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SUMMARY
The JAK2V617F mutation is associated with distinct myeloproliferative neoplasms, including polycythemia
vera (PV) and essential thrombocythemia (ET), but it remains unclear how it generates disparate disorders.
By comparing clonally-derived mutant and wild-type cells from individual patients, we demonstrate that
the transcriptional consequences of JAK2V617F are subtle, and that JAK2V617F-heterozygous erythroid
cells from ET and PV patients exhibit differential interferon signaling and STAT1 phosphorylation. Increased
STAT1 activity in normal CD34-positive progenitors produces an ET-like phenotype, whereas downregula-
tion of STAT1 activity in JAK2V617F-heterozygous ET progenitors produces a PV-like phenotype. Our results
illustrate the power of clonal analysis, indicate that the consequences of JAK2V617F reflect a balance
between STAT5 and STAT1 activation and are relevant for other neoplasms associated with signaling
pathway mutations.
INTRODUCTION

The myeloproliferative neoplasms (MPNs) are hematological

malignancies characterized by a chronic clinical course and

a risk of thrombosis and transformation to acute leukemia. These

disorders are an attractive model for understanding the earliest

stages of cancer development because many patients present

at an early stage with an incidental abnormal blood count, the

landscape of causative somatic mutations underpinning the

disorders is increasingly well understood and tumor cells can

be grown and differentiated in vitro from single progenitor cells.

The two most common MPNs are polycythemia vera (PV), in

which patients present with a raised red cell mass sometimes

associated with increased platelet and white cell counts, and

essential thrombocythemia (ET), which is defined by an elevated

platelet count but normal red cell mass.
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TheMPNs result from transformation of a multipotent hemato-

poietic progenitor (Adamson et al., 1976; Delhommeau et al.,

2007; Fialkow et al., 1981; Jamieson et al., 2006). In 95% of

patients with PV and 60% of those with ET, an identical somat-

ically acquired mutation is found in the tyrosine kinase, JAK2

(Baxter et al., 2005; James et al., 2005; Kralovics et al., 2005a;

Levine et al., 2005). This V617F mutation results in dysregulated

kinase activity of JAK2 and produces ligand-independent activa-

tion of receptor signaling in cytokine-dependent cell lines. It has

been suggested that expression of a homodimeric type I

cytokine receptor provides a scaffold necessary for optimal

signaling by mutant JAK2 (Lu et al., 2008; Lu et al., 2005) and

several signaling cascades are activated by mutant JAK2,

including the STAT5, MAPK, and PI3K pathways (James et al.,

2005; Kralovics et al., 2005a; Laubach et al., 2009; Levine

et al., 2005; Oku et al., 2010). Of these, the STAT5 pathway
ogenesis of JAK2V617F-positive MPNs and indicate that the
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Figure 1. Strategy for Analysis of Paired Normal and JAK2V617F Samples from MPN Patients

BFU-E colonies were grown from 20 ET and 16 PV patients in methylcellulose media supplemented with 0.01 U/ml erythropoietin, individually plucked and gen-

otyped for JAK2V617Fmutation burden. Up to 20 wild-type and V617F-heterozygous colonies were pooled and subjected to further analysis. See also Figure S1.
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has been shown to be necessary and sufficient for at least some

aspects of the MPN phenotype in vitro and in vivo (Funakoshi-

Tago et al., 2010; Garcon et al., 2006; Grebien et al., 2008; Ilaria

et al., 1999). Drosophila studies have also revealed a noncanon-

ical pathway bywhich JAK2 regulates chromatin (Shi et al., 2006;

Shi et al., 2008) and a direct nuclear function for JAK2 as

a histone H3 kinase has recently been reported (Dawson et al.,

2009). The JAK2V617F mutation is sufficient to cause an MPN

phenotype in mouse models (Akada et al., 2010; Lacout et al.,

2006; Li et al., 2010; Marty et al., 2010; Mullally et al., 2010; Tiedt

et al., 2008; Wernig et al., 2006; Xing et al., 2008; Zaleskas et al.,

2006) and, taken together, existing data demonstrate that muta-

tion of JAK2 plays a central and early role in MPN pathogenesis.

One fundamental, unresolved question is how the samemuta-

tion in JAK2 can give rise to phenotypically distinct disorders

such as ET and PV. Homozygosity for the mutation is common

in JAK2V617F-positive PV but rare in JAK2V617F-positive ET

(Scott et al., 2006), thus raising the possibility that increased

signaling through JAK2V617F may be responsible for the PV

phenotype. However, attempts to identify different signaling

consequences in ET and PV have not yielded consistent results

using western blotting (Heller et al., 2006), immunohistochem-

istry (Grimwade et al., 2009; Teofili et al., 2007), or expression

profiling (Berkofsky-Fessler et al., 2010; Goerttler et al., 2005;

Kralovics et al., 2005b; Laubach et al., 2009; Pellagatti et al.,

2003; Puigdecanet et al., 2008; Slezak et al., 2009; Tenedini

et al., 2004). This is likely to reflect several issues that complicate

interindividual comparisons including constitutional variation in

transcript levels among normal individuals (Stranger et al.,

2005; Stranger et al., 2007), the widely varying proportions of

wild-type and mutant clones present in samples obtained from

different patients (Dupont et al., 2007; Scott et al., 2006) and

treatment differences across patient cohorts. Such difficulties

undoubtedly confound similar laboratory studies of other

cancers as well, but are generally difficult to identify or quantify

and have therefore often not been formally evaluated.

