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TO THE EDITOR
Dominant dystrophic epidermolysis
bullosa (DDEB) is a blistering disease
of the skin and mucosae, in which
mutant type VII collagen monomers
exert dominant-negative interference
on normal a1(VII) chains upon homo-
trimer assembly (Burgeson, 1993). Spe-
cific inhibition of the mutant mRNA has
been achieved recently in other domi-
nant skin disorders, including epidermo-
lysis bullosa simplex and pachyonychia
congenita, using small interfering RNAs
(siRNAs) targeting mutations in the
keratin 5 and the keratin 6A genes,
respectively (Hickerson et al., 2008;
Atkinson et al., 2011). We have inves-
tigated allele-specific RNA interference
as a new therapeutic approach for
DDEB, by targeting in-frame skipping
of exon 87 (D87) of COL7A1 (OMIM
*120120) caused by several intronic or
exonic mutations, some of which are
recurrent mutations, underlying DDEB
pruriginosa (Supplementary Table S1
online; Sakuntabhai et al., 1998; Mel-
lerio et al., 1999; Covaciu et al., 2011).

We developed a fluorescence-based
screen for siRNAs selectively blocking
the mutant mRNA, using cultured cells
transfected with a plasmid vector encod-
ing either the mutant (COL7A1D87) or
wild-type (COL7A1WT) mRNA upstream
of an internal ribosome entry site (IRES)-
firefly luciferase reporter (Figure 1a).

The abnormal exon 86–exon 88 splice
junction was scanned with 21 siRNAs;
some were 50-end modified to increase
efficiency (Grimm, 2009; Figure 1b).
Positive (siwt, targeting COL7A1 exon
22) and negative control (NC) siRNAs
were used in parallel at 1–10 nM with no
observed dose effect (data not shown).
Eleven siRNAs, siCOL7D87mut3, �9 to
�11, �14 to �19, and �21, displayed
over 40% inhibition of COL7A1D87

(Figure 1c).
Best differential inhibition was ob-

served with siCOL7D87mut3, 45%
(1 nM), and siCOL7D87mut18, 55%
(2 nM), versus 14% inhibition of CO-
L7A1WT. High specificity for the mutant
mRNA was confirmed by transfecting
these siRNAs into fibroblasts and kera-
tinocytes from patients carrying a D87
mutation, NM_000094.3:c.6900þ
4A4G (Drera et al., 2006); mRNA
extinction was measured by D87-spe-
cific PCR amplification (Figure 2). The
positive control siRNA achieved 55%
inhibition of COL7A1WT or COL7A1D87

mRNA (Figure 2a and b), whereas the
NC siRNA had no significant effect. In
patient fibroblasts, siCOL7D87mut3
inhibited COL7A1D87 by 38% (1 nM),
36% (2nM), 31% (5nM), and 41% (10nM),
versus 2–8% COL7A1WT inhibition in
healthy control fibroblasts (Figure 2b).
In patient keratinocytes, COL7A1D87

extinction by siCOL7D87mut3 was 38,

58, 45, and 54%, respectively. Conversely,
no depression but enhancement of
COL7A1WT levels was observed in
healthy control keratinocytes, consis-
tent with luciferase assay data (Figure 1).
siCOL7D87mut18 inhibited COL7A1D87

by 47% (1 nM), 58% (2 nM), 54% (5 nM),
and 65% (10 nM) in patient fibroblasts,
and by 53, 41, 35, and 52%, respec-
tively, in patient keratinocytes. Ex-
periments on healthy control cells
showed no significant reduction of
COL7A1WT levels by siCOL7D87-
mut18 (Figure 2c).

siCOL7D87mut18, which shows the
strongest specific COL7A1D87 inhibition,
carries a 50-terminal amine modifica-
tion of the sense strand to promote
antisense strand incorporation into the
RNA-induced silencing complex (RISC).
siRNA duplex thermodynamics deter-
mine which strand enters RISC as the
guide strand, and only the antisense
strand can direct cleavage of the sense
mRNA targets (Khvorova et al., 2003).
Avoidance of off-target effects (Grimm,
2009) is another potential benefit of
sense-strand suppressive modification,
which was not specifically addressed
here.

