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spectrum of fractures is presented. The program performance was tested with many synthetical fractals

and field data. Interpolation and sampling effects on the fractal dimension and multifractal spectrum

estimation were also studied. Some common problems related to the fractal dimension and multifractal

spectrum are also discussed.
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1. Introduction

Fractal and multifractal-based methods have been successfully
applied in many fields of geosciences (Agterberg and Cheng, 1999).
They can provide valuable information on the statistical and
geometrical properties of geological and geophysical variables.

The concept of fractals was introduced by Mandelbrot (1983) to
describe objects whose properties have a power-law dependence
on the scale. Fractal geometry is scale-invariant, i.e. the set in one
given scale is similar to the set viewed in another scale (self-
similarity). We would like to remind the reader that power-law
does not imply self-similarity or fractality (Bour et al., 2002; Bour
and Davy, 1997) although some authors refer to power-law
distributions as fractal distribution and unlike mathematical
fractals, geophysical and geological phenomena present fractal
behavior within a limited scale range.

There is a wide range of geological and geophysical phenomena that
exhibit fractal behavior. Examples include coastline perimeter
(Mandelbrot, 1983), frequency–intensity distribution of earthquakes
(Gutenberg–Richter Law) (Turcotte, 1992), oil and gas field distribution
(Hein, 1999), earth gravity field (Thorarinsson and Magnusson, 1990),
geomagnetic reverse records (Cortini and Barton, 1994), among others.
, 4 o andar, Rio de Janeiro, RJ,
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Spatial variation in physical properties of geological media that
control migration, trapping and flow of hydrocarbon, e.g., rock
porosity, hydraulic conductivity, gouge particle, fracture spatial
distribution (Yielding et al., 1996), can present fractal character-
istics. For this reason software for analysis and modeling of
fractured rock masses have incorporated fractal based models in
its set of tools (Dershowitz et al., 1998).

In particular, in recent years, spatial fracture distribution has
been described in terms of fractal geometry and several works have
shown its relevance in Structural Geology (Pérez-López and
Paredes, 2006) and Petroleum Geology (La Pointe and Barton,
1995). Geometrical features of fracture are important to predict the
fracturing bellow seismic scale (Gauthier and Lake, 1993), to
predict the number of unobserved fractures from a sample of a
restrict part of fracture population (Yielding et al., 1996), quanti-
fication of fracture anisotropy (Pérez-López and Paredes, 2006),
reservoir characterization (Odling et al., 1999), fluid flow in
reservoirs (Odling et al., 1999), flow and transport in porous media
and fractured rock (Sahimi, 1993), simulation of fracture networks
for reservoirs (Tran et al., 2005).

Box-counting method has been largely used to estimate fractal
dimensions of measures, but this procedure has been pointed out as
problematic due to memory and time limitations (Hou et al., 1990).
Despite the fact that the method has been object of criticism, especially
when applied to real stochastic data (Sornette et al., 1993; Berkowitz
and Hadad, 1997; Cowie et al., 1993; Ouillon and Sornette, 1996;
Ouillon et al., 1996), recent works have indicated that box-counting
based methods are realistic for estimating fractal dimensions from real
a synthetical data (Roy et al., 2007; Verbovsek, 2009). Furthermore,
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many problems in calculation of fractal dimension, as for instance
finite-size effects, have been reported in literature (Gonzato et al., 1998,
2000; Bonnet et al., 2001). Thus, different box-counting based methods
for estimating fractal dimensions have been proposed in order to
improve the accuracy of estimation and decrease computation time.
For example, Agterberg et al. (1996) proposed a procedure to avoid bias
due to both the lack of exposure and edge effects. One of the most
efficient box-counting algorithms has been proposed by Hou et al.
(1990). The Hou algorithm has computational complexity of O(N),
where N is the number of points, differently from most box-counting
algorithms which have complexity of OðNDE Þ, where DE is the dimen-
sion of Euclidean space where the fractal is embedded.

Recent works make use of large data sets and/or several data
sets. In particular, the estimation of the fractal dimension of
fracture by using box-counting based methods is very difficult
because interpolation of points along individual fractures increases
severely the number of data points. In order to make feasible such
works, one needs to use efficient and fast algorithms.

