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Lymphoblastoid cell line (LCL) is a common tool to study genetic disorders. However, it has not been fully
characterized to what degree LCLs preserve the in vivo status of non-genetic biological systems, such as
DNA methylation and gene transcription. We previously reported that DNA methylation in LCLs is highly var-
iable in a data set of ~27,000 CpG dinucleotide sites around transcription start site (TSS) and 63 human sub-
jects including healthy controls and probands of genetic disorders. Disease-causing mutations are linked to
differential methylation at some CpG sites, but account for a small proportion of the total variance. In this
study, we repeated the experiments to ensure that the high variance is not due to technical error and scru-
tinized the characteristics of DNA methylation and its association with other biological systems. Using se-
quence information and ChIP-seq data, we conclude that local CpG density and histone modifications not
only correlate to baseline methylation level, but also affect the direction of methylation change in LCLs. Inte-
grative analysis of gene transcription and DNA methylation data of the same subjects shows that medium or
high methylation around TSS blocks the transcription while low methylation is a necessary, but not sufficient
condition of downstream gene transcription. We utilized epigenetic information around TSS to predict active
gene transcription via logistic regression models. The multivariate model using DNA methylation, eight his-
tone modifications, and two regulatory protein complexes (CTCF and cohesin) as predictors has better per-
formance (accuracy=95.1%) than any univariate models of single predictors. Linear regression analysis
further shows that the transcriptional levels predicted by epigenetic markers have significant correlation to
microarray measurements (p=2.2e-10). This study provides new insights into the epigenetic systems of
LCLs and suggests that more specifically designed experiments are needed to improve our understanding
on this topic.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

Status of cytosine methylation at CpG dinucleotide sites is a key
component of epigenetic regulation of gene activity. It influences
gene transcription by adjusting the accessibility of chromosomal re-
gions, and controls various biological processes such as X inactivation
[1], gene imprinting [2], chromatin remodeling [3], and pathogenesis
[4]. De novo methylation is an essential element of cell differentia-
tion during development [5,6] while in somatic cells, methylation sta-
tus is believed to remain stable throughout cell division, so studies of
tissue-specific methylation often use cultured cells as source material
[6–8].

The distribution of the ~30million CpG sites in the human genome
is not even. They are generally under-represented and hyper-
methylated in intergenic regions while a large number of unmethylated
rmatics, The Children's Hospi-
, PA 19104, USA.
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CpG sites, called CpG islands (CGIs), cluster around transcription start
sites (TSS) [9,10]. Perturbed DNA methylation at gene promoters
has been linked to a number of human disorders [11–15]. Technolo-
gy for quantitative measurement of methylation at all CpG sites is
available but costly. A recent study that investigated the dynamics
of DNA methylation during cell differentiation used massively paral-
lel sequencing technology to obtain 542 million sequencing reads on
average from three samples [6]. Although the reads averagely cover
the whole human genome by nine folds, more than 20% of the CpG
sites are mapped by less than three reads, making them unsuitable
for quantitative comparison between samples. Limiting measure-
ment to regions of higher biological relevance, such as promoters
and 5′-UTRs, would lower the experimental cost and increase the
practical number of samples of individual studies. Weber et al. com-
pared the methylation at >12,000 CpG islands between normal fi-
broblasts and SW48 cancer cells via microarray technology and
identified over 200 hypermethylated loci in cancer cells [16]. Ehrich
et al. used mass spectrometry technology to quantify methylation
patterns of >400 cancer-related genes in 59 cancer cell lines and
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discovered that a large portion of the tested genes have altered
methylation in cancer cells [7]. Koga et al. utilized tiling microarrays
to measure methylation at promoters of all RefSeq genes in normal
melanocytes and eight melanoma cell strains and revealed the diag-
nostic value of DNA methylation information [17]. These studies
demonstrate the usefulness and feasibility of identifying chromo-
somal regions that exhibit differential methylation under varying
biological conditions.

Lymphoblastoid cell lines (LCLs) are established by transforming
lymphoblasts with Epstein–Barr virus (EBV) [18]. It is a renewable
source of genetic information and a common tool for studying
human disorders [19–22]. GM12878, an LCL generated from a female
donor, is a model cell line used by the International HapMap [23]
and ENCODE [24] Projects. ChIP-seq data of histone modifications in
GM12878 are publically available [25], along with DNA methylation
data generated by both microarray and Methyl-seq technologies [8].

