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ABSTRACT

Let X and Y be Hilbert spaces, and let T: X — Y be a bounded linear operator
with closed range. We study the continuity problem of the generalized inverse of T
and related least squares solutions to the operator equation Tx =y. © Elsevier
Science Inc., 1997

1. INTRODUCTION

Let X and Y be two Hilbert spaces, let L(X,Y) be the vector space of
all bounded linear operators T : X = Y, and let LC(X,Y) be the set of all
T € L(X,Y) such that the range of T, R(T), is closed. In this paper, we shall
investigate the continuity of the generalized inverse of . T, € LC( X,Y) and
the related least squares problem

ITx — yll = min|ITz — yll. (1)
zeX
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The concept of generalized inverses of matrices was first proposed by
Moore in the 1920s, and a generalization of his original idea to the bounded
linear operators between Hilbert spaces with closed range was mainly due to
his student Tseng in the 1930s and 1940s in a series of papers (see [1] for
more details). It is Nashed [10] who gave a systematical study of the
perturbation and approximations of generalized inverses of linear operators
between more general Banach spaces. The theory and computation of
generalized inverses of matrices (finite dimensional linear operators) is com-
plete, and several excellent monographs (e.g., [1] and [8]) have summarized
the modemn results in this subfield.

The perturbation analysis of the generalized inverse is important from the
viewpoint of both pure and computational mathematics. The book by Stewart
and Sun [11] presented a complete matrix perturbation theory. With the
appearance of Weis first paper [13] on the perturbation analysis of the
Moore-Penrose generalized inverse of matrices of deficient rank, a series of
papers [3, 4, 14, 15] have appeared on this subject. Recently the perturbation
of the generalized inverse of infinite dimensional bounded linear operators in
Hilbert spaces has been studied in [5, 6, 2]. In [6], error estimates were given
for small perturbations which preserve the dimension of the null space or the
range of the original bounded linear operator, and in [2] equivalent condi-
tions, namely type I and type II perturbations, were proposed for the
perturbation results. Basically the same results were obtained from different
points of view, and it was implied in the papers that the generalized inverse is
not continuous with respect to the operator norm.

Based on the previous results, we further explore the continuity of the
map from T to T in this paper. We shall show that with a new topology on
LC(X,Y), the generalized inverse is continuous. We also investigate the
upper semicontinuity of the least squares solutions with respect to the
operator norm.

After introducing some concepts in the next section, we present the
continuity result in Section 3. Section 4 will be devoted to the upper
semicontinuity of the solution set to the least squares problem (1).

2. y(T) AND GENERALIZED INVERSES

Let T € L(X,Y) be given with the operator norm [Tl = sup{||Tx||:
llxll = 1}, where || q is the norm of X or Y induced by its respective
inner product (-, - ). Let N(T') be the null space of T, and N(T)* the ortho-
gonal complement of N(T) in X.



GENERALIZED INVERSES OF OPERATORS 231

The number y(T') defined below is needed in the study of the generalized
inverse of T. Let S,, = {x € M :||x|l = 1} for M C X.

DEFINITION 2.1. Let T € L(X,Y). Define
¥(T) = inf{HTxII: x € SN(T)L}.
REMARK 2.1.  An equivalent definition is
y(T) = inf{[ITx|l: dist( x, N(T)) = 1},

where dist(x, N(T)) = inflllx — yll: y € N(T)} is the distance of x to N(T).
This definition, however, is more general in the setting of Banach spaces.

Some important properties of y are listed in the following. For more
details, see the monograph of Kato [9].

PROPOSITION 2.1. Let T € I(X,Y). Then

@ y(T)> 0 ifand only if T € LC(X,Y);
(i) y(T*) = y(T), where T* is the adjoint of T.

DEFINITION 2.2. Let T € LC(X,Y). The bounded linear operator
TT.Y - X defined by

T'Tx = x for xe N(T)*
and
T'y=0 for yeR(T)"

is called the Moore-Penrose generalized inverse of T.

It is well know that x = TJ'y is the minimal norm solution to the least
squares problem (1), and all solutions to (1) constitute the affine space
T’y + N(T). A characterization of T" is given by

PROPOSITION 2.2. Let T € LC(X,Y). Then T" is the unique operator in
L(Y, X) such that

T'T = Ppyqry and TT' = Py,

where Py, is the orthogonal projector on M.
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The importance of studying y(T) arises from the following simple relation
between y(T) and [IT||. For a proof, see [5].