To circumvent these issues, we took advantage of the trac-

table clinical and laboratory features of MPNs to devise

a strategy based on analysis of clonally-derived cells genotyped
Can
for JAK2 mutation status. This approach allows comparison of

pure populations of phenotypically equivalent mutant and wild-

type cells grown from the same patient under identical condi-

tions, and has allowed us to address the mechanisms respon-

sible for the different phenotypic consequences of the JAK2

mutation in ET and PV.

RESULTS

JAK2V617F-Associated Transcriptome Changes
Are Less Marked than Those Due to Interindividual
Differences and Can Be Identified by Clonal Analysis
In patients with MPNs, erythroid colonies containing thousands

of cells can be grown by in vitro culture in semisolid media.

Each colony represents the in situ expansion of a single erythroid

progenitor cell and so reflects the genetic landscape of the

initiating cell. Because JAK2 mutant and wild-type progenitor

cells coexist in the peripheral blood of patients with ET and PV,

colonies from both genotypes can be grown in the same exper-

iment, individually picked and typed for presence or absence of

the V617Fmutation, pooled by genotype, and studied for pheno-

typic differences (Figure 1). This strategy enables direct compar-

ison of mutant and wild-type cells within a patient, thereby

controlling for differences in age, sex, treatment, germline

genetic background, experimental factors, and other confound-

ing variables. Laboratory assays that can be applied to pheno-

type such colonies are flexible and wide-ranging: in this study,

we present results of transcriptional profiling, conventional and

intracellular flow cytometry, western immunoblotting, as well

as immunohistochemistry.

A total of 5302 BFU-E colonies from 36 MPN patients (20 ET

and 16 PV; Table S1 available online) were grown, collected,

genotyped, and pooled based on presence or absence of the

JAK2V617F mutation. For each patient a pool of JAK2V617F-

heterozygous erythroid colonies was compared to a pool of

JAK2V617F-negative colonies using gene expression microar-

rays. We chose to study erythroid cells because it is the

presence or absence of a raised red cell mass that is the key

distinction between PV and ET. The high erythropoietin
cer Cell 18, 524–535, November 16, 2010 ª2010 Elsevier Inc. 525
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concentrations normally used in erythroid colony assays may

mask transcriptional consequences of the JAK2 mutation, and

so colonies were grown in 0.01 U/ml erythropoietin, a concentra-

tion shown to maximize the difference in expression of a known

JAK/STAT target (PIM1) between mutant and wild-type colonies

(Figure S1A). Comparison of colonies with and without the

JAK2V617F mutation revealed no overt differences in colony

morphology or size (Figure S1B), and no detectable differences

in the degree of erythroblast differentiation (assessed by GPA

and CD71 expression and morphological analysis of cytospins)

(Figures S1C and S1D), demonstrating that colonies from the

two genotypes represented comparable stages of erythroid

development. Gene set enrichment analysis did not show any

enrichment of erythroid differentiation genes among genes upre-

gulated in mutant colonies compared to wild-type colonies

(p = 0.2) or among mutant PV colonies compared to mutant ET

colonies (p = 0.19).

Unsupervised clustering analysis of expression profiles from

the two classes of colony demonstrated that JAK2 mutant

colonies were more closely related to wild-type colonies from

the same patient than to mutant colonies from other patients

(Figure 2A). There was no clustering based on other parameters,

such as diagnosis, therapy, age, or gender. To ensure that this

pattern of clustering did not reflect simultaneous processing of

paired samples from a given patient, repeat blood samples

were drawn from four individuals and subjected to the entire

process ab initio. The resulting expression profiles still revealed

close clustering between samples derived from the same

patient, with samples of the same genotype from the same

patient clustering closer yet (Figure S2A). Moreover, the ratio

of gene expression between the V617F-heterozygous and

wild-type colonies for all genes revealed strong concordance

in experiments carried out independently (Figure S2B). These

results demonstrate first that variability attributable to interassay

differences was minimal, and second that the transcriptional

consequences of the JAK2 mutation are less marked than

normal interindividual variation.

To identify V617F-associated genes common to both PV and

ET, expression profiles derived from all 36 patients were exam-

ined to identify genes consistently dysregulated in V617F-hetero-

zygous colonies relative to autologous wild-type colonies. After

adjustment for age, gender, and therapy, and controlling the false

discovery rate (FDR) at 10% for multiple hypothesis testing,

expression levels of 201 genes were increased in V617F-hetero-

zygous cells and those of 22 genes were reduced (minimum fold

change, 1.3; p values% 0.0034; Figures S2C and S2D). Gene set

enrichment analysis (GSEA) was applied to a preranked gene list

ordered according to the significance with which they were

differentially expressed in mutant and wild-type colonies.

