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ABSTRACT 

Let X and Y be Hilbert spaces, and let T : X --* Y be a bounded linear operator 
with closed range. We study the continuity problem of the generalized inverse of T 
and related least squares solutions to the operator equation Tx = y. © Elsevier 
Science Inc., 1997 

1. I N T R O D U C T I O N  

Let X and Y be two Hilbert spaces, let L(X, Y) be the vector space of 
all bounded linear operators T : X ~ Y, and let LC(X, Y) be the set of  all 
T ~ L(X, Y)  such that the range of T, R(T), is closed. In this paper, we shall 
investigate the continuity of  the generalized inverse o f  T. ~.~ !~C(X, Y) and 
the related least squares problem 

IlZx - Nil = min l lTz  - Nil. ( 1 )  
z ~ X  
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The concept of generalized inverses of matrices was first proposed by 
Moore in the 1920s, and a generalization of his original idea to the bounded 
linear operators between Hilbert spaces with closed range was mainly due to 
his student Tseng in the 1930s and 1940s in a series of papers (see [1] for 
more details). It is Nashed [10] who gave a systematical study of the 
perturbation and approximations of generalized inverses of linear operators 
between more general Banach spaces. The theory and computation of 
generalized inverses of matrices (finite dimensional linear operators) is com- 
plete, and several excellent monographs (e.g., [1] and [8]) have summarized 
the modem results in this subfield. 

The perturbation analysis of the generalized inverse is important from the 
viewpoint of both pure and computational mathematics. The book by Stewart 
and Sun [11] presented a complete matrix perturbation theory. With the 
appearance of Wei's first paper [13] on the perturbation analysis of the 
Moore-Penrose generalized inverse of matrices of deficient rank, a series of 
papers [3, 4, 14, 15] have appeared on this subject. Recently the perturbation 
of the generalized inverse of infinite dimensional bounded linear operators in 
Hilbert spaces has been studied in [5, 6, 2]. In [6], error estimates were given 
for small perturbations which preserve the dimension of the null space or the 
range of the original bounded linear operator, and in [2] equivalent condi- 
tions, namely type I and type II perturbations, were proposed for the 
perturbation results. Basically the same results were obtained from different 
points of view, and it was implied in the papers that the generalized inverse is 
not continuous with respect to the operator norm. 

Based on the previous results, we further explore the continuity of the 
map from T to T * in this paper. We shall show that with a new topology on 
LC(X, Y), the generalized inverse is continuous. We also investigate the 
upper semicontinuity of the least squares solutions with respect to the 
operator norm. 

After introducing some concepts in the next section, we present the 
continuity result in Section 3. Section 4 will be devoted to the upper 
semicontinuity of the solution set to the least squares problem (1). 

2. 7(T) AND GENERALIZED INVERSES 

Let T ~ L ( X , Y )  be given with the operator norm IITII = s u p { l l Z x l l :  
Ilxll = 1}, where I[ q is the norm of X or Y induced by its respective 
inner product (- , ' ) .  Let N(T) be the null space of T, and N(T) ± the ortho- 
gonal complement of N(T) in X. 



GENERALIZED INVERSES OF OPERATORS 231 

The number T(T) defined below is needed in the study of the generalized 
inverse of T. Let S M = {x ~ M : I lxl l  = 1} for M ___ X. 

DEFINITION 2.1. Let T ~ L( X, Y ). Define 

3'(T) = iuf{llTxll: x ~ S~(T)I}. 

REMARK 2.1. An equivalent definition is 

3 ' (T)  = inf{ IlZxll: dist( x, N ( T ) )  = 1}, 

where dist(x, N(T))  = inf{llx - yll: y ~ N(T)} is the distance of x to N(T). 
This definition, however, is more general in the setting of Banach spaces. 

Some important properties of T are listed in the following. For more 
details, see the monograph of Kato [9]. 

PROPOSITION 2.1. Let T ~ L( X, Y ). Then 

(i) ~/(r) > 0 i fandonly i f r  ~ LC(X,Y);  
(ii) T(T*) = T(T), where T* is the adjoint o fT .  

DEFINITION 2.2. Let T ~  LC(X,Y).  The bounded linear operator 
T t : y ~ X defined by 

TtTx = x  for x ~ N ( T )  ± 

and 

Try = 0  for y ~ R ( T )  ± 

is called the Moore-Penrose generalized inverse of T. 