PROPOSITION 2.3. Let T € LC(X,Y). Then

ITH = y(T) " (2)
3. THE CONTINUITY OF T'

It was proved in [5] that the map T — T7 is continuous at T under the
operator norm if T is one-to-one or onto. But it is discontinuous elsewhere
even in the finite dimensional case (see [11]). We shall show that, under a
new topology for LC(X, Y) defined by a distance function, the above map is
continuous everywhere.

The concept of the distance between two closed subspaces in a Banach
space was introduced in [9]. Here we state it without the closedness assump-
tion on the subspaces, in the spirit of Lemma 3.2 of [6]. Suppose X is a
Banach space. for any two subspaces A and B of X, let 8(A, B) =
sup, ¢ s, dist(x, B).

DEFINITION 3.1.  The quantity
5(A, B) = max{8( A, B), 8(B, A)}
is called the gap between A and B.
REMARK 3.1. From Lemma 3.2 of [6], 8(A, B) = 8(A, B). Hence,
5( A, B) = 5( A, B).

PROPOSITION 3.1. The distance function has the following properties:
(i) 86(A, B)=6(B*, At). Hence,

5(A,B) =8(A*,BY).
(i) 8(A, B) < 1 implies dim A < dim B. Thus,

5(A,B)<1 = dim A = dim B.



GENERALIZED INVERSES OF OPERATORS 233
(iti) 8CA, B) < 1 implies A N B* = {0}. Therefore,
5(A,B)<1 = (ANB)uU(BnA*)={0}.

Proof. (i) and (ii) are shown in [9]). To prove (iii), note that if x € A N
B* and x # 0, then for y = x /|||,

8(A, B) > dist(y, B) = llyll = 1. [ ]

DEFINITION 3.2. Let X and Y be Hilbert spaces and T, S € L(X,Y).
Define

d(T,S) = 8(N(T), N(S)) + IIT — sl 3)
and
dyo(T, S) = 8(R(T), R(S)) +IIT — s, (4)

each of which is called a distance between T and S.

REMARK 3.2. Since d(T,S) > IIT — S| for i = 1,2, the topology de-
fined by d, is stronger than that defined by the operator norm.

PROPOSITION 3.2. The map d,: L(X,Y) —» R* defines a metric on
L(X,Y) so that (L(X,Y), d;) is a metric space.

Proof. 1tis clear that d(T, S) = d,(S, T), and d(T, S) = 0 if and only if
T = S. To prove the triangle inequality, it is enough to note the fact that for
any two closed subspaces A, B of a Hilbert space,

§(A, B) = 1P, — Pl
which follows from Theorem 1.6.34 of [9]. (]

Nowlet T, T=T + 8T € L(X,Y) be given.

LEMMA 3.1.

® y(T) > y(THL — [8(N(T), N(T)F}/2 — |I8TIl.
Gi) y(T) = y(TX1 ~ [8(R(T), R(DOPY/2 — |I8T|l.

Proof. See [6]. ]
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PROPOSITION 3.3.
() 3(N(T), N(T)) < 1 implies

~y(T)8(N(T), N(T)) — 18Tl < ¥(T) — v(T)

¥(T)8(N(T), N(T)) + 18Tl
1 - 8(N(T), N(T))

(i) 8(R(T), R(T)) < 1 implies

~y(T)8(R(T), R(T)) — 18Tl < ¥(T) — ¥(T)

- y(T)8(R(T), R(T)) + 18Tl
1 - 8(R(T), R(T))

Proof. The left inequality in (i) is from Lemma 3.1(i) and the inequality
(1 —4®)/? > 1 ~a for 0 < a < 1. To prove the right inequality in (i), we
interchange T and T in Lemma 3.1() to get

(1) > ¥(D{1 - [s(N(D), N(T))lz}w — |87l
Since 8(N(T), N(T)) < 1,

wW(T) < v(T) + 87| __ (@) +llsTl
(1= [s(@). neo)) " 1 AN N

from which it follows that

y(T)8(N(T), N(T)) + 18Tl

V() = (1) < —— 8(N(T), N(T))

The proof of (ii) is similar. [ |
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Denote 8y = 5(N(T), N(T)) and 8, = 8(R(T), R(T)).

COROLLARY 3.1.

@) If 8y < 1, then

y(T) by + 18Tl

V(M) - v(D)l < —F— (5)
i) If 8y < 1, then
_ o +118
() - y()| < XD 10T ®)

1 - &

Thus, v:(I(X,Y),d;) = R" is continuous, and LC(X,Y) is an open
subset of L(X,Y ) under the metric d,.

COROLLARY 3.2. If N(T) = N(T) or R(T) = R(T), then

|v(T) - v(T)| < II8TIl.