In this work, an efficient MATLAB program for fast computation
of fractal dimension and multifractal spectrum of fractures is
presented. To test the performance of the program we use synthetic
fractals and field data. The effects of different sampling rates and
interpolation intervals on the fractal dimension estimation are also
studied with the program.
2. Theory

The term fractal is used to describe geometrical objects
or functions which are scale invariant, i.e. the part of object
(or function) is similar to the whole (self-similarity) (Feder,
1988). Sets whose properties have fractal geometry have a
power-law dependence on the scale and the power is the so-called
fractal (or Hausdorff) dimension Df. Consider a set which is
embedding in a (hyper)-volume in E-dimensional Euclidean space
with maximal linear length L. The fractal dimension is usually
calculated by covering the object with (hyper)-boxes of linear
length erL and (hyper)-volume given by eDE , where DEZDf is the
dimension of Euclidean space where the fractal is embedded, and
counting the number NboxðeÞ of boxes that contain points:

NboxðeÞ � eD
f : ð1Þ

The fractal dimension is obtained by evaluating

Df ¼ lim
e-1

logNboxðeÞ
loge

: ð2Þ

Multifractals are related to the statistical distribution of measures
on a geometrical support: a line, a surface, a volume, or a fractal, for
instance (Feder, 1988). Multifractals are formed by an interwoven
of fractal subsets with different scaling exponents. Once again let
us consider a set which is embedding in a (hyper)-volume in
E-dimensional Euclidean space with maximal linear length L. Let us
cover the set with (hyper)-boxes of linear length erL and (hyper)-
volume eDE . The normalized probabilities for measure (or mass) in the
i-th box, in the resolution e, is given by NiðerLÞ=N, where N is the total
number of points and Ni the number of points in the i-th box:

PiðeÞ ¼
NiðeÞ

N
: ð3Þ

For multifractal measures, for the i-th box in scale e, Pi scales as

PiðeÞ � eai , ð4Þ

where ai is the local Lipschitz–Hölder exponent. The number of boxes
in which PiðeÞ has Lipschitz–Hölder exponent equals a is given by

NaðeÞ � ef ðaÞ: ð5Þ
Thus, for a givena, as e-0, f ðaÞprovide the dimension of the subset of
the measure that has Lipschitz–Hölder a. To obtain the f ðaÞ, it is
suitable to define a partition function:

ZqðeÞ ¼
XniðeÞ

i

Pq
i , ð6Þ

where niðeÞ is the number of boxes in the scale e and the q parameter
(qAR) is called moment of order q. If the measure has a multifractal
distribution, ZqðeÞ scale with e in the following way:

ZqðeÞ � etq , ð7Þ

where t is the correlation exponent or mass exponent of order q. If we
know the partition function (6), we can determine the f ðaÞ function,
by evaluating tðqÞ:

tðqÞ ¼ lim
e-0

logZqðeÞ
loge

: ð8Þ

The variables f and a are related to tðqÞ via Legendre transform:

f ðaqÞ ¼ qaq�tq, ð9Þ

aq ¼
dtq

dq
: ð10Þ

The f ðaÞ function provide the fractal dimension f of the sub-set of the
measure which has a Lipschitz–Hölder exponent a.

The f ðaÞ spectrum (or multifractal spectrum) is related to the
generalized dimensions Dq (Halsey et al., 1986):

Dq ¼
1

q�1
½qaðqÞ�f ðaðqÞÞ�: ð11Þ

When q¼0, f ðaq ¼ 0Þ ¼max½f ðaÞ� represents the fractal dimension of
the support of the measure D0. For q¼ 71, one has D1 and D�1,
corresponding to the values amax and amin, respectively. In theory,
Da¼ amax�amin should be zero for monofractals (fractals characterized
by a single fractal dimension). However, numerically estimated f ðaÞ
spectra for monofractals present a narrow but non-zero Da, due to
finite size effects.
3. Algorithm