It is well know that x = Try is the minimal norm solution to the least 
squares problem (1), and all solutions to (1) constitute the affine space 
Try + N(T). A characterization of T t is given by 

PROPOSITION 2.2. Let T ~ LC(X, Y ). Then Tt  is the unique operator in 
L( Y , X) such that 

T tT  = Pa(rt) and TTt = PR(T), 

where PM is the orthogonal projector on M. 
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The importance of studying 3'(T) arises from the following simple relation 
between T(T) and IIT*II. For a proof, see [5]. 

PROPOSITION 2.3. Let T ~ LC(X, Y). Then 

IIT*II = T ( T )  -1. (2) 

3. THE CONTINUITY OF T* 

It was proved in [5] that the map T ~ T* is continuous at T under the 
operator norm if T is one-to-one or onto. But it is discontinuous elsewhere 
even in the finite dimensional case (see [11]). We shall show that, under a 
new topology for LC(X, Y ) defined by a distance function, the above map is 
continuous everywhere. 

The concept of the distance between two closed subspaces in a Banach 
space was introduced in [9]. Here we state it without the closedness assump- 
tion on the subspaces, in the spirit of Lemma 3.2 of [6]. Suppose X is a 
Banach space, for any two subspaces A and B of X, let 6(A, B ) =  
SUpx ~ sA dist(x, B). 

DEFINITION 3.1. The quantity 

g ( A ,  B) = max{8(A,  B), 8(B,  A)} 

is called the gap between A and B. 

REMARK 3.1. From Lemma 3.2 of[6], 6(A, B) = 6(A, B). Hence, 

8(A ,  B) = B(A,  B).  

PROPOSITION 3.1. The distance function has the following properties: 

(i) ~(A, B) = 8(B ± , A ± ). Hence, 

~ ( A , B )  = 8 ( a  ± , B ± ) .  

(ii) 8(A, B) < 1 implies dim A <~ dim B. Thus, 

~ ( A , B )  < 1  ~ d i m A = d i m B .  
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(iii) ~(A, B) < 1 implies A N B ± = {0}. Therefore, 

g ( A , B )  < 1  =~ ( A A B - ~ ) t . J ( B N A ± )  ={0} .  

Proof. (i) and (ii) are shown in [9]. To prove (iii), note that if x ~ A (~ 
B 1 and x ~= 0, then for y = x/llxll, 

8 ( A ,  B) i> dist(y,  B) = Ilyll = 1. • 

DEFINITION 3.2. Let X and Y be Hilbert spaces and T, S ~ L(X, Y). 
Define 

dl(Z,  S) = ~( N ( T ) ,  N(  S))  + lIT - SII (3) 

and 

d2(T, S) = g ( n ( T ) ,  n ( s ) )  + l I T -  SII, 

each of which is called a distance between T and S. 

(4) 

REMARK 3.2. Since di(T, S) >~ liT - SII for i = 1, 2, the topology de- 
fined by d i is stronger than that defined by the operator norm. 

PROPOSITION 3.2. The map d i : L ( X , Y ) - ~  R + defines a metric on 
L( X, Y )  so that ( L( X, Y ), d~) is a metric space. 

Proof. It is clear that d~(T, S) = di(S, T), and d(T, S) = 0 if and only if 
T = S. To prove the triangle inequality, it is enough to note the fact that for 
any two closed subspaces A, B of a Hilbert space, 

~( A, B) = HPA -- Phil, 

which follows from Theorem 1.6.34 of [9]. 

Now let T, T = T + 3T ~ L ( X , Y )  be given. 

LEMMA 3.1. 

(i) T(T) >I T(T){1 - [B(N(T), N(f))12} 1/2 - 118Tll. 
(ii) T(T)  >/ T(T){1 - [B(R(T), R(T)]2} 1/2 - 118Tll. 

Proof. See [6]. • 
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PROPOSITION 3.3. 