Since |IT 7|l = y(T)~!, it follows that the map T — IIT7]l is continuous on
(LC(X,Y), d,). Using the following decomposition, we can show that T — Tt
is a continuous map from (LC(X,Y), d;) to (LC(X,Y), || ID.

LEMMA 32. Let T, T =T+ 8T € LC(X,Y). Then
T'— Tt = —T8TT" + TH(T")*(8T)*(1 - TT)

+(I = TIT)(8T)*(TH)*T.
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_ TuEOREM 3.1.  Let X and Y be Hilbert spaces, let T € LC(X,Y), and let
T=T+ 8T € I{X,Y). Then:

() 8y + ISTINTI < 1 émplies that T € LC(X,Y) and

1
1 -8y — ISTIITI

ITT - Tl < (

1
+
[1 - 8, —usTliT]”

+ 1)||T*||2||5T||.

(i) 8z + ISTIITI < 1 implies that T € LC(X,Y) and

1
1 -6, —l8TIlIT

ITHITT-< (

1

+ " 7 t 1
[1 - 8 — a7l IT"I]

ITH I8,

Proof. 1t is enough to prove (i). From Lemma 3.1(),

It

ITH < — :
1= oy — I8TIITTI

Thus, Lemma 3.2 gives

IT* = TH < ITTNITT ST + IT TIPS TI + 8T IHIT*I?

1
< %
1— &y — I8TIITH

1 2
+ - s + LITHIFNSTI.
(1= &y — I8TIITN)

This completes the proof. u
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COROLLARY 3.3. The map T — T' is continuous from the metric space
(LC(X,Y), d,) to the normed space (LC(Y, X), || ID.

THEOREM 3.2. The map T — T' is continuous from (LC(X,Y), d,) to
(LC(Y, X),d,), where i # j.

Proof. Since N(T') = R(T)* and N(T') = R(T)*,
dy(TH, Ty = §(N(T*), N(TH)) + ITT - Tl
= 8(R(T)" . R(T)*) +IIT* — Tl
= 5(R(T), R(T)) +IT* - T7I.

Thus, from Theorem 3.1(i), there is a constant K such that, for dy(T, T)
small enough,

d(T', T < Kdy(T,T),
which implies that the map T — T' is continuous from (LC(X,Y), d,) to

(LC(Y, X), d,). Similarly, from R(TY) = N(T)* and R(T") = N(T)'!, we
have

d(T*, Ty < Ld(T, T)

for some constant L. n

Before ending this section, we show that the two metrics d, and d, are
actually equivalent. For this purpose, we need the following result. Its proof
is found in [2].

LEMMA 3.3. Let T,T =T + 8T € L(X,Y). Then
y(T)8(N(T), N(T)) < I8TIl, (7)
y(T)8(R(T), R(T)) < 18Tl (8)

PROPOSITION 3.4. Let T € LC(X,Y) and T, € L(X,Y). Then
lim, |, d(T,,T) = 0 if and only if lim,, . dy(T,,T) = 0.
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A' Proof. Suppose lim,_, d(T,,T) = 0. Then [T, — T|l > 0 and
3(N(T,), N(T)) - 0. By Theorem 3.1(),

It} — 1t - o,
so ||IT,]|l is uniformly bounded. From (8),
nh_r,r:o 8(R(T), R(T,)) = 0.
And (8) also gives
¥(T)8(R(T,), R(T)) <IT, - T,
which together with (2) implies that

lim 8(R(T,), R(T)) = 0.

Therefore, lim,, . do(T,,T) = 0. Similarly, using (7), we can show that
dy(T,,T) — 0 implies d(T,,T) = 0. [ ]

4. THE UPPER SEMICONTINUITY OF LEAST SQUARES
SOLUTIONS

Although the map T — T' is continuous with respect to the metric
topology d;, that is not the case under the operator norm alone. In this
section, we first establish the upper semicontinuity of y(T') with respect to
the usual operator norm. Then we investigate the upper semicontinuity of the
least squares solutions to the problem (1).

DEFINITION 4.1.  Let B be a Banach space. A real function f: B — R is
said to be upper semicontinuous at ¢ € B if

limsupf(x) < f(a).

xX—a

A point-to-set map F : B — 28 is said to be upper semicontinuous at @ € B
if for any € > 0 and r > 0, there is 8 > 0 such that

F(a + By) N B, C F(a) + B.,
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where 2% denotes the collection of all subsets of B, and B, is the open ball
centered at 0 of radius r in B.