The Hou et al. (1990) algorithm is an improvement of the
algorithm proposed by Liebovitch and Toth (1989). It is based on
the fact that the coordinates of the fractal—suitably shifted and
rescaled—written in binary numerical base can be combined to
form bits strings with k � DE bits and whose first m � DE bits from left
right determine uniquely the position of the coordinates in
DE-dimensional space. Here, m¼1,2,y,k and k is a positive integer.
Thus, the N � DE coordinates are mapped in N bit strings with k � DE

bits, where k is the maximal number of bits used to represent each
coordinate in binary base. After masking m � DE bits from right to
left, strings that have the same position code belong to the same
box in resolution m. A stand-alone box-counting program based on
Hou algorithm for fractal dimension estimation was presented by
Kruger (1996). Hou algorithm is composed of five steps:
(1)
 The original data are mapped into interval (0,2k
�1). Thus, the

new shifted and normalized coordinates can be stored in a
unsigned integer vector.
(2)
 The new data are then converted from decimal to binary
numerical base and each coordinate have k bits. For example,
for a set embedded in a two-dimensional space, one has
ðxÞdec ¼ ðxkxk�1 � � � x2x1Þbin and ðyÞdec ¼ ðykyk�1 � � � y2y1Þbin, where
the subindex ‘‘dec’’ and ‘‘bin’’ represent the coordinates in
decimal and binary numerical base, respectively and xm and ym

can assume the values 0 or 1.



Table 1
Columns 1,2 and 3,4 show xy coordinates on decimal and binary base, respectively.

Column 5 shows bits of columns 3 and 4 intercalated (position codes) and column 6

shows position codes sorted. In column 7 are shown masked bits. Remark that points

belonging to same box have same position code. Columns 8,9, show the same

procedures of columns 5–7, but with bits mapped into unsigned integers.

xdec ydec xbin ybin interc. sort mask interc. sort mask

0 0 00 00 0000 0000 00 0 0 0 0 0

0 1 00 01 0010 0001 00 0 2 0 1 0

0 2 00 10 1000 0010 00 2 0 0 2 0

0 3 00 11 1010 0011 00 2 2 0 3 0

1 0 01 00 0001 0100 01 0 1 1 0 1

1 1 01 01 0011 0101 01 0 3 1 1 1

1 2 01 10 1001 0110 01 2 1 1 2 1

1 3 01 11 1011 0111 01 2 3 1 3 1

2 0 10 00 0100 1000 10 1 0 2 0 2

2 1 10 01 0110 1001 10 1 2 2 1 2

2 2 10 10 1100 1010 10 3 0 2 2 2

2 3 10 11 1110 1011 10 3 2 2 3 2

3 0 11 00 0101 1100 11 1 1 3 0 3

3 1 11 01 0111 1101 11 1 3 3 1 3

3 2 11 10 1101 1110 11 3 1 3 2 3

3 3 11 11 1111 1111 11 3 3 3 3 3
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(3)
 For each one of N data points of the set, a bit string by
intercalating the bits of DE coordinates is constructed. For
DE¼2, one has

xk�1yk�1xk�2yk�2 � � � x1y1x0y0:

This string is referred as a position code for the data point, since it
determine uniquely the position of coordinate in E-dimensional
space. The DE bits belonging to the m-th position can be mapped
into a single unsigned integer number in the interval ð1,2DE�1Þ.
For DE¼2 the bits sequences 00, 01, 10 and 11 are converted to
0,1,2 and 3, respectively. This procedure require less memory
because for this case one needs to allocate 8 bits for the k-th
position, instead DE � 8 when the bit strings is in binary base.
(4)
 The new coordinate (position code) are sorted in lexico-
graphical order.
(5)
 The m � DE first bits from right to left are masked. Points that
belong to the same box have the same masked bit string. The
masking procedure is repeated k times and in each iteration DE

more bits are masked:

xk�1yk�1xk�2yk�2 � � � x1y1

xk�1yk�1xk�2yk�2 � � � x2y2

^
xk�1yk�1xk�2yk�2

xk�1yk�1
The five steps are summarized in Table 1.
Then, by scanning the N bit strings, the number of changes