Components of the erythropoietin signaling pathway (net enrich-

ment score [NES] = 1.51; q = 0.02) and previously reported

targets of STAT5A signaling (NES = 1.40; q = 0.09) (Olthof

et al., 2008) were enriched among genes upregulated in mutant

colonies (Figure 2B). Array results from individual patients for

known JAK/STAT targets (PIM1 and CISH) showed upregulation

associated with presence of the JAK2 mutation in most (but not

all) patients and were confirmed by quantitative RT-PCR in at

least five PV and five ET patients (Figure 2C). Consistent with

these data, nuclear pSTAT5 was increased in JAK2V617F-
526 Cancer Cell 18, 524–535, November 16, 2010 ª2010 Elsevier Inc
heterozygous but not wild-type erythroblasts from both PV and

ET patients (Figure 2D).

Together these data demonstrate that the effect of the V617F

mutation on the transcriptome is surprisingly subtle, and less

than the influence of interindividual variation. However, compar-

ison of clonally-derived mutant and wild-type cells from each

patient permits identification of mutation-associated expression

changes.

JAK2V617F-Heterozygous Erythroid Cells from ET
and PV Patients Exhibit Differential Interferon
Signaling and STAT1 Phosphorylation
We next investigated whether gene expression changes asso-

ciated with JAK2V617F-heterozygous erythroid colonies were

the same in patients with ET and PV. After adjustment for

potential confounders including age, gender, and therapy,

a linear mixed effects (LME) modeling algorithm was applied

to the data set to identify genes for which a significant interac-

tion existed between JAK2 mutation status and MPN subtype

(i.e., ET or PV). This type of analysis has the advantage of allow-

ing for correction of interindividual variability without the need

to explicitly model it (Li et al., 2004). Controlling the FDR at

10%, a total of 171 genes exhibited significant interaction, all

of which fell into one of four basic patterns of gene behavior

(Figure S3A): (1) genes upregulated in JAK2 mutant

erythroblasts specifically in ET but not PV (n = 83); (2) genes

downregulated in JAK2 mutant erythroblasts specifically in ET

but not PV (n = 21); (3) genes upregulated in JAK2 mutant eryth-

roblasts specifically in PV but not ET (n = 40); and (4) genes

downregulated in JAK2 mutant erythroblasts specifically in PV

but not ET (n = 24) (p % 0.0028). A hierarchical clustering

showing these combined 171 genes and their ability to subdi-

vide the PV patients from the ET patients is shown in a heat

map (Figure 3A). Linear discriminant analysis and leave-one-

out cross-validation using the 12 most statistically significant

genes resulted in correct classification of 33/36 (92%) of the

patients; an identical classification rate was determined using

the Stanford PAMR software. Taken together, these data

demonstrate cell-intrinsic differences in JAK2V617F-heterozy-

gous erythroblasts from PV and ET.

To investigate pathways associated with JAK2V617F expres-

sion in ET and PV, GSEA was applied to the entire gene list

ranked in order from those ‘‘most significantly up-regulated in

association with JAK2V617F in ET, compared to PV’’ to those

‘‘most significantly up-regulated in association with JAK2V617F

in PV, compared to ET.’’ At a FDR cut-off of 20%, 23 gene sets

were enriched for genes upregulated in ET, of which seven

were related to interferon signaling whereas 0/25 gene sets en-

riched for genes upregulated in PV were interferon related (Fig-

ure 3B, Table S2). We then looked for interferon-regulated genes

among the genes significantly upregulated by JAK2V617F in an

ET-selective or in a PV-selective manner. Interferon regulated

genes were defined by their presence in the Interferome data-

base (Samarajiwa et al., 2009), a group of manually curated

gene sets comprising known IFNa and IFNg target genes. Of

the 83 genes upregulated in an ET-selective manner, 26 were

IFN targets (8 IFNg targets, 2 IFNa targets, and 16 targets of

both). By contrast, only one of 40 genes upregulated in a PV-

selective manner were targets of either interferon (Table S4).
.



Figure 2. JAK2V617F-Associated Transcriptional Changes Are Less than Those Due to Interindividual Differences and Include Activation of
STAT5 Signaling

(A) Dendrogram constructed from unsupervised hierarchical clustering of all 72 data sets (paired wild-type and V617F-heterozygous data sets from 20 ET and

16 PV patients) using Pearson correlation. Data sets from PV patients (listed PV.1–PV.16) are depicted as light red for expression profiles from wild-type eryth-

roblasts and dark red for expression profiles from V617F-heterozygous erythroblasts, with each patient connected by a line to their two-paired expression

profiles. Data sets for ET patients (ET.1–ET.20) are similarly depicted as light blue for expression profiles fromwild-type erythroblasts and dark blue for expression

profiles from V617F-heterozygous erythroblasts.

(B) Gene set enrichment analysis for genes significantly associated with V617F mutation across all MPN patients. Enrichment was seen for gene sets comprised

of components of the erythropoietin pathway and for STAT5A targets.