The next result indicates that if the condition of the following proposition
is kept satisfied in the perturbation, then limy; ,, y(T + 8T) = 0, which
gives the discontinuity of the generalized inverse.

ProposITION 4.1.  If N(T) N N(T)* # {0}, then

y(T) < 18T (9)

That is, NT—_‘_TH> 1/18TI if Tt is well defined. More generally, if
S(N(T), N(T)) = 1, then (9) is still true.

Proof. First suppose N(T) N N(T)* # {0}). Then there is x € Snery-
such that Tx = 0. Hence,

y(T) < inf{lITxl: x € Syey:} + I8TI = ISTI.

Now if 8(N(T), N(T)) = 1, then 8(N(T)* , N(T)*) = 1 by Proposition
3.1(). Therefore, there is a sequence {x,} C Sy with x, =y, + z,,
y, € N(T)*, z, € N(T) such that ||x, — y,ll > 1. From

[T =Ny ll] =[xl = NIy ll] < llx, =yt = 1
we see that ||y, |l = 0. Thus,
1Tz, Il < ITx, — Ty,ll + ITy,ll = [ITy,|l — 0.
This completes the proof. ]

TueoreM 4.1. vy :(LC(X,Y), |l ID = R* is upper semicontinuous.

Proof. From the proof of Proposition 4.1, if |87l IT*) < 1, then
8(N(T), N(T)) < 1. By Proposition 3.3(),

y(T)8(N(T), N(T)) + 18Tl - 2/l87|l
1 - 8(N(T), N(T)) S 1-lsTiiT”

v(T) — ¥(T) >

Thus vy is upper semicontinuous under the opérator norm.



240 J. DING AND L. J. HUANG

Now we study the upper semicontinuity of the least squares solutions to
(1). Let T € LC(X,Y) and y € Y. Define

M(T,y) = {x € X:ITx — yll = min||Tz - yll}.
zeX

Then M is a point-to-set map from LC(X,Y) X Y to 2%,
M(T,y) =Tty + N(T),
and M(T, y) is the solution set of the so-called normal equation
T*Tx = T*y
of the problem (1). Let T=T + 8T € LC(X,Y) and § =y + 8y € Y.

THEOREM 4.2. For any nonzero ¥ € M(T, i), there is x € M(T, y)
such that

E — x|l
izl

iyl + oyl

112
< |IT7|| [lISTll( H

+1ITI + |I6Tl|)

+||T||(|—|-|ic_i”|| +||6TII)]. (10)

Proof. Let xy be the orthogonal projection of ¥ € M(T, ) onto N(T),
and let x = T'y + x. Then

¥—xeN(T)" =N(T*T)". (11)
Subtract T*Tx = T*y from T*Tx = T*y we have
T*T(% — 1) = (8T)*[y + 8y — (T + 8T)E| + T*(8y — 8T%).
Since (T*T)'T*T is the projector onto N(T*T)* , by (11),

% ~x=(T*T){((8T)*[y + 8y — (T + 8T)x] + T*(8y — 6T%))}.
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Hence, noting that [(T*T)*|| = IT|?,
1z - =il <l(T*1) ' I{l8T)* [y + 8y — (7 + 8T)#]|
+||T*(8y — 8Tz}
< ITHP{ISTI N gl + 8yl + (ITI + N8TIIZN]
+ITI(ISyll + II8TI ).

This proves (10). [

COROLLARY 4.1.  The point-to-set map M : LC(X,Y) X Y — 2% is upper
semicontinuous in the sense of Definition 4.1.

Using the same technique, we can prove the following general perturba-
tion result for the consistent linear operator equation Ax = b.

PROPOSITION 4.2. Let A, A = A + 8A € LC(X,Y). Suppose b € R(A)
and b € R(A). Then for any nonzero solution X to the equation AX = b,
there is a solution x to the equation Ax = b such that

Iz~ ||A*||("—5_bﬂ + naAn). (12)
1=l x|
Proof. Let x satisfy Ax = b and X — x € N(A)* . Then from
A(% — 1) + A% = 6b,
we have
X —x = A'(8b — 8A%),
which gives (12). ]

5. CONCLUSIONS

In this paper we have studied the continuity and the upper semicontinuity
problem of the generalized inverse of a bounded linear operator on a Hilbert
space with a closed range and the related least squares problem. We have
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shown that the generalized inverse is continuous if the perturbed operator is
close to the original operator not only in the operator norm, but also with
respect to the null space, and that if only the operator norm is to measure the
perturbation, we have only the upper semicontinuity for the least squares
problem. Error estimates under different topologies have been presented.
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