(monofractal) or the number of strings in each class of equal strings
(multifractal case) is stored. For monofractal case the number of
changes represents the number of box needed to cover the fractal
set in the scale m. For multifractal case, in each scale, the number of
equal strings represents the number of points contained within a
single box. Thus, if one has l classes of strings in the resolution e,
each class will have NiðeÞ strings (points) and NiðeÞ=N represents the
normalized probability for i-th box.
4. The box_count program

Box_count program has four functions. Function data_prep
map the data into interval (0,2k

�1). Function bit_int convert the
vector from decimal to binary numerical base, intercalate the bits
and convert the bits in m-th position to a unsigned integer number.
To sort the matrix generated by bit_int function we use the
MATLAB internal function sortrows. Function bit_mask masks
the bits and calculates the number of non-empty box for mono-
fractal option or call the part_func function for the multifractal
option. Function part_func calculates the probabilities Pi (Eq. (3))
and the partition function (Eq. (6)). bit_mask, sortrows and
part_func functions depend on the number of points only. They
do not depend on the Euclidean dimension in which the set is
embedded.

The input of the box_count program are: (1) the name of the
ASCII file containing the data to be processed which may be a N � DE

or DE � N vector, where is DE embedding dimension and N is the
number of points of the set, being N4DE; (2) the number of bits (k)
for representing the string for each coordinate, from 4 to 64
bits—for example if user choose k¼8, coordinate will be rescaled
to the interval (0,28

�1) and (3) the kind of analysis—or multi-
fractal. After running the box_count program, users can use the
auxiliary program fit_frac and leg_transf to get the fractal
dimension and the f ðaÞ curve, respectively. For the auxiliary
programs, users may provide the binary logarithm of the lower
and the upper cutoffs, mlow and mup, which range from 1 to k.

By its very nature, the algorithm generates bins whose linear
size increases following a power of two (logarithmic binning).
Consequently the real size of the bins r is obtained by r¼ ð2m=2k

Þs,
where s is the maximal linear length of the set. Thus, in a log22log2

plot the points are evenly spaced and the numbers on the abscissa
are the values of m.

The program fit_frac generates a plot where upper and bottom
axes correspond to the normalized and real scales, respectively. The
dashed lines and the left axis correspond to number of box
containing points and the dotted lines and the right axis correspond
to the local fractal dimension. The plot exhibits the local fractal
dimension on the right axis, in order to aid users to evaluate the
best interval for which the scale regime holds. The program also
provides the error for the fractal exponent, estimated by least-
squares, but it does not contain the errors in data points, as
discussed in Bonnet et al. (2001). The local fractal dimension is
estimated by the numerical derivative of the number of box
containing points Nbox(r), at the point r.

To run the program users may type in MATLAB prompt [np, s,
q]¼box_count;. After running the box_count program, users may
type [x y]¼fit_frac(np,s) for monofractal option or [x y]¼
leg_transf(np,s,q) for multifractal option. The real values of the
lower and upper cutoffs rmin and rmax, the fractal dimension or the
values of a and f ðaÞ are printed in the prompt.

The program was tested on an IBMs computer with 2 Intels

processors Xeon(TM) 3.2 GHz and 4096 K RAM, running under
Linux environment. The same code can also run in GNU Octave
language, but in this case the program is not so fast, mainly because
sortrows command is slower under Octave.
5. Synthetical examples

In this section we assess the accuracy and efficiency of our code
by comparing its numerical results with those obtained from
synthetical fractals and multifractals, for which the values of
fractal dimension and the f ðaÞ spectrum can be theoretically
determined.

5.1. Monofractal

We have used well-known deterministic fractals, namely the
Cantor set (DE¼1), Koch curve (DE¼2) and Sierpinski pyramid
(DE¼3), in order to test the program performance. For these sets the
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Table 2
Running times and fractal dimensions of some synthetical fractals with different

numbers of points, estimated with box_count program using strings of k¼32 bits.

First column represents number of points. Second and third columns show times for

loading files and running the program. Fourth and fifth columns show lower and

upper cutoffs used to evaluate fractal dimension and last column shows estimated

fractal dimensions.

