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Abstract

The atomic decomposition of Hardy spaces by atoms defined by rearrangement-invariant Banach
function spaces is proved in this paper. Using this decomposition, we obtain the characterizations of
BMO and Lipschitz spaces by rearrangement-invariant Banach function spaces. We also provide the
sharp function characterization of the rearrangement-invariant Banach function spaces.
� 2009 Elsevier GmbH. All rights reserved.
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1. Introduction and preliminarily results

In this paper, we extend some of the main results from harmonic analysis to the setting
of rearrangement-invariant (r.-i.) Banach function space. More precisely, we are interested
in the atomic decomposition of Hardy space, H p(Rn), 0< p�1, the characterization of
BMO and the characterization of r.-i. Banach function spaces by the sharp function. A study
on using the r.-i. quasi-Banach function space together with the notions of other function
spaces such as Triebel-Lizorkin spaces and Morrey spaces is given in Ho [5].
In Section 2, we show that the atoms for the non-smooth atomic decomposition of Hardy

spaces can be defined via the r.-i. Banach function space instead only of the Lebesgue
space. Using this decomposition, we provide a new characterization of BMO by r.-i. Banach
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function spaces in Section 3. Finally, we present the sharp function characterization of r.-i.
Banach function spaces in Section 4.
Our result is a combination of results from harmonic analysis and the theory of r.-i.

Banach function space. Therefore, we first introduce some definitions and properties for
the r.-i. Banach function spaces on Rn .
For any Banach function space on Rn , Y , let Y ′ be its associate space. We have the

following Hölder inequality on Y .

Theorem 1. Let Y be a Banach function space on Rn with associate space, Y ′. If f ∈ Y
and g ∈ Y ′, then f g is integrable and∫

Rn
| f (x)g(x)|dx�‖ f ‖Y ‖g‖Y ′ .

Theorem 2.9 in Chapter 1 of [1] gives the following result. Indeed, the following result is
a consequence of the fact that the identification, Y = (Y ′)′, is valid for any Banach function
space.

Theorem 2. For any Banach function space on Rn , Y , we have

‖ f ‖Y = sup
h∈Y ′

‖h‖Y ′ � 1

∣∣∣∣
∫

Rn
f (x)h(x)dx

∣∣∣∣ .

We use the definition of Boyd indices from [1], Chapter 3, Definitions 5.10 and 5.12.

Definition 1.1. For each t > 0 any Lebesgue measurable function f , let Et denote the
dilation operator defined by

(Et f )(x) = f (t x), x ∈ Rn .

The Boyd indices of a r.-i. Banach function space Y are the numbers defined by

�Y = sup
0<t<1

log(‖E1/t‖Y→Y )

n log t
, �Y = inf

1<t<∞
log(‖E1/t‖Y→Y )

n log t
,

where ‖E1/t‖Y→Y is the operator norm of the linear operator, Et : Y → Y .

Lemma 3. Let Y be a r.-i. Banach function space on Rn and let Y ′ be its associated space.
Then,

‖�E‖Y ‖�E‖Y ′ = |E | (1.1)

for any Lebesgue measurable set, E , with |E | <∞.

The proof of the above lemma is given in [1], Chapter 2, Theorem 5.2.
For any Lebesgue measurable function on Rn , f , let f ∗ be its decreasing-rearrangement.

We recall the definition of joint weak type from [1], Chapter 3, Definitions 5.1 and 5.4.
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Definition 1.2. Let 1� p< q�∞. A quasilinear operator is said to be of joint weak type
(p, p, q, q) if there exists a constant C > 0 such that

(T f )∗(t)�C

(
t−1/p

∫ t

0
s1/p f ∗(s)

ds

s
+ t−1/q

∫ ∞

t
s1/q f ∗(s)

ds

s

)
, 0< t < ∞.

We state the Lorentz and Shimogaki theorem on the boundedness of themaximal operator
on the r.-i. Banach function space (see [1], Chapter 3, Theorem 5.17).

Theorem 4. Let Y be a r.-i. Banach function space on Rn . Then, the Hardy–Littlewood
maximal operator is bounded on Y if and only if the upper Boyd index of Y satisfies �Y < 1.