(i) ~(N(T), N(T)) < 1 implies 

j. DING AND L. J. HUANG 

- 3 , ( T ) 8 ( N ( T ) ,  N(T) )  - II~T[I ~< 3'(T) - 3,(T) 

<~ 
"),(T)8(N('F), N(T) )  + IISTI[ 

1 - ~ ( N ( T ) , N ( T ) )  

(ii) 8(R(T), R(T)) < 1 implies 

- T ( T ) 8 ( R ( T ) , R ( T ) )  - I [ ~ T [ l ~  T(T)  - T(T)  

~< 
T ( T ) 8 ( R ( T ) ,  R(T) )  + 118TII 

1 - ~ ( R ( T ) , R ( T ) )  

Proof. The left inequality in (i) is from Lemma 3.1(i) and the inequality 
(1 - aZ) 1/2 >~ 1 - a for 0 ~< a ~< 1. To prove the fight inequality in (i), we 
interchange T and T in Lemma 3.1(i) to get 

7 ( T )  >~ 7 ( T ) { 1 -  [ 8 ( N ( T ) , N ( T ) ) ] 2 }  t/z - II~TI[. 

Since 8 (N( f ) ,  N(T)) < 1, 

T(T)  + 118TII T(T)  + 118TII 

1 - ~ ( N ( T ) , N ( T ) ) '  

from which it follows that 

~(T)  - 7 (T)  
" y ( T ) ~ ( N ( T ) ,  N(T) )  + II~Tll 

1 - ~ (N(T) ,  N(T) )  

The proof of (ii) is similar. • 
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Denote  ~N = ~(N(T), N(T)) and ~s = g(R(T), R(T)). 
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COROLLARY 3.1. 

(i) I f  ~N < 1, then 

IT(T) - T(T)I 
T ( T ) ~ N  + II~TII 

(5) 

(ii) I f  JR < 1, then 

IT(T) - T(T)I < T(T)gn + 118TII 
1 - ~R (6) 

Thus, Y : (L(X,Y) ,  d i) ~ R + is continuous, and L C ( X , Y )  is an open 
subset of L( X, Y ) under the metric d i. 

COROLLARY 3.2. I f  N(T) = N(T) or R(T) = R(T), then 

I~(T)  - T(T)I < 118Tll. 

Since IIT*II = T (T)  -1, it follows that the map T ---) IIT*II is continuous on 
(LC(X,  Y), di). Using the following decomposition, we can show that T ---) T t 
is a continuous map from (LC(X,  Y), d i) to (LC(X,  Y), II II). 

LEMMA 3.2. Let T, T =  T + ST ~ LC( X ,Y  ). Then 

~ t  _ T t = _ ~ t S T T t  + ~ * ( ~ t ) , ( 8 T ) , ( I  _ TT t)  

+ (  I - ~ t ~ ) (  8 T ) , ( T t ) * T  t. 
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THEOREM 3.1. Let X and Y be Hilbert spaces, let T ~ LC(X,Y) ,  and let 
= T + aT ~ L(X,  Y).  Then: 

(0 aN + IlaTII IlZtll < 1 implies that T ~ LC(X,Y) and 

1 
IIft-Ttll~< 1-~N-IIaTIIIITtII 

4- 
[1 - g~ - l laTll llTtll] 2 

+ 1) IITtll~llaTII. 

(ii) gR + IlaTII IITtll < 1 implies that f ~ L C ( X , Y )  and 

ilftllTt_... < ( 1 
1 - gR - 118TIIIITtll 

+ 
[1  - gR - I laTII IITtlI] 2 

+ 1)IITtlI211aTII. 

Proof. It is enough to prove (i). From Lemma 3.1(i), 

Ilftll 
IIrtlf  

1 - gN - Ilarll Ilrtll" 

Thus, Lemma 3.2 gives 

Iif t - Ttll ~< IITtll llTtll IlaTII + llTtll211aTll + llaTll IITtll 2 

1 

~< i - g~ - llaTll IITtll 

4- 

( 1  - '~N --  [[aTll IITtll) ~ 
+ 1) IlZtllellSZll. 

This completes the proof. • 
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COROLLAr~Y 3.3. The map T ~ T* is continuous from the metric space 
(LC(X, Y), d,) to the normed space (LC(Y, X), II II). 

THEOREM 3.2. The map T ~ T t is continuous from (LC(X, Y),  d i) to 
(LC(Y, X), dj), where i ~ j .  