Fractal DE N tload (s) tbox-count (s) mlow mup Df

Cantor 1 210 0.005 0.004 19 31 0.64 70.02

Cantor 1 216 0.25 0.34 10 31 0.64 70.01

Cantor 1 220 4.06 6.33 7 31 0.63 70.00

Koch 2 210 0.01 0.01 25 31 1.25 70.06

Koch 2 216 0.50 0.84 21 31 1.28 70.02

Koch 2 220 8.07 11.08 18 31 1.26 70.01

Pyramid 3 210 0.01 0.01 29 31 1.88 71.09

Pyramid 3 216 0.75 0.95 26 31 1.98 70.10

Pyramid 3 220 12.01 13.01 24 31 1.99 70.04

Table 3
Average running times and fractal dimension estimated using box_count for

Menger sponge with 3.2�106, for different k’s.

k tbox-count(s) mlow mup Df
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fractal dimensions can be obtained analytically: Df ¼ log2=log3¼
0:6309, Df ¼ log4=log3¼ 1,2619 and Df log4=log2¼ 2, respectively.
Fig. 1 shows log2ðNÞ � log2ðrÞplot for the Cantor set, Koch curve and
Sierpinski pyramid, estimated with the box_count program from
216 points and using strings of k¼32 bits. Note that for a same
number of points, the range—the interval limited by a upper and
lower cutoff—increases as DE increases. We generate ASCII files for
each one of these fractals containing N¼210, N¼214 and N¼220

points. The running times are shown in Table 2. We call tload (s) and
tbox-count (s) the times for loading the file to be processed into RAM
disk and the running time for box-counting, respectively. Note that
as the number of points decrease the estimation of fractal dimen-
sion became slightly inaccurate, specially for higher embedding
dimension. Also, the higher embedding dimension, the smaller the
interval which can be used to evaluate the fractal dimension.

To evaluate the program with different precision we have used
the so-called Menger Sponge which is an example of DE fractal, with
Df ¼ log20=log3¼ 2:7268. Running times for Menger sponge
with 3.6�106 points for different k’s are shown in Table 3. To test
the program for Euclidean dimension higher than 3 we have use a
4-dimensional uniform distribution of points for which is expected
a Df¼4. We have used 220 points and we obtained tload¼ 15.80 s,
tbox-count¼20.65 s and Df¼4.00, for the interval (mlow,mup)¼(29,31).
8 16.49 2 7 2.73 70.08

16 23.10 10 15 2.73 70.08

32 38.32 26 31 2.73 70.08
5.2. Multifractal

In order to evaluate the performance of our program for the
multifractal case with DE¼1, we have used a the two-scale Cantor
set for which is possible to construct a theoretical f ðaÞ curve (Halsey
et al., 1986). To generate a multifractal Cantor measure we use an
iterated function system (IFS) (see Appendix A) and we have
constructed a theoretical f ðaÞ curve for this set by using the method
described in Halsey et al. (1986). We have used stochastic IFS which
generate multifractals closer to real data and are an alternative to
the use of deterministic data with additional noise, as it has been
pointed out by Ahammer and DeVaney (2005).
Once again, we have used data sets with three different sizes:
N¼210, 214 and 220. Fig. 2 shows the f ðaÞ curve for this three sets.
Note that the multifractal spectrum is very sensitive to the lacking
of points, mainly in the right part of f ðaÞ curve where the partition
function is weighted with negative moments (qo0, in Eq. (8)). For
comparison, for each data set, we run the program using the fractal
and multifractal options. The running times are shown in Table 4.
For the two smaller sets most computation time is expended in
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partition function estimation, but for the greater, running time for
partition function is about 1

5 of the total time.
We have studied the sensitivity of the f ðaÞ spectrum to the choice

of different ranges to fit the curves of Eq. (8). Fig. 3 shows, for the two-
scale Cantor set with 1020 points and k¼32 bits, four different f ðaÞ
curves for four different ranges. Note that though the left part of f ðaÞ
curve (positive q’s) is robust to small changes in upper and lower
cutoffs, the right part is very sensitive to them. Finally, the fractal
dimension estimation for the two-scale Cantor set is slower than
usual Cantor set with the same number of points. This happens
because sorting procedure is slower for multifractal case.