Finally, we state the Boyd interpolation theorem. The proof of the following result can
be found in [1], Chapter 3, Theorem 5.16.

Theorem 5. Let 1� p< q�∞ and Y be a r.-i. Banach function space on Rn . Let T be a
quasilinear operator of joint weak type (p, p; q, q). Then T is bounded on Y if and only if
the Boyd indices of Y satisfy 1/q < �Y ��Y < 1/p.

At the end of this section, we present the notations used in this paper. For any x0 ∈ Rn

and r > 0, let B(x0, r ) = {x ∈ Rn : |x − x0| < r} be a ball with center, x0, and radius,
r . Define B = {B(x0, r ) : x0 ∈ Rn, r > 0}. Let S(Rn) be the Schwartz function space
and S0(Rn) = { f ∈ S(Rn) :

∫
Rn x� f (x)dx = 0, ∀� ∈ Nn}. Let Pk denote the set of

polynomials on Rn with degree less than or equal to k, k ∈ N and P = ∪k∈NPk .

2. Atomic decomposition of the Hardy space

The atoms in the “standard” non-smooth atomic decomposition of the Hardy space are
defined to be a compactly supported function satisfying some vanishing moment condition
and Lr -condition for some 1< r�∞. In this section, we extend the atomic decomposition
of the Hardy space by replacing the Lr -condition with a condition on the norm, ‖ · ‖Y ,
where Y is a r.-i. Banach function space fulfilling a mild condition on the Boyd indices. The
precise condition is given in Theorem 6.

Definition 2.1. Let Y be a r.-i. Banach function space on Rn . We call that function, A(x),
a non-smooth (p, Y )-atom if there exists a B ∈ B such that

supp A ⊂ 3B, (2.1)∫
Rn

x�A(x)dx = 0, |�|�
[
n

p
− n

]
, � ∈ Nn , (2.2)

‖A‖Y �‖�B‖Y |B|−1/p. (2.3)

We call B the ball associated with the non-smooth (p, Y )-atom, A(x). We denote the set of
non-smooth (p, Y )-atoms asAp,Y .



366 K.-P. Ho / Expo. Math. 27 (2009) 363–372

Theorem 6. Let 0< p�1 and Y be a r.-i. Banach function space on Rn with its Boyd
indices satisfying �Y � 1/p. Then,

‖ f ‖H p(Rn ) ≈ inf

{
‖{ri }i∈N‖l p : f =

∑
i∈N

ri Ai , and Ai ∈ Ap.Y

}
, (2.4)

where f =∑
i∈Nri Ai converges in H p(Rn).

Proof. From the standard non-smooth atomic decomposition for H p(Rn), there exists a
family of non-smooth (p, L∞)-atoms, {Ai }i∈N and a sequence of scalars, {ri }i∈N, such that
f =∑i∈Nri Ai and ‖{ri }i∈N‖l p �C‖ f ‖H p(Rn ) where the constant C > 0 is independent of
f . By applying ‖ · ‖Y on both sides of the inequality, |Ai (x)|�‖Ai‖L∞�3Bi where Bi is the
ball associated with Ai in Definition 2.1, we find that

‖Ai‖Y �‖Ai‖L∞‖�3Bi ‖Y �3‖�Bi ‖Y |Bi |−1/p.

Therefore, Ai is a constant multiple of a non-smooth (p, Y )-atom. The convergence of
the expansion f = ∑

i∈Nri Ai in H p(Rn) is given by the standard non-smooth atomic
decomposition (see [6], Chapter III, Section 2.3.2).
Hence, it is sufficient to prove that there exists a constant, C > 0, such that, for any

non-smooth (p, Y )-atom, A, we have

‖A‖H p(Rn )�C . (2.5)

Wefirst consider the casewhen 0< p< 1.Notice that the condition, �Y < 1/p, is satisfied by
all r.-i. Banach function spaces (see [1], Chapter 3, Proposition 5.13). Given a (p, Y )-atom,
A, using Theorem 1, we have a constant C > 0 independent of A such that

‖A‖L1(Rn )�‖A‖Y ‖�3B‖Y ′ �C‖�B‖Y ‖�B‖Y ′ |B|−1/p = C |B|1−1/p.