(C) qPCR validation of PIM1 andCISH upregulation in V617F-heterozygous erythroblasts. Fold increase represents the ratio of gene expression in V617F-hetero-

zygous compared to wild-type erythroblasts, with each data point representing an individual ET (blue) or PV (red) patient.

(D) Immunocytochemical staining of cytospins of wild-type and V617F-heterozygous BFU-E pools from PV and ET patients (left panel). Histograms show signif-

icantly higher numbers of cells positive for pY694-STAT5 in V617F-heterozygous colonies compared to wild-type colonies in both PV and ET (right panel). Scale

bars represent 5 mm. Results represent the mean ± SD for three PV and three ET patients. See also Figure S2.
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Real-time qPCR confirmed increased transcript levels of five

known IFNg target genes (IFI44L, GBP2, IRF1, HLA-F, IFITM3)

in V617F-heterozygous relative to autologous wild-type erythro-

blasts in 10 ET patients but not in 9 PV patients (Figure 3C).

These results demonstrate that JAK2V617F is associated with

enhanced IFN signaling, predominantly involving the IFNg
Can
pathway, in erythroblasts from patients with ET but not in those

from patients with PV.

Wild-type JAK2 binds the IFNRG1 component of the IFNg het-

erodimeric receptor (Ihle, 1994; Parganas et al., 1998; Silvennoi-

nen et al., 1993), and our results suggest that JAK2V617F

enhances activity of this pathway in JAK2 mutant erythroblasts
cer Cell 18, 524–535, November 16, 2010 ª2010 Elsevier Inc. 527



Figure 3. . Activation of Interferon Signaling and STAT1 Phosphorylation in JAK2V617F-Heterozygous Erythroblasts from Patients with ET

but Not Those with PV

(A) Hierarchical clustering of V617F-associated expression profiles of all 36 patients according to the 171 genes that showed significant interaction between the

V617F mutation and each disease class (i.e., PV or ET). Each gene is expressed as a ratio of expression in V617F-heterozygous to autologous wild-type sample.

Bars at the top of the graph display disease phenotype for each patient (blue: ET; red: PV).

(B) GSEA demonstrates that targets of interferon signaling are enriched among genes upregulated by JAK2V617F in ET but not PV.

(C) Real-time quantitative RT-PCR analysis of five IFNg target genes (IFI44L,GBP2, IRF1,HLA-F, IFITM3) in V617F-heterozygous and wild-type colonies from ET

patients (n = 10) and PV patients (n = 9). Fold increase represents the ratio of gene expression in V617F-heterozygous relative to autologous wild-type erythro-

blasts, with each data point representing an individual ET (blue) or PV (red) patient. Closed points represent patients used in the gene expression profiling; open

points represent a patient from an independently derived validation cohort.

(D) Intracellular flow cytometry shows elevated expression of pY701-STAT1 in V617F-heterozygous BFU-E colonies relative to autologous wild-type colonies

from ET patients (n = 6), and not in PV patients (n = 5).

(E) pY701-STAT1 staining of cytospins of wild-type and V617F-heterozygous BFU-E pools from PV and ET patients (left panel). Histogram depicts increase in

percentage of cells positive for pSTAT1 in V617F-heterozygous colonies from ET patients only compared to PV (right panel). Scale bars represent 5 mm. Results

represent the mean ± SD for three PV and three ET patients. See also Figure S3.
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from ET patients. Indeed, relative to expression of wild-type

JAK2, expression of JAK2V617F in g2A cells (which lack endog-

enous JAK2) resulted in increased STAT1 phosphorylation on the

tyrosine-701 residue (pSTAT1) in response to IFNg (Figure S3B).

Similar results were obtained using 293T cells (Figure S3C).

These data demonstrate that, analogous to its well-documented

effects in conferring cytokine hypersensitivity on type I homodi-

meric cytokine receptors (Lu et al., 2008; Lu et al., 2005),

JAK2V617F also enhances signaling from IFNg receptors.

To investigate the mechanisms responsible for the striking

lack of interferon signaling in JAK2V617F-heterozygous erythro-

blasts from PV patients, we focused on STAT1 because it is

essential for IFNg receptor signaling (Gough et al., 2010). Levels

of pSTAT1 were measured in mutant and wild-type erythroblasts

from ET and PV patients using intracellular flow cytometry. Rela-

tive to autologous erythroblasts, elevated expression of pSTAT1

was seen in JAK2V617F-heterozygous erythroblasts from all six

ET patients tested but not in any of five PV patients (Figure 3D).

Consistent with these results, pSTAT1was detected by immuno-

fluorescence in the nucleus of JAK2 mutant erythroblasts from

ET but not PV patients (Figure 3E). Immunoblotting revealed no

differences in total STAT1 levels between mutant and wild-type

erythroblasts in either disease (Figure S3D).

