0$, $1 \le r \le \infty$, \dot{A}^{α} is equal to $\mathscr{L}_{r,\alpha}$ where $\mathscr{L}_{r,\alpha}$ consists of those locally integrable function, f, satisfying

$$\|f\|_{\mathscr{L}_{r,\alpha}} = \sup_{B \in \mathbb{B}} \inf_{P_B \in \mathscr{P}_{[\alpha]}} \frac{1}{|B|^{\alpha/n}} \left(\frac{1}{|B|} \int_B |f(y) - P_B(y)|^r \, dy\right)^{1/r} < \infty.$$
(3.2)

We now give a characterization of the Lipschitz space by r.-i. Banach function spaces.

Definition 3.2. Let $\alpha > 0$ and *Y* be a r.-i. Banach function space. The function space, $\mathscr{L}_{Y,\alpha}$, consists of those locally integrable function, *f*, satisfying

$$\|f\|_{\mathscr{L}_{Y,\alpha}} = \sup_{B \in \mathbb{B}} \inf_{P_B \in \mathscr{P}_{[\alpha]}} \frac{1}{|B|^{\alpha/n}} \frac{\|(f - P_B)\chi_B\|_Y}{\|\chi_B\|_Y} < \infty.$$

$$(3.3)$$

Theorem 9. Let $\alpha > 0$ and Y be a r.-i. Banach function space on \mathbb{R}^n . Then, $\dot{\Lambda}_{\alpha}$ is equal to $\mathscr{L}_{Y,\alpha}$.

Proof. With some simple modifications, the proof for Theorem 8 carries over to the proof for the above theorem. For simplicity, we just demonstrate the construction of the (p, Y')-atom *A* from *h*.

As Y' and $\dot{\Lambda}_{\alpha}$ are translation invariant, we can assume that $\operatorname{supp} h \subseteq B(c_r, r)$ for some r > 0 where $c_r = (0, 0, \dots, 0, 2r) \in \mathbb{R}^n$. Let $\{\varphi_{\gamma}\}_{|\gamma| \leq \lceil \alpha \rceil, \gamma \in \mathbb{N}^n} \subset \mathscr{G}(\mathbb{R}^n)$ satisfy

$$\int_{B(0,1)} x^{\lambda} \varphi_{\gamma}(x) dx = \delta_{\lambda\gamma}, \quad \lambda \in \mathbb{N}^n, \quad |\lambda| \leq [\alpha].$$

Define A by

$$A(x) = \begin{cases} h(x), & x \in B(c_r, r), \\ -\sum_{|\gamma| \leq [\alpha]} \left(\int_{\mathbb{R}^n} x^{\gamma} h(x) dx \right) r^{-|\gamma| - n} \varphi_{\gamma}(x/r), & x \in B(0, r), \\ 0, & \text{otherwise.} \end{cases}$$

It is obvious that supp $A \subset B(0, 3r)$ and A satisfies the vanishing moment condition (2.2). It remains to show that A fulfills the size condition (2.3). Applying the Hölder inequality, we have

$$\int_{\mathbb{R}^n} |x^{\gamma} h(x)| \, dx \leq (3r)^{|\gamma|} \|h\|_{Y'} \|\chi_{B(0,r)}\|_Y$$

So, Lemma 3 gives

$$\|A\chi_{B(0,r)}\|_{Y'} \leq Cr^{|\gamma|} \|h\|_{Y'} \|\chi_{B(0,r)}\|_{Y} r^{-|\gamma|-n} \|\varphi_{\gamma}\|_{L^{\infty}} \|\chi_{B(0,r)}\|_{Y'} \leq C.$$

That is, *A* belongs to $H^p(\mathbb{R}^n)$ with $||A||_{H^p} \leq C|B(0, 3r)|^{1/p-1} ||\chi_{B(0,3r)}||_Y$ for some constant C > 0 independent of *h*. The rest of the proof follows from Theorem 8. \Box

4. The sharp function

In this section, we show that any separable r.-i. Banach function space on \mathbb{R}^n can be characterized by the sharp function that we had established for the Lebesgue spaces, $L^p(\mathbb{R}^n)$, 1 . We present a preliminary result for r.-i. Banach function spaces.

Theorem 10. Let Y be a separable r.-i. Banach function space on \mathbb{R}^n . If the Boyd indices of Y satisfies $\overline{\alpha}_Y < 1$, then $\mathscr{G}_0(\mathbb{R}^n)$ is dense in Y.

Proof. According to [1], Chapter 1, Corollaries 4.3 and 5.6, $Y^* = Y'$. Thus, to show the denseness of $\mathscr{S}_0(\mathbb{R}^n)$, we prove $Y' \cap \mathscr{P} = \{0\}$. It suffices to show that the constant function, F = 1, does not belong to Y'. According to Definition 1.1, there exists a $t_0 < 1$ such that for any $0 < t < t_0$, we have

$$\|\chi_{(0,1)^n}\|_{Y'} \leq t^{n\underline{\alpha}_{Y'}/2} \|\chi_{(0,1/t)^n}\|_{Y'}$$

Therefore, $t^{-n\underline{\alpha}_{Y'}/2} \|\chi_{(0,1)^n}\|_{Y'} \leq \|\chi_{(0,1/t)^n}\|_{Y'} \leq \|F\|_{Y'}$ for any sufficiently small *t*. By [1] Chapter 3, (5.33), we have $\underline{\alpha}_{Y'} = 1 - \overline{\alpha}_Y > 0$, hence, *F* does not belong to *Y'*. Thus, $\mathscr{S}_0(\mathbb{R}^n)$ is dense in *Y*. \Box

For any locally integrable function, f, recall that the sharp function of f is defined by

$$f^{\sharp}(x) = \sup_{x \in B} \frac{1}{|B|} \int_{B} |f(y) - f_{B}| dy,$$
(4.1)

where the supreme is taken over by all $B \in \mathbb{B}$ containing *x*.