Proof. Since N(T t) = R(T) ± and N(T*) = R(T)  ± , 

dl(Tt,  T*) = g(N(T*) ,  N ( T * ) )  + lIT* - T t l ]  

= g ( n ( T ) "  , a ( z )  ±) + l I T  t - Till 

= g ( n ( ~ ) ,  R ( T ) )  + lIT t - T*II. 

Thus, from Theorem 3.1(ii), there is a constant K such that, for d2(T, T)  
small enough, 

dl(T*, T*) ~< Kd2(T, T),  

which implies that the map T ~ T* is continuous from (LC(X, Y), d 2) to 
(LC(Y, X), dl). Similarly, from R(T t) = N(T) ± and R(T*) = N(T)  rI, we 
have 

d2(T*, T*) ~< Ldl(T, T) 

for some constant L. • 

Before ending this section, we show that the two metrics d 1 and d 2 are 
actually equivalent. For this purpose, we need the following result. Its proof 
is found in [2]. 

LEMMA 3.3. Let T, T = T + 8T ~ L( X, Y ). Then 

T ( T ) 8 ( N ( T ) ,  N ( T ) )  <~ 118Tll, (7) 

~ / ( T ) ~ ( R ( T ) ,  R ( T ) )  <~ 118TII. (8) 

PROPOSITION 3.4. Let T ~ LC(X, Y )  and T n ~ L (X ,  Y) .  Then 
lim n _~ dl(T ~, T)  = 0 i f  and only i f  lim a _~ d2(T ~, T)  = O. 
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eroof. Suppose lim,_.~ dl(T . ,  T )  = O. 
g(N(Tn), N(T) )  ~ O. By Theorem 3.1(i), 

IIT~ - T i l l - - ,  0, 

so IITffll is uniformly bounded. From (8), 

lim 8 ( R ( T ) ,  R(Tn)  ) = O. 
n ...~ oo 

And (8) also gives 

J. DING AND L. J. HUANG 

Then IITn - TII---, 0 and 

3,(T.)8(a(Zn), a(z))  <~ l i T .  - TII, 

which together with (2) implies that 

lim 8 ( R ( T n ) ,  R ( T ) )  = O. 

Therefore, l im , _~  d~(T,, T ) =  0. Similarly, using (7), we can show that 
d2(T n, T )  ~ 0 implies dl(T . ,  T )  ~ O. • 

4. THE UPPER SEMICONTINUITY OF LEAST SQUARES 
SOLUTIONS 

Although the map T - ~  T t is continuous with respect to the metric 
topology d,, that is not the case under the operator norm alone. In this 
section, we first establish the upper semicontinuity of 7 (T)  with respect to 
the usual operator norm. Then we investigate the upper semicontinuity of the 
least squares solutions to the problem (1). 

DEFINITION 4.1. Let B be a Banach space. A real function f :  B -~ R is 
said to be upper semicontinuous at a ~ B if 

lim sup f ( x )  ~ f ( a ) .  
X ---~ a 

A point-to-set map F : B -o 2 B is said to be upper semieontinuous at a ~ B 
if for any e > 0 and r > 0, there is ~ > 0 such that 

F(a + 8~) n Br c V(a) + B,, 
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where 2 B denotes the collection of all subsets of B, and B~ is the open ball 
centered at 0 of radius r in B. 

The next result indicates that if the condition of the following proposition 
is kept satisfied in the perturbation, then limsT ~ o 7(T + ST)  = 0, which 
gives the discontinuity of the generalized inverse. 

PaoPosmon 4.1. I f N ( T )  n N(T) ± ~ {0}, then 

3'(T) ~< 118TII. (9) 

That is, II~tll>~ 1/118TII i f  :~t is well defined. More generally, i f  
8(N(T) ,  N(T))  = 1, then (9) is still true. 

Proof. First suppose N(T)  n N(T)  ± ~ {0}. Then there is x ~ S~<~)~ 
such that Tx = 0. Hence, 

~/ (T)  ~< inf{llZxll: x ~ SN<~)~} ÷ 118TII = 118TII. 

Now if 8(N(T), N(T)) = 1, then 8(N(T) ± , N(T)  ~) = 1 by Proposition 
3.1(i). Therefore, there is a sequence {x,} c SN(~)~ with x, = y,  + z,,  
y, ~ N(T)  l , z n ~ N(T)  such that IIx. - y.II --* 1. From 

I1 - I l y . l l l  = l l l X n l l -  Ilynlll ~ IIx~ -- y~ll ~ 1 

we see that Ily, II ~ 0. Thus, 

IITxnll ~ IITx~ - TN~II + IlZy.II = IITN~II ~ 0. 