Earlier studies of allele-specific siR-
NAs targeting keratin or collagen genes
achieved 70–95% inhibition of the
mutant allele (Hickerson et al., 2008;
Lindahl et al., 2008; Atkinson et al.,
2011). The structure of the target mRNA
could explain the difficulty in achieving
similarly high inhibitory activity and
specificity here. First, the G/C content
of the D87 region attains 68–73%,

Abbreviations: COL7A1D87, COL7A1 mRNA with deleted exon 87; COL7A1WT, wild-type COL7A1
mRNA; DDEB, dominant dystrophic epidermolysis bullosa; D87, in-frame skipping of COL7A1 exon 87;
IRES, internal ribosome entry site; NC, negative control siRNA; RISC, RNA-induced silencing complex;
siRNA, small interfering RNA; siwt, positive control siRNA; WT, wild type
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downstream from the wild-type (WT) or mutant COL7A1 complementary DNA and the cytomegalovirus (CMV) promoter/enhancer. (b) siRNAs were
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whereas 30–50% G/C in siRNA se-
quences is considered optimal for
allelic discrimination (Grimm, 2009).
Second, the target lies within the mRNA
region encoding the collagenous do-
main of type VII collagen. This region is
rich in short direct repeats (Supplemen-
tary Figure S1 online), which may act as
spurious targets of a given siRNA.
Together with the high overall G/C
content, this also predicts a tendency
for mRNA to form secondary structures
potentially masking siRNA targets (Vert
et al., 2006). Finally, analysis of siRNA
sequences with the Sfold software (http://
sfold.wadsworth.org; Ding and Lawr-
ence, 2003) predicted the thermody-
namics of their secondary structures to
be uniformly unfavorable. Most recur-
rent mutations in DDEB affect the
collagenous domain, including D87
mutations and the well-known single-
nucleotide mutation p.Gly2043Arg
(Supplementary Table S1 online). This
mutation was addressed using 24 siR-
NAs, of which 9 displayed over 40%
inhibition, and none clearly discrimi-
nated between the wild-type (WT) and
mutant alleles (Supplementary Figure
S2a online). The highest specificity to
the p.Gly2043Arg allele was observed
(at 5 nM) for a siRNA with the mismatch
at nucleotide 19; however, in healthy
control cells, this showed severe inhibi-
tion of endogenous COL7A1WT as well
(Supplementary Figure S2b online).

In pachyonychia congenita and epi-
dermolysis bullosa simplex, two domi-
nant genodermatoses, reducing the
mutated protein by 50% allowed phe-
notypic reversion (Cao et al., 2001;
Hickerson et al., 2008). In DDEB,
Fritsch et al. (2009) have shown that
increasing the ratio of WT to mutant
protein improves thermal stability in the
collective of type VII collagen trimers.
Similarly, an incomplete effect of the
splice-site mutation may account for
observed D87 DDEB cases with milder
or pretibial presentations contrasting
with the more frequent, severe prurigi-
nosa phenotype (Supplementary Table

S1 online). The rationale of allele-
specific siRNA usage is thus to deplete
mutant mRNA levels to reduce the
stoichiometry of mutant protein mono-
mers during trimer assembly, and in-
crease functional type VII collagen
levels accordingly. The 58% reduction
in mutant mRNA achieved against CO-
L7A1D87 predicts 35% of new a1(VII)
triplets to exclude mutant chains, versus
only 13% initially (Supplementary
Materials and Methods). At this quanti-
tative threshold, treatment of patients
carrying D87 mutations would be ex-
pected to result in a milder blistering
phenotype. Further investigations of
the functional effects of siRNAs at the
protein and tissue levels will be re-
quired, using animal models engrafted
with human skin equivalents engineered
with DDEB patient cells (Garcia et al.,
2011). Indeed, inhibition of the mutant
COL7A1 allele was analyzed only at
the mRNA level in our study, and the
expected reduction in the levels of the
protein and its effects on in vivo func-
tion need to be formally confirmed.
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