To generate DE¼2 multifractals we use the IFS described in the
website at Yale University sponsored by M. Frame, B. M. and N.
Neger.1 For this case it is possible obtain a theoretical f ðaÞ curve. We
have used the IFS described in Appendix A to generate two sets with
support dimension max½f ðaÞ� ¼ 2 (we call them set 1 and set 2). Set
1 has a broad spectrum of a values and set 2 has a narrow one. The
average running times (tbox-count) for these IFS generated multi-
fractals were, respectively, 21 and 14 s for fractal option and 30 and
54 s for multifractal option. We have used k¼32 bits.Though the
sets have the same size, the same embedding dimension and
belong to the same family of multifractals, the computation times
for set 1 is greater than set 2 for (mono)-fractal case and lesser for
the multifractal case. Fig. 4 shows the estimated and theoretical
f ðaÞ curves for sets above mentioned. As it is expected, estimates of
amax’s are more inaccurate than amin. Finally we stress that, due to
finite-size effects, the algorithm is not able to evaluate points of f ðaÞ
curves for q-71, mainly for negative q’s. Thus, the whole
multifractal spectrum may be estimated by interpolation.
x 105m

Fig. 5. Lineaments of area of study chosen for this work. This area is approximately

276 km in width and 166 km in length. Lineaments were interpreted from SRTM90

images (de Freitas et al., 2006).1 http://classes.yale.edu/fractals/MultiFractals/f(a)Curves/f(a)Curves.html

http://classes.yale.edu/fractals/MultiFractals/f(a)Curves/f(a)Curves.html
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6. Field examples

The Paraná Basin is represented by a NS overall depression,
classified as an intracratonic basin that extends into Brazil, Para-
guay, Argentina and Uruguay. The studied area comprises partially
the Paraná and Santa Catarina States in Southern Brazil, where
multiple directions faults and tilting blocks are the main structural
elements, which can be easily observed in remote sensing imagery.
The quantified lineaments collected in SRTM images (see Fig. 5)
exerts an important role in fluid migration along basin and were
probably generated by reactivation of previous (pre-Cambrian)
basement faults, among others formed during Phanerozoic basin
evolution. The structural trends (de Freitas et al., 2006) corroborate
the regional structural framework along the basin, whose analysis
of brittle elements in images is suitable to test the functionality of
the program.

Works which make use of either the barycenter or the fracture
traces for fractal and multifractal modeling have been reported in
literature (Bonnet et al., 2001). In this section we analyze these
two cases.

The fractal dimension and the f ðaÞ function for the centroids
and the lineaments of the study area were estimated with the
box_count program. Interpolation and sampling effects on the
fractal dimension estimation was studied. We have also discussed
Table 5
Fractal dimension estimated from 12 576 lineaments with different interpolation

intervals, using k¼16 bits (Fig. 6). We have used the interval (mlow,mup)¼(9,15)

which correspond to lower and upper cutoffs rmin¼2159 m and rmax¼138 153 m,

respectively. Note that fractal dimension decreases as interpolation interval

increase.

Density m�1 # points Df tload(s) tbox-count(s)

0.001 42 969 1.9070.07 0.34 0.41

0.01 373 663 1.9270.05 2.92 3.85

0.1 3 681 065 1.9270.05 28.77 39.03
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Fig. 6. Fractal dimension estimation of fractures for different interpolation intervals: 1 p

the interpolation interval. Furthermore, for a very high interpolation interval, a second r

(dimension of line), indicating that it is a spurious effect. Upper and bottom axes corr

correspond to number of box containing points. Dashed lines and right axis correspond
the problem of the range of scale for which the fractal dimension
can be defined.

To study the interpolation effects on the estimation of the fractal
dimension, we generate data sets with different densities of points
interpolated along the lineaments (between the ends of linea-
ments). The fractal dimension for the different interpolation
intervals is shown in Table 5. We can see that there is a slight
variation in fractal dimension for different interpolation interval.
Fig. 6 shows the log2ðNÞ � log2ðrÞ plot for the three sets.