These data demonstrate that JAK2V617F-heterozygous PV

erythroblasts lack detectable pSTAT1 and therefore provide

a mechanism for the differential activation of IFN signaling path-

ways in ET and PV.
Increased STAT1 Activity Produces an ET-Like
Phenotype with Enhanced Megakaryocytic
Differentiation and Restrained Erythroid Differentiation
The results described above raised the possibility that differences

in the level of STAT1 activity may contribute to the distinct biolog-

ical features of ET and PV. ET is characterized by increasedmega-

karyopoiesis whereas the dominant feature of PV is enhanced

erythropoiesis. We therefore assessed the effect of altering

STAT1 activity on megakaryocytic and erythroid differentiation.

Lentiviral constructs were used to express wild-type or consti-

tutively active STAT1 (STAT1C) (Liddle et al., 2006) in the hema-

topoietic progenitor cell line K562, which was then induced to

undergomegakaryocytic or erythroid differentiation by exposure

to phorbol 12-myristate 13-acetate (PMA) or hemin respectively.

Transduction efficiencies for all constructs were >95% as deter-

mined by GFP positivity by FACS, and expression levels of exog-

enous STAT1 and STAT1C were equivalent but pSTAT1 levels

were only increased in cells expressing STAT1C (Figure 4A).

Low concentrations of PMA (insufficient to generate detectable

megakaryocytic differentiation of unmodified K562 cells)

induced substantial megakaryocytic differentiation of K562 cells

expressing STAT1C but not those expressing STAT1. K562 cells

expressing STAT1C upregulated the megakaryocytic markers

CD41 (Figure 4B), CD61 (Figure S4A) and GPIX (Figure 4C) and

also developed increased DNA ploidy (Figure 4D and Fig-

ure S4B). Exposure to hemin induced erythroid differentiation

as indicated by increased levels of g-globin transcripts and he-

moglobinization. However, the increases in g-globin transcripts

and hemoglobin levels were both inhibited in K562 cells express-

ing STAT1C (Figures 4E and 4G). These results demonstrate that
Can
increased STAT1 activity in K562 cells results in enhanced

megakaryocytic and repressed erythroid differentiation.

To confirm our results in primary hematopoietic progenitors,

purified CD34+ cord blood cells were infected with lentiviruses

expressing STAT1 or STAT1C and then grown in conditions

promoting either megakaryocytic or erythroid differentiation. At

day 3 postinfection, pSTAT1 was readily detected in cells ex-

pressing STAT1C but not in those expressing STAT1 (Figure 5A).

No differences in growth kinetics were detected in cells express-

ing either STAT1 isoformwhen cultured in either megakaryocytic

or erythroid conditions (Figure 5B). However, expression of

STAT1C increased the proportion of cells expressing the mega-

karyocytic markers CD41 (Figure 5C and Figure S5A), CD61 (Fig-

ure 5D and Figure S5B) and GPIX (Figure 5E), and also increased

the proportion of polyploid cells (Figure 5F and Figure S5C).

Moreover, expression of STAT1C resulted in a reduced propor-

tion of GPA+CD71+ erythroid cells (Figure 5G and Figure S5D)

and reduced levels of g-globin transcripts (Figure 5H). These

results accord with our K562 data and demonstrate that

increased STAT1 activity in primary hematopoietic progenitors

is sufficient to produce an ET-like phenotype with enhanced

megakaryocytic and reduced erythroid differentiation.

Downregulation of STAT1 Activity in JAK2V617F+

Progenitors from ET Patients Results in a PV-Like
Phenotype with Increased Erythroid and Reduced
Megakaryocytic Differentiation
To test the hypothesis that increased STAT1 activity constrains

erythropoiesis in patients with ET, a dominant negative form of

STAT1 (STAT1DN) was expressed in CD34+ hematopoietic stem

and progenitor cells derived from patients diagnosed with ET.

Toperformtheseexperimentsataclonal level,CD34+progenitors

were isolated fromtwoETpatients, infectedwitha lentiviruscontain-

inganemptyvector (VA)orexpressingacDNAencodingadominant

negative form of STAT1 (STAT1DN) in which the Tyr701 residue

was mutated to a phenylalanine (Walter et al., 1997). Infected cells

were subsequently sorted at one cell per well into media capable

of supporting both erythroid and megakaryocytic differentiation.

After 7 days in culture each clone was genotyped to identify

JAK2V617F mutant clones, which were subsequently expanded

in fresh media for an additional 7–14 days (Figure 6A). Within

3 weeks, three distinct categories of GFP+ JAK2V617F+ clones

were evident: GPA-expressing erythroid clones, CD41-expressing

megakaryocytic clones, and mixed erythromegakaryocytic clones

comprised of cells expressing GPA or CD41 (Figure 6B). In both

ET patients examined, the percentage of GFP+ erythroid clones

derived from cells infected with the STAT1DN lentivirus was

increased and that of the megakaryocytic clones was decreased

compared to cells infected with the empty vector (p < 0.05,

Fisher-Freeman-Halton test) (Figure6C). These resultsdemonstrate

that STAT1 activity is necessary to repress erythropoiesis in

JAK2V617F-heterozygous ET progenitors, and that reducing

STAT1 activity results in a switch to a PV-like phenotype with

increased erythroid and reduced megakaryocytic differentiation.