For the last equality, we use identity (1.1). Hence, A is a constant multiple of a (p, L1)-atom
for H p(Rn), 0< p< 1. Therefore, the (p, Y )-atom, A, satisfies (2.5).

For the case p = 1, we do not have atomic decomposition with (1, L1)-atom (in this
connection, see [3], Chapter III, Definition 4.2 and Theorem 4.10), so, we use the maximal
function characterization of Hardy space to prove (2.5).
As Y is rearrangement-invariant, to prove (2.5), we can assume that the center of the ball

associated with A is the origin.
Let � ∈ S(Rn) satisfy supp� ∈ B(0, 1) and

∫
Rn �(x)dx � 0. For any locally integrable

function, f , we consider the mapping

M�( f ) = sup
t>0

| f ∗ �t |,

where �t (x) = t−n�(x/t), t > 0. As the Boyd indices of Y satisfy �Y < 1 and M�( f )<
CM( f ) for some constant C > 0, where M is the Hardy–Littlewood maximal operator (see
[7], Chapter III, Section 1.2.1), by applying Theorem 4, we find that there exists a constant,
C > 0, such that

‖M�( f )‖Y �C‖ f ‖Y , ∀ f ∈ Y . (2.6)
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We split the estimate of ‖A‖H1(Rn ) into two components as follows:

‖A‖H1(Rn ) = ‖M�(A)‖L1 �2(‖�2BM�(A)‖L1 + ‖(1 − �2B)M�(A)‖L1 )

= I + I I .

For the estimate of I , Theorem 1 asserts that

I �‖M�(A)‖Y ‖�2B‖Y ′ �C‖M�(A)‖Y ‖�B‖Y ′ .

According to the definition of a non-smooth (1, Y )-atom and (2.6), we obtain

I �C‖A‖Y ‖�B‖Y ′ �C‖�B‖Y ‖�B‖Y ′ |B|−1
�C . (2.7)

We now consider I I . As x /∈ 2B and supp� ∈ B(0, 1), we use the vanishing moment
condition for A, and find that, for any N > 0,

|(A ∗ �t )(x)| = t−n
∣∣∣∣
∫
3B

A(y)(�t (x − y) − �t (x))dy

∣∣∣∣
� t−n

∫
3B

|A(y)| CN |y/t |
(1 + |x/t |)N dy

�
CN t−(1+n)

(1 + t−1|x |)N
∫
3B

|A(y)||y|dy,

where CN depends on n and N only. Using Theorem 1 and (1.1) again, we obtain

|(A ∗ �t )(x)|� CN t−(1+n)|B|1/n
(1 + t−1|x |)N ‖A‖Y ‖�B‖Y ′ �CN

t−(1+n)|B|1/n
(1 + t−1|x |)N .

By choosing N > 1 + n, we assert that

sup
t>0

|(A ∗ �t )(x)|�CN
|B|1/n

|x |2(1+n) . (2.8)

Let l(B) = 2a where a ∈ Z. Applying ‖ · ‖L1 on both sides of (2.8), we find that

I I �C2a

⎛
⎝ ∞∑

j=a

2 jn

2 j(1+n)

⎞
⎠ �C (2.9)

for some constant C > 0 independent of A. Thus, (2.7) and (2.9) prove (2.5). �

If we consider Y = Lr (Rn), then, �Y = 1/r . Thus, the conditions in the above atomic
decomposition of Hardy space reduce to the usual condition imposed on the (p, Lr )-atom.
Furthermore, in terms of the Boyd indices, this is the best condition on Y . An obvious
example is given by the Hardy space H1(Rn) as it does not have non-smooth atomic de-
composition with (1, L1)-atom.
Here is a simple application of the above atomic decomposition on the boundedness of

linear operator.
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Corollary 7. Let 0< p�1 and Y be a r.-i. Banach function space on Rn with its Boyd
indices satisfying �Y � 1/p. Let p�r�1 and X be a r -Banach function space and T be a
linear operator such that for any (p, Y )-atom, A, ‖T (A)‖X �C for some constant C > 0
independent of A. Then, T can be extended to be a bounded linear operator from H p(Rn)
to X .