Comparison between the different interpolated data show that
for very high interpolation interval the log2ðNÞ � log2ðrÞ plot
exhibits two distinct regions with different slopes (besides
finite-size plateau), in which one can define a straight line. This
behavior is referred to in literature as ‘‘bifractal’’ (Volant and
Grasso, 1996) and appears also in fracture study (Berkowitz
and Hadad, 1997). The slope of the region between the finite size
plateau and the last region is close to one—the dimension of a line.
It is a indicative that it can be a spurious effect which occurs when
the box size is of same order as the interpolation interval. In this
interval of scales the algorithm is not detecting the fractal dimen-
sion of the spatial distribution of the fractures, but measuring the
dimension of a line. Similar sampling effect has already been
reported in literature (Walsh and Watterson, 1993; Bonnet et al.,
2001; Bour et al., 2002).

Sampling effects are studied by resampling the lineaments in a
lower sampling rate. Thus, we have created new sets with size N/4
and N/8, where N¼12 576, by randomly selecting some lineaments
from original set. Such a procedure can mimic the effect of limited
rock exposure, for example. This problem has already been
addressed by Agterberg et al. (1996). Fig. 7 shows the effect of
the undersampling on the fractal dimension estimation. Note that
the fractal dimension is relatively robust to the undersampling
effects but it decreases the interval which be can used to fit Eq. (2).

The same process was repeated for the estimation of f ðaÞ
function. Fig. 8 shows the f ðaÞ function for the fractures centroids
estimated using k¼20 bits, for original and resampled data. It is
apparent that resampled data do not reproduce the same spectrum
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Fig. 7. Estimation of fractal dimension of fracture centroids for resampled data. Open circles—original data set with N¼12 576 centroids, Df¼1.89 for (mlow,mup)¼(2,7).

Squares—original region resampled by N/2 with Df¼1.92 for (mlow,mup)¼(3,7). Diamonds—original region resampled by N/4 with Df¼1.84 for interval (mlow,mup)¼(3,7). Full
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as original data. Furthermore, it is evident that the range used to fit
Df strongly affect the shape of the f ðaÞ curve (Fig. 9).
7. Discussion

We have presented a program for fast and accurate computation
of the fractal dimension and f ðaÞ spectrum of fractures. The
performance of our program was evaluated by using different
synthetical and real fractals, with different number of points.
Simplicity of the program allow users to modify the program
according to specific necessities. For example, Eq. (6) can be
replaced by the expression proposed by Agterberg et al. (1996)
for correction of bias due limited rock exposure.

We have studied sampling and interpolation effects using fields
examples. For the fractures set studied in this work, a low density
interpolation interval was enough to estimate the fractal dimen-
sion of fractures sets. Furthermore, for much denser interpolations
a non-fractal interval in the log2ðNÞ � log2ðrÞ plot is introduced.
This fact indicates that the behavior known as bifractality can be, in
some cases, a spurious effect.

Therefore, for the region studied in this work, centroids can
provide an unbiased measure of the spatial distribution of fracture,
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as suggested by previous works (Bonnet et al., 2001; Bour et al.,
2002; Darcel et al., 2003).

Sampling effects were evaluated by resampling the fractures at
a low sampling rate. The fractal dimension estimation for under-
sampled sets was not strongly affected, but the sampling effects
severely affect the f ðaÞ function computation. Hence, users are
discouraged to work with multifractal analysis of small data sets.

As it has already been reported in literature (Bonnet et al., 2001),
definition of lower and upper cutoffs is problematic and we have
found that it is a serious problem specially for negative moments of
the f ðaÞ curve. For theoretical models one can use the support
dimension, amax and amin to control the accuracy of the f ðaÞ curve
estimation, but in the case of field data only the support dimension
can be found (by evaluating the (mono)-fractal dimension before
the f ðaÞ function) and one cannot rigorously define a f ðaÞ curve. This
fact is illustrated in Fig. 9: if is chosen the interval (mlow,mup)¼
(26,30) or (mlow,mup)¼(26,31) for fitting Eq. (8), the support
dimension will be approximately max½f ðaÞ� ¼ 1:9 (close to fractal
dimension of the set), but if the interval (mlow,mup)¼(27,30)
(mlow,mup)¼(27,31) is chosen, one has max½f ðaÞ� ¼ 2. Thus, we
can disregard the last intervals, but we cannot define which of
the first ones give the correct amax and amin.