DISCUSSION

In this study, we address the apparent paradox that an identical

JAK2 mutation is associated with different clinical phenotypes.
cer Cell 18, 524–535, November 16, 2010 ª2010 Elsevier Inc. 529



Figure 4. STAT1 Activation Enhances Megakaryocytic Differentiation and Inhibits Erythroid Differentiation in K562 Cells

(A) Western immunoblot shows increased pY701-STAT1 expression in K562 cells transduced with a constitutively active form of STAT1 (STAT1C), compared to

cultures transduced with an empty vector (VA) or wild-type STAT1 cDNA (STAT1WT).

(B) Representative FACSprofiles showing that PMA treatment results in increased numbers of CD41-expressing cells in the STAT1C-infected. Also note concom-

itant increase in cell size as assessed by forward scatter (FSC), consistent with amegakaryocytic-like phenotype. Results are representative of three independent

experiments.

(C) Real-time quantitative RT-PCR of PMA-treated K562 cells shows increased expression of GpIX transcripts in STAT1C-infected K562 cultures relative to VA

and STAT1WT-infected control cultures. Error bars represent standard deviation for three independent experiments.

(D) PMA treatment results in increased numbers of polyploid (>4n) cells in STAT1C-infected K562 cultures. Error bars represent standard deviation for three inde-

pendent experiments.
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Figure 5. STAT1 Activation Enhances

Megakaryocytic Differentiation and Inhibits

Erythroid Differentiation in Normal Human

Progenitors

(A) Intracellular flow cytometry to detect pSTAT1

in cord blood CD34+ cells after transduction

with lentiviruses expressing wild-type STAT1

(STAT1WT) or constitutively active STAT1C

(STAT1C). Presence of pY701-STAT1 was

detected in GFP+ subpopulation of STAT1C-trans-

duced cultures only.

(B) STAT1WT- and STAT1C-infected cells were

cultured in megakaryocytic differentiation condi-

tions (blue) or erythroid differentiation conditions

(red) (refer to Supplemental Experimental Proce-

dures). Total numbers of GFP+ cells during

12 days of culture under both differentiation condi-

tions are shown. Error bars represent standard

deviation for three independent cultures.

(C–F) Expression of STAT1C in cord blood-derived

CD34+ cells grown in conditions supporting

megakaryocyte differentiation result in increased

numbers of GFP+CD41+ cells (C), increased

numbersofGFP+CD61+cells (D), increasedexpres-

sion ofGpIX transcripts (E), and increased numbers

of polyploid (>4n) cells (F). Error bars represent

standard deviation for three independent cultures.

The data are representative of two independent

experiments.

(G–H) Expression of STAT1C in CD34+ cells grown

in conditions supporting erythroid differentiation

resulted in decreased numbers of GFP+GPA+

CD71+ cells (G), and decreased expression of

g-globin (H). Results represent mean ± SD for

three independent cultures. The data are repre-

sentative of two independent experiments. See

also Figure S5.

Cancer Cell

Differential STAT1 Activity in JAK2-Mutant MPN
Using a strategy based on analysis of clonally derived and geno-

typically defined cell populations, we have circumvented the

problems associated with interindividual comparison of expres-

sion profiles. Our results illuminate the pathogenesis of the

MPNs and are also of broad relevance for cancer biology.

We report the surprising finding that, in the vast majority of PV

and ET patients, the expression profiles of JAK2V617F-positive

erythroid cells are more closely related to wild-type cells from
(E) Real-time quantitative RT-PCR demonstrating lower levels of g-globin transcripts in STAT1C-infected K

control cultures after erythroid differentiation with hemin. Results represent mean ± SD for three independe

(F) o-Dianisidine staining showing decreased numbers of hemoglobin-positive cells in STAT1C expressing K56

mean ± SD for three independent cultures.

(G) Increased hemoglobin levels in STAT1C-expressing cells differentiated with hemin. Results represent the m

Figure S4.
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the same individual than to mutant cells

from other patients. This observation

demonstrates that normal interindividual

variation in gene expression is greater

than the transcriptional consequences

of the JAK2 mutation, a finding with

relevance for many somatic genetic

lesions associated with cancer. Indeed,

it is increasingly recognized that quantita-
tive differences in transcript levels are under genetic control

in both man (Stranger et al., 2005; Stranger et al., 2007) and

mouse (Breitling et al., 2008; Gerrits et al., 2009). Our results,

therefore, emphasize the power of comparing clonally-derived,

phenotypically equivalent cell populations from the same indi-

vidual, together with the importance of using physiological

levels of cytokines that do not swamp the signaling pathways

of interest.
562 cultures relative to VA and STAT1WT-infected

nt experiments.

2 cells differentiated with hemin. Results represent

ean ± SD for three independent cultures. See also

ovember 16, 2010 ª2010 Elsevier Inc. 531



Figure 6. Downregulation of STAT1 Activity

in JAK2V617F-Heterozygous Progenitors

from ET Patients Results in a PV-Like

Phenotype with Increased Erythroid and

Reduced Megakaryocytic Differentiation

(A) Strategy for assessing erythroid/megakaryo-

cytic differentiation potential of CD34+ cells from

ET patients after expression of an empty vector

(VA) or a dominant negative STAT1 (DN).