Proof. For any f ∈ H p(Rn), we have f =∑
i∈Nri Ai for a family of non-smooth (p, Y )-

atoms, {Ai }i∈N and a sequence of scalars, {ri }i∈N, such that‖{ri }i∈N‖l p �C‖ f ‖H p(Rn ).
Thus, T ( f ) can be defined as T ( f ) =∑

i∈Nri T (Ai ). It is well-defined and bounded from
H p(Rn) to X because

‖T ( f )‖rX �
∑
i∈N

|ri |r‖T (Ai )‖rX �C
∑
i∈N

|ri |r

�C

(∑
i∈N

|ri |p
)r/p

�C‖ f ‖rH p(Rn ). �

3. Characterization of BMO

Let fB denote the mean value of f over B ∈ B; that is, fB = (1/|B|) ∫B f (x)dx .

Definition 3.1. Let Y be a r.-i. Banach function space. The function space, BMOY , consists
of those locally integrable function, f , satisfying

‖ f ‖BMOY = sup
B∈B

‖( f − fB)�B‖Y
‖�B‖Y < ∞. (3.1)

Similar to BMO, BMOY endowed with the norm, ‖ · ‖BMOY , is a Banach space.

We say that two Banach spaces, A1 and A2, are equal if A1 = A2 as sets and we have the
continuous embedding A1�A2 and A2�A1. The following theorem is our main result.

Theorem 8. Let Y be a r.-i. Banach function space on Rn having Boyd indices satisfying
0< �Y . Then, BMO is equal to BMOY .

Proof. Let f ∈ BMOY . For any B ∈ B, according to the Hölder inequality on Y and using
Lemma 3, we have

1

|B|
∫
B

| f (x) − fB |dx�
‖( f − fB)�B‖Y ‖‖�B‖Y ′

|B| = ‖( f − fB)�B‖Y
‖�B‖Y .

Thus, we establish the continuous embedding, BMOY�BMO .
We use Theorem 2 and the fact that the dual space of H1(Rn) is equal to BMO to prove

the reserve direction.
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For any f ∈ BMO and B ∈ B, by Theorem 2 we have a h ∈ Y ′ satisfying ‖h‖Y ′ �1,
supph ⊆ B and

‖( f − fB)�B‖Y �2

∣∣∣∣
∫
B
h(x)( f (x) − fB)dx

∣∣∣∣ .
It is obvious that there exists a B̃ ∈ B such that |B|= |B̃|, B ∩ B̃ =∅ and dist(B, B̃)= 0.

Define A by

A(x) =

⎧⎪⎪⎨
⎪⎪⎩
h(x), x ∈ B,

− 1

|B|
∫

B
h(y)dy, x ∈ B̃,

0, x ∈ Rn\(B ∪ B̃).

Thus, A fulfills conditions (2.1) and (2.2) with � = 0. Moreover, by Lemma 3, we obtain

‖A‖Y ′ �‖h‖Y ′ +
∣∣∣∣ 1

|B|
∫
B
h(y)dy

∣∣∣∣ ‖�B̃‖Y ′

�‖h‖Y ′ + 1

|B| ‖h‖Y ′ ‖�B‖Y ‖�B̃‖Y ′ �2‖h‖Y ′ �2

as Y ′ is rearrangement-invariant. Hence, A is a constant multiple of a (1, Y ′)-atom. Since
�Y ′ = 1 − �Y < 1, using Lemma 3 again, we conclude that A belongs to H1(Rn) with

‖A‖H1 �C
|B|

‖�B‖Y ′
= C‖�B‖Y

for some constant C > 0 independent of h.
Using the fact that BMO is the dual space of H1(Rn), we assert that