Theorem 11. Let *Y* be a separable *r.-i.* Banach function space on \mathbb{R}^n with Boyd indices satisfying $0 < \underline{\alpha}_Y \leq \overline{\alpha}_Y < 1$. Then, there exist constants $C_1 > C_2 > 0$ such that

$$C_2 \|f\|_Y \leqslant \|f^{\sharp}\|_Y \leqslant C_1 \|f\|_Y, \quad \forall f \in Y.$$

Proof. The inequality

$$\|f^{\sharp}\|_{Y} \leqslant C_{1}\|f\|_{Y}, \quad \forall f \in Y$$

$$(4.2)$$

follows from the pointwise estimate $f^{\sharp} \leq 2Mf$ and the boundedness of M on Y.

For the other direction, we use the following result from [7], Chapter IV, (16): there exists a constant, C > 0, such that, for any $g \in H^1(\mathbb{R}^n)$ and $f \in L^{\infty}(\mathbb{R}^n)$,

$$\left| \int_{\mathbb{R}^n} f(x)g(x)dx \right| \leq C \int_{\mathbb{R}^n} f^{\sharp}(x)\mathcal{M}g(x)dx,$$
(4.3)

where $\mathcal{M} = \mathcal{M}_{\mathcal{F}}$ is the grand maximal function defined in [7], Chapter III, Section 1.2.

Let f be a simple function and $g \in \mathscr{S}_0(\mathbb{R}^n) \subset H^1(\mathbb{R}^n)$. Using (4.3), we obtain

$$\left|\int_{\mathbb{R}^n} f(x)g(x)dx\right| \leqslant C \|f^{\sharp}\|_{Y} \|\mathscr{M}g\|_{Y'} \leqslant C \|f^{\sharp}\|_{Y} \|g\|_{Y'}.$$

We use the boundedness of \mathcal{M} on Y' for the last inequality. The boundedness of \mathcal{M} on Y' follows from Theorem 5, the facts that \mathcal{M} is sublinear and bounded on $L^p(\mathbb{R}^n)$ (see [7], Chapter 3, Sections 1.3–1.4) and that the Boyd indices of Y' satisfy $0 < 1 - \overline{\alpha}_Y = \underline{\alpha}_{Y'}$ and $\overline{\alpha}_{Y'} = 1 - \underline{\alpha}_Y < 1$ (see [1], Chapter 3, Proposition 5.13).

As *Y* is separable, from [1], Chapter 1, Corollary 5.6, *Y* has absolutely continuous norms. Furthermore, Theorem 10 guarantees that $\mathscr{S}_0(\mathbb{R}^n)$ is dense in *Y*. Using [1], Chapter 1, Theorem 2.9, we have a constant, C > 0, independent of *f* such that

$$||f||_Y \leq C ||f^{\sharp}||_Y \quad \text{for any simple function } f.$$
(4.4)

Finally, since *Y* has absolutely continuous norm, according to [1], Chapter 1, Theorem 3.11, the set of simple functions is a dense subset of *Y*. Thus, for any $f \in Y$, there exists a sequence of simple functions, $\{f_k\}_{k\in\mathbb{N}}$, such that $f_k \to f$ in *Y*, as $k \to \infty$. As the mapping, $f \to f^{\sharp}$, is sublinear, by (4.2), we find that $f_k^{\sharp} \to f^{\sharp}$ in *Y* as $k \to \infty$. Thus, the inequality $C_2 ||f||_Y \leq ||f^{\sharp}||_Y$, $\forall f \in Y$, follows from (4.4). \Box

Theorem 11 is a generalization of the sharp function characterization of $L^p(\mathbb{R}^n)$ (see, for example, [7], Chapter IV, Section 2.2). It also extends the result on Theorem 5.1 of [8] from the Orlicz space when the Orlicz function satisfies the ∇_1^* and ∇_∞ conditions to r.-i. Banach function space satisfying $0 < \underline{\alpha}_Y \leq \overline{\alpha}_Y < 1$.

References

- [1] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, New York, 1988.
- [3] J. García-Cuerva, J.L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland, Amsterdam, 1985.
- [5] K.-P. Ho, Littlewood-Paley spaces, preprint, 2008.
- [6] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, NJ, 1970.
- [7] E. Stein, Harmonic Analysis, Princeton University Press, Princeton, NJ, 1993.
- [8] J.-O. Strömberg, Bounded mean oscillation with Orlicz norms and duality of hardy spaces, Indiana Univ. Math. 28 (1979) 511–544.