(B) Typical FACS profiles illustrating the three

clone types generated: megakaryocytic, erythro-

cytic, and mixed.

(C) Histogram showing the relative proportions of

the three different types of GFP+ V617F+ clones

derived from cells infected with virus expressing

empty vector (VA) or the dominant negative

STAT1 (DN). Increased percentages of GFP+

erythroid clones and decreased percentages of

GFP+ megakaryocytic clones were derived from

cells infected with the DN lentivirus compared to

cells infected with the VA. Testing for statistical

significance was carried out using a Fisher-

Freeman-Halton test.

Cancer Cell

Differential STAT1 Activity in JAK2-Mutant MPN
Our results also have implications for the strategy of individu-

alized cancer therapy, an approach based on the concept of

identifying genetic lesions in each tumor and using this informa-

tion to select targeted therapies. Mutant JAK2 activates multiple

receptor-associated pathways and we show that some of these,

such as STAT5 and STAT1, can have competing consequences.

Our results also demonstrate that patients can carry an identical

JAK2 mutation but harbor striking differences in the degree to

which the mutation activates the STAT1 pathway. The conse-

quences of inhibiting a particular activated kinase may therefore

be different for individual tumors and difficult to predict without

a detailed knowledge of the signaling environment within a given

tumor. Moreover, because some pathways downstream of an

activated kinase may, like STAT1 activation, restrain disease

evolution, therapeutic kinase inhibition could potentially result

in paradoxical tumor-enhancing effects.

The mechanism whereby a single JAK2 mutation can give

rise to distinct diseases has been a major lacuna in our under-
Figure

JAK2V
In ET, J

STAT5

pSTAT

cytic d

JAK2V6

allowin

also red
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standing of MPN pathogenesis, and dis-

tinguishing JAK2V617F-positive ET from

PV represents a diagnostic challenge

when patients have borderline hemo-

globin levels. Patients with JAK2V617F-
positive ET exhibit an increased erythroid drive but lack overt

erythrocytosis (Campbell et al., 2005), indicating the existence

of additional mechanisms that either constrain erythropoiesis in

JAK2 mutation-positive ET or enhance it in PV. We believe the

data presented here demonstrate that STAT1 is activated in

association with JAK2V617F in ET but not PV and that pSTAT1

levels provide a molecular marker that distinguishes these

disorders. Importantly, we demonstrate that inhibition of STAT1

signaling in ET progenitors resulted in enhanced erythropoiesis

and reduced megakaryopoiesis. Together, our results indicate

that the clinical phenotype developed by a given individual

reflects the opposing effects of STAT5 and STAT1 signaling.

In ET, the intact pSTAT1 response to JAK2V617F constrains

erythroid and promotes megakaryocytic differentiation—the

reduced pSTAT1 response in PV removes the ‘‘brake’’ on eryth-

ropoiesis, thus allowing the development of an overt erythrocyto-

sis, and also reduces megakaryopoiesis (Figure 7). This model is

consistent with previous studies of the effects of STAT5 and
7. Model for the Different Effects of

617F in ET and PV
AK2V617F induces simultaneous activation of both

and STAT1 signaling pathways. Activation of

1 constrains erythroid and promotes megakaryo-

ifferentiation. In PV, reduced pSTAT1 response to

17F removes the ‘‘brake’’ on erythropoiesis, thus

g the development of an overt erythrocytosis, and

uces megakaryopoiesis.
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STAT1 on hematopoietic differentiation (Huang et al., 2007;

Olthof et al., 2008; Socolovsky et al., 1999).

Homozygosity for the JAK2mutation is common in PV but rare

in ET (Scott et al., 2006), and has been suggested as a potential

mechanism for increased erythropoiesis in PV (Dupont et al.,

2007) Our results show that reduced pSTAT1 levels precede

homozygosity and enhance erythropoiesis, but do not exclude

a subsequent role for JAK2V617F homozygosity. Once the

pSTAT1 pathway is repressed, homozygosity of JAK2V617F

would be predicted to enhance erythroid differentiation by

increasing pSTAT5 signaling. By contrast, in the presence of

intact STAT1 signaling, JAK2V617F homozygosity may fail to

confer any growth or selective advantage (or even result in

a disadvantage). We are collecting JAK2V617F-homozygous

colonies to investigate the transcriptional consequences of

homozygosity.

The process responsible for loss of STAT1 phosphorylation in

PV remains unclear. Our data do not distinguish between consti-

tutional or acquired mechanisms. However, the pSTAT1

response to IFNg is normal in T cells from patients with PV

(data not shown), indicating that there is no constitutional block

to STAT1 activation. Moreover, the fact that some patients with

high-risk ET develop overt PV transformation (Harrison et al.,

2005) argues for an acquired genetic modifier in at least a subset

of patients, a concept consistent with the observation that 10%

of JAK2V617F knock-in mice also develop PV transformation

(Li et al., 2010).