The efficiency of the program can be improved if it is possible to
estimate the threshold of finite size plateau. For higher embedding
dimension, user are encouraged to use short strings (small k

values), since the finite size plateau is larger for these cases.
We stress that ASCII files are obtained easily from most

programs for lineaments interpretation.
Finally, besides geological applications, where embedding

dimensions 1, 2 and 3 are common, the program can be used, for
instance, for physical and dynamical systems applications, where
common embedding dimensions are greater than 3.
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Appendix A. Generating multifractals from IFS

An iterated function system is a simple way to generate fractals
and multifractals (Barnsley, 1933). The method consists in iterating
two or more functions following certain probabilities. Different
functions with different probabilities will generate different sets.
For example, in the case of equation system (12)–(13), given a
initial condition x0, we randomly choose a number q (q¼0,1 for
example) and if q¼0 we iterate Eq. (12), otherwise we iterate
Eq. (13). Next, we randomly choose another q value and once again
we iterate function (12) if r¼0 or function (13) for r¼1. Repeating
the iteration N times one generate (multi)-fractals with N data
points. In general, equal probabilities generate (mono)-fractals and
unequal probabilities generate multifractals. Further details on the
method can be found in Barnsley (1933) and at the website
mentioned in Section 5.2. Here, we just describe the algorithms
to generate the multifractals used to test the program. To generate a
two-scale Cantor set we use the following algorithm: given an
initial condition x0, the consecutive values of x are obtained
iterating the system of equations:

xðnþ1Þ ¼ 1=2 � xðnÞ with probability p1, ð12Þ

xðnþ1Þ ¼ 0:4 � xðnÞþ0:6 with probability p2, ð13Þ

where we have used p1¼0.25 and p2¼0.4 for generating the sets
used to produce the curves of Fig. 2.

For generating a two-dimensional IFS we iterate with, prob-
abilities pi, one of the i system of equations below:

xðnþ1Þ ¼ 1=2 � xðnÞ,

yðnþ1Þ ¼ 1=2 � yðnÞ with probability p1, ð14Þ

xðnþ1Þ ¼ 1=2 � xðnÞþ1=2,

yðnþ1Þ ¼ 1=2 � yðnÞ with probability p2, ð15Þ

xðnþ1Þ ¼ 1=2 � xðnÞ,

yðnþ1Þ ¼ 1=2 � yðnÞþ1=2, with probability p3, ð16Þ

xðnþ1Þ ¼ 1=2 � xðnÞþ1=2,

yðnþ1Þ ¼ 1=2 � yðnÞþ1=2 with probability p4, ð17Þ

where we have used probabilities (p1, p2, p3, p4)¼(0.35,0.30,0.20,0.15)
and (p1, p2, p3, p4)¼(0.80,0.10,0.06,0.04), for generating the two sets
used to produce the f ðaÞ curves in Fig. 4. The factor 1/2 are called scaling

factors ri. For these cases one has: amin ¼ logð0:35Þ=logð0:5Þ ¼ 1:51,
amax ¼ logð0:15Þ=logð0:5Þ ¼ 2:74 andamin ¼ logð0:80Þ=logð0:5Þ ¼ 0:32,
amax ¼ logð0:04Þ=logð0:5Þ ¼ 4:64, respectively. The theoretical f ðaÞ
curve for this can be obtained solving the generalized Moran equation:
pq

1rtðqÞ1 þ � � � þpq
NrtðqÞN ¼ 1. For the cases mentioned above the scaling

factors ri¼r¼1/2 and tðqÞ ¼ logðpq
1þpq

2þpq
3þpq

4Þ=logðrÞ. The f ðaÞ
spectrum can be obtained through Eqs. (9)–(10).
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