‖( f − fB)�B‖Y
‖�B‖Y �

2

‖�B‖Y

∣∣∣∣
∫
B
h(x)( f (x) − fB)dx

∣∣∣∣
= 2

‖�B‖Y

∣∣∣∣
∫

Rn
A(x)( f (x) − fB)�B(x)dx

∣∣∣∣
�

2‖A‖H1‖ f ‖BMO

‖�B‖Y �C‖ f ‖BMO

because BMO is a lattice. �

The above theorem generalizes the following well-known result of BMO: the norm,

‖ f ‖∗,p = sup
B∈B

(
1

|B|
∫
B

| f − fB |p dx
)1/p

, 1� p< ∞

is an equivalent norm on BMO.
In Theorem 8, the condition, 0< �Y , cannot be removed. For instance, if we consider

BMOY with Y = L∞(Rn), we find that for any f ∈ BMOL∞ , there exists a constant C > 0
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such that for any Q ∈ Q, | f (x) − f (y)|�C , x, y ∈ Q. This is only possible when f is
essentially bounded. That is, BMOL∞ = L∞(Rn).

The proof of Theorem 8 relies on the atomic decomposition, Theorem 6, and the dual-
ity, (H1(Rn))∗ = BMO. When 0< p< 1, the dual space of H p(Rn) is the homogeneous
Lipschitz space, �̇

�
, � = n(1/p − 1). It is also a special case of the Campanato space. In

fact, for any �> 0, 1�r�∞, �̇
�
is equal to Lr,� where Lr,� consists of those locally

integrable function, f , satisfying

‖ f ‖Lr,� = sup
B∈B

inf
PB∈P[�]

1

|B|�/n

(
1

|B|
∫
B

| f (y) − PB(y)|r dy
)1/r

< ∞. (3.2)

We now give a characterization of the Lipschitz space by r.-i. Banach function spaces.

Definition 3.2. Let � > 0 and Y be a r.-i. Banach function space. The function space,LY,�,
consists of those locally integrable function, f , satisfying

‖ f ‖LY,� = sup
B∈B

inf
PB∈P[�]

1

|B|�/n

‖( f − PB)�B‖Y
‖�B‖Y < ∞. (3.3)

Theorem 9. Let � > 0 and Y be a r.-i. Banach function space on Rn . Then, �̇� is equal
toLY,�.

Proof. With some simplemodifications, the proof for Theorem8 carries over to the proof for
the above theorem. For simplicity, we just demonstrate the construction of the (p, Y ′)-atom
A from h.
As Y ′ and �̇� are translation invariant, we can assume that supph ⊆ B(cr , r ) for some

r > 0 where cr = (0, 0, . . . , 0, 2r ) ∈ Rn . Let {��}|�|� [�],�∈Nn ⊂ S(Rn) satisfy∫
B(0,1)

x���(x)dx = 	��, � ∈ Nn, |�|� [�].

Define A by

A(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

h(x), x ∈ B(cr , r ),

− ∑
|�|� [�]

(∫
Rn

x�h(x)dx

)
r−|�|−n��(x/r ), x ∈ B(0, r ),

0, otherwise.

It is obvious that supp A ⊂ B(0, 3r ) and A satisfies the vanishing moment condition (2.2).
It remains to show that A fulfills the size condition (2.3). Applying the Hölder inequality,
we have∫

Rn
|x�h(x)|dx� (3r )|�|‖h‖Y ′ ‖�B(0,r )‖Y .

So, Lemma 3 gives

‖A�B(0,r )‖Y ′ �Cr |�|‖h‖Y ′ ‖�B(0,r )‖Y r−|�|−n‖��‖L∞‖�B(0,r )‖Y ′

�C‖h‖Y ′ �C .
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That is, A belongs to H p(Rn)with ‖A‖H p �C |B(0, 3r )|1/p−1‖�B(0,3r )‖Y for some constant
C > 0 independent of h. The rest of the proof follows from Theorem 8. �

4. The sharp function

In this section, we show that any separable r.-i. Banach function space on Rn can be
characterized by the sharp function thatwe had established for theLebesgue spaces, L p(Rn),
1< p< ∞. We present a preliminary result for r.-i. Banach function spaces.