Our results also have implications for interferon therapy, HSC

behavior, and clonal evolution in the MPNs. JAK2mutant erythro-

blasts from PV patients have markedly reduced pSTAT1 levels

(relative to ET patients), and yet both categories of patients

respond to therapy with IFNa. This suggests that such responses

may reflect non cell-intrinsic mechanisms, that reduced STAT1

phosphorylation in PV can be overcome by pharmacological

doses of IFNa, or that IFNa elicits its effects through STAT1-inde-

pendent pathways (Lu et al., 2010). Normal HSC function is regu-

lated by basal IFN tone (Baldridge et al., 2010; Essers et al.,

2009; Zhao et al., 2010) and increased IFNg or IFNa signaling

results in HSC exhaustion (Trumpp et al., 2010). Hence, within

a JAK2V617F-positive population, a subclone that acquires

adefect inSTAT1activationmaynotonlygive rise toerythrocytosis

but also display a competitive advantagewithin theHSC compart-

ment, thus providing a potential mechanism for clonal evolution.
EXPERIMENTAL PROCEDURES

Patients and Samples

A total of 36 MPN cases (18 men/18 women) with a median age of 64 (ranging

from 12 to 89 years), diagnosed with either essential thrombocythemia or poly-

cythemia vera according to the World Health Organization (WHO) criteria were

recruited for this study from the MPN clinic at the Addenbrooke’s Hospital in

Cambridge, UK. All patients were shown to possess the JAK2V617Fmutation

in granulocyte DNA using allele-specific PCR. Two PV patients and one ET

patient also possessed mutations in TET2. None harbored MPL or JAK2

exon 12 mutations. The clinical and biological features of all patients at diag-

nosis are listed in Table S1. All patients gave informed written consent before

participating in the study. The study was approved by the Cambridge and

Eastern Region Ethics Committee, and was carried out in accordance with

the principles of the Declaration of Helsinki. Venous blood samples (20 ml)

were collected from each patient, and peripheral blood mononuclear cells

were isolated using Lymphoprep (Axis Shield PLC) according to the manufac-
Can
turer’s protocols, and plated in Methocult (H4531; Stem Cell Technologies)

supplemented with 0.01 U/ml erythropoietin at a density of 3 3 105 cells/ml.

Cultures were incubated at 37�C for 14 days.

RNA Extraction

For each patient, individual BFU-E colonies were plucked into 100 ml of Buffer

RLT (QIAGEN). A portion of the sample in Buffer RLT for each colony was used

for genomic DNA (gDNA) extraction, followed by genotyping by real-time

qPCR to determine its JAK2mutational status, as described previously (Levine

et al., 2006). Colonies with V617F percentages below 10% were designated

‘‘wild-type’’ and those between 40% and 60% were designated ‘‘heterozy-

gous.’’ Colonies not fulfilling any of the two criteria were discarded. Up to

20 colonies of each JAK2 genotype were pooled, and total cellular RNA

from each sample was isolated using the QIAGEN RNeasy kit following the

manufacturer’s protocols. RNA quality was assessed by nano electrophoresis

using the Pico lab-on-a-chip assay (Bioanalyzer, Agilent Technologies) and by

agarose gel electrophoresis.

Microarray Analysis

Total RNA (100 ng) obtained from wild-type and V617F-heterozygous BFU-E

colonies from each patient were reverse transcribed into cDNA and amplified

by in vitro transcription into biotinylated cRNA using the Illumina TotalPrep

RNA Amplification Kit (Ambion). For each sample, 1.5 mg of amplified cRNA

was used for hybridization onto Illumina Human-6 v2.0 Expression BeadChips,

comprising �48,000 oligonucleotide probes.

Single Cell Erythroid/Megakaryocyte Differentiation Cultures

Peripheral blood mononuclear cells were obtained from peripheral blood of

patients diagnosed with ET over a Ficoll gradient, and CD34+ cells were

then selected using a magnetic cell sorting system (Miltenyi Biotech), accord-

ing to manufacturer’s instructions. Purified CD34+ cells were immediately in-

fected with either an empty vector or a dominant negative STAT1-expressing

lentiviruses by spinoculation for 2 hr in the presence of 4 mg/ml polybrene,

followed by culturing for 2 days in SFEM medium supplemented with

100 ng/ml Flt3 ligand and 10 ng/ml rhTPO. Subsequently, cells were sorted

based on GFP positivity and seeded as single cells in a well of a 96-well plate

with SFEM media supplemented with 25 ng/ml rhSCF, 0.5 U/ml rhEPO,

100 ng/ml rhTPO, 30 mg/ml holo-transferrin, 10 nM b-mercaptoethanol, and

4 mg/ml dexamethasone to support both erythroid and megakaryocytic differ-

entiation. After 7 additional days in culture, 10% of the cells were removed for

JAK2 genotyping as described above. After an additional 7–14 days of culture,

V617F-heterozygous clones were analyzed for GPA and CD41 expression.
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