This completes the proof. 

THEOREM 4.1. T : (LC(X, Y), II II) -~ a + is upper semicontinuous. 

Proof. From the proof of Proposition 4.1, if 118TII IITtll < 1, then 
8(N(T),  N(T))  < 1. By Proposition 3.3(i), 

T ( T ) 8 ( N ( T ) ,  N ( T ) )  + 118TII 2118TII 
~/(T) - 3 ~ ( T )  >~ ~< 

1 - 8 ( N ( T ) ,  N ( T ) )  1 - l i S T I I  IIT*II " 

Thus y is upper semieontinuous under the operator norm. 
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Now we study the upper semicontinuity of the least squares solutions to 
(1). Let T ~ LC(X,Y) and y ~ Y. Define 

= ~x ~ X:  IITx - yll = minllTz - yll~. M ( T ,  Y) k z E X  l 

Then M is a point-to-set map from LC(X, Y ) X Y to 2 x, 

M(T,  y)  = Try + N ( T ) ,  

and M(T, y) is the solution set of the so-called normal equation 

T*Tx = T*y 

of the problem (1). Let T = T + 8T ~ LC(X,Y) and ~ = y + ~y ~ Y. 

For any nonzero ~ ~ M(T, ~t), there is x ~ M(T, y) 

I I ~ - x l l [ ( l l y l l ÷ l l S y l l  ) 
II~l-----~ ~< IIZ*l12 II~Zll II~II + IlZll + 118Tll 

P roo f .  

and let x = Try + x N. Then 

+llZll[llSyll+llSTII)]k I1~11 . (10) 

Let x N be the orthogonal projection of ~ ~ M(T, ~) onto N(T), 

- x ~ N ( T ) "  = N ( T * T )  ± (ii) 

Subtract T*Tx = T*y from T'T,2 = T*~t, we have 

T*T(~  - x )  = ( ~ T ) * [ y  + (~y - (T + (~T)~] + T * ( S y  - 8T~) .  

Since (T*T)*T*T is the projector onto N(T*T) ± , by (11), 

- x  = (T*T) t { (  ST)*[ y + 8y - (T + 8T)~]  + T*( ~y - (~T~)}. 
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Hence, noting that II(T*T)*II = IIT*II ~, 

I1~ -xll  ~<II(T*T)*II{II(~T)*[ y + 8 y  - i T + 8T)~] I I  

+ IIT*(~y - 8T~ll)} 

<~ IIT*l lZ{l l~Zl l[ l ly l l  + 118Nil + (IITII + 118Tll)ll~ll] 

+llZll(llSyll + 118TII I1~11)}. 

This proves (10). • 

COnOLIARY 4.1. The point-to-set map M : LC(X, Y) × Y ~ 2 x /s upper 
semicontinuous in the sense of  Definition 4.1. 

Using the same technique, we can prove the following general perturba- 
tion result for the consistent linear operator equation Ax = b. 

PROPOSmON 4.2. Let A, A = A + 8 A ~ LC(X, Y ). Suppose b ~ R( A ) 
and b ~ R( A). Then for  any nonzero solution ~ to the equation AYe = b, 
there is a solution x to the equation A x = b such that 

I I~-xl l  ( l l S b l l )  
I1~1------~ ~< IIA*II ~ + 118All . (12) 

Proof. Let x satisfy Ax = b and £ - x ~ N(A)  ± . Then from 

A( £ - x)  + 8A~ = 8b, 

we have 

- x = A t ( $ b  - 8 A ~ ) ,  

which gives (12). • 

5. CONCLUSIONS 

In this paper  we have studied the continuity and the upper semicontinuity 
problem of the generalized inverse of a bounded linear operator on a Hilbert 
space with a closed range and the related least squares problem. We have 
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shown that the generalized inverse is continuous if the perturbed operator is 
close to the original operator not only in the operator norm, but also with 
respect to the null space, and that if only the operator norm is to measure the 
perturbation, we have only the upper semicontinuity for the least squares 
problem. Error estimates under different topologies have been presented. 
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