Theorem 10. Let Y be a separable r.-i. Banach function space on Rn . If the Boyd indices
of Y satisfies �Y < 1, thenS0(Rn) is dense in Y .

Proof. According to [1], Chapter 1, Corollaries 4.3 and 5.6, Y ∗ = Y ′. Thus, to show the
denseness ofS0(Rn), we prove Y ′ ∩P={0}. It suffices to show that the constant function,
F = 1, does not belong to Y ′. According to Definition 1.1, there exists a t0 < 1 such that for
any 0< t < t0, we have

‖�(0,1)n‖Y ′ � tn�Y ′/2‖�(0,1/t)n‖Y ′ .

Therefore, t−n�Y ′/2‖�(0,1)n‖Y ′ �‖�(0,1/t)n‖Y ′ �‖F‖Y ′ for any sufficiently small t . By [1]
Chapter 3, (5.33), we have �Y ′ =1−�Y > 0, hence, F does not belong to Y ′. Thus,S0(Rn)
is dense in Y . �

For any locally integrable function, f , recall that the sharp function of f is defined by

f �(x) = sup
x∈B

1

|B|
∫
B

| f (y) − fB |dy, (4.1)

where the supreme is taken over by all B ∈ B containing x .

Theorem 11. Let Y be a separable r.-i. Banach function space on Rn with Boyd indices
satisfying 0< �Y ��Y < 1. Then, there exist constants C1 >C2 > 0 such that

C2‖ f ‖Y �‖ f �‖Y �C1‖ f ‖Y , ∀ f ∈ Y .

Proof. The inequality

‖ f �‖Y �C1‖ f ‖Y , ∀ f ∈ Y (4.2)

follows from the pointwise estimate f � �2M f and the boundedness of M on Y .
For the other direction, we use the following result from [7], Chapter IV, (16): there exists

a constant, C > 0, such that, for any g ∈ H1(Rn) and f ∈ L∞(Rn),∣∣∣∣
∫

Rn
f (x)g(x)dx

∣∣∣∣ �C
∫

Rn
f �(x)Mg(x)dx , (4.3)

where M = MF is the grand maximal function defined in [7], Chapter III, Section 1.2.
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Let f be a simple function and g ∈ S0(Rn) ⊂ H1(Rn). Using (4.3), we obtain∣∣∣∣
∫

Rn
f (x)g(x)dx

∣∣∣∣ �C‖ f �‖Y ‖Mg‖Y ′ �C‖ f �‖Y ‖g‖Y ′ .

We use the boundedness of M on Y ′ for the last inequality. The boundedness of M on Y ′
follows from Theorem 5, the facts that M is sublinear and bounded on L p(Rn) (see [7],
Chapter 3, Sections 1.3–1.4) and that the Boyd indices of Y ′ satisfy 0< 1 − �Y = �Y ′ and
�Y ′ = 1 − �Y < 1 (see [1], Chapter 3, Proposition 5.13).

As Y is separable, from [1], Chapter 1, Corollary 5.6, Y has absolutely continuous norms.
Furthermore, Theorem 10 guarantees that S0(Rn) is dense in Y . Using [1], Chapter 1,
Theorem 2.9, we have a constant, C > 0, independent of f such that

‖ f ‖Y �C‖ f �‖Y for any simple function f . (4.4)

Finally, since Y has absolutely continuous norm, according to [1], Chapter 1, Theorem
3.11, the set of simple functions is a dense subset of Y . Thus, for any f ∈ Y , there exists a
sequence of simple functions, { fk}k∈N, such that fk → f in Y , as k → ∞. As the mapping,
f → f �, is sublinear, by (4.2), we find that f �

k → f � in Y as k → ∞. Thus, the inequality
C2‖ f ‖Y �‖ f �‖Y , ∀ f ∈ Y , follows from (4.4). �

Theorem 11 is a generalization of the sharp function characterization of L p(Rn) (see,
for example, [7], Chapter IV, Section 2.2). It also extends the result on Theorem 5.1 of [8]
from the Orlicz space when the Orlicz function satisfies the �∗

1 and �∞ conditions to r.-i.
Banach function space satisfying 0< �Y ��Y < 1.
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