LCLs usually have normal diploid karyotypes and stable DNA
sequences. Its estimated mutation rate is 2–30×10−7 mutations per
cell division [26]. However, the viral transformation and continuous
cell culturing and storage may lead to more substantial alterations
in the epigenetic, transcriptional, and translational systems. Altered
and destabilized DNA methylation was recently reported in LCLs
[27–29], which suggests that the in vivo status of epigenetic systems
is not fully preserved. Nevertheless, LCLs are a valuable resource
for investigating mutationally defined genetic disorders. It is easier
to isolate and evaluate the consequence of DNAmutations in cultured
cells grown under a controlled environment than in fresh cells whose
status can be confounded by numerous environmental and clinical
factors. Therefore, a comprehensive characterization of non-genetic
biological systems and their association with each other in LCLs
would provide valuable information for future studies.

We previously used microarray-based technology to quantify DNA
methylation at 27,578 CpG sites in LCLs generated from 22 healthy
controls, two Roberts syndrome (RBS) probands and 39 Cornelia de
Lange syndrome (CdLS) probands [30]. CdLS is a dominant congenital
multisystem disorder with craniofacial, cardiac, gastrointestinal, gen-
itourinary, skin and other system involvement as well as delays in
growth and intellectual development. Disease-causing mutations of
CdLS have been identified in genes NIPBL, SMC1A, and SMC3, all of
which have been associated with cohesin complex [31]. Our compar-
ative analysis identified 152 CpG sites whose methylation was differ-
ent between the control and the CdLS groups with a high degree of
confidence (pb0.001). This number is much smaller than the number
of genes whose transcription is significantly altered in CdLS as mea-
sured by gene expression microarray studies [19]. Therefore, the dis-
ease state is unlikely a major factor of between-sample variation in
this data set.

In this study, we used the same 63 samples for a generalized char-
acterization of DNA methylation in LCLs. We repeated the microarray
experiments to estimate the contribution of measurement errors to
the total variance. Instead of comparing the control and CdLS samples,
data analysis in this study is focused on between-sample variation in-
dependent of disease state, age, gender and other known clinical vari-
ables. Integrative analysis of various existing and new data sets
identified distinctive patterns of associations between histone modi-
fications, DNA methylation, and gene transcription. The results of
this study will lead to a better understanding of the non-genetic bio-
logical systems in LCLs.

2. Material and methods

2.1. Sample preparation of methylation assays

Cell culture, DNA isolation, and bisulfite treatment were per-
formed as described previously [30]. In summary, lymphoblastoid
cell lines (LCLs) of 63 human subjects were cultured anonymously
and processed in random order; DNA was isolated using the DNA
purification kit from Gentra Systems; and 500 ng purified DNA
from each sample was conversed using the EZ DNA methylation
kit from Zymo Research. The bisulfate conversion changed the
unmethylated C to T, but made no change at the methylated CpG
sites. The 63 prepared LCLs as well as 3 universally methylated and
6 universally unmethylated controlswere randomly assigned to 6 Infi-
nium HumanMethylation27 BeadChips (Illumina, Inc.). All human
subjects were included in this study under an IRB-approved protocol
of informed consent at The Children's Hospital of Philadelphia and
the Misakaenosono Mutsumi Developmental, Medical, and Welfare
Center and their detailed description is available as GSE18458 series
within Gene Expression Omnibus database.

2.2. Processing of methylation data

Each HumanMethylation27 BeadChip carries beads measuring
DNA methylation at 27,578 CpG sites located around 14,495 unique
Entrez genes. Each site is measured by two types of beads; one mea-
sures the methylated (M) allele and the other measures the
unmethylated (U) allele. After the prepared DNA samples were hy-
bridized to the beads and fluorescently stained, the BeadChips were
scanned by BeadArray Reader (Illumina, Inc.) and the scanned data
were processed by BeadStudio Methylation Module (Illumina, Inc.).
Background-subtracted signal intensities of both alleles and a detec-
tion p value of each CpG site were exported from BeadStudio and
imported into R statistical environment (http://www.r-project.org)
for further processing and statistical analysis. The intensities of meth-
ylated and unmethylated alleles were normalized separately across
63 LCLs using the quantile spline method [32] of affy package in R.
Since CpG sites on X and Y chromosomes can have very different
methylation between males and females, those sites were normalized
separately in male and female groups. The methylation level at each
CpG site in each LCL is represented as β=M/(M+U); where M and
U are normalized intensities of methylated and unmethylated alleles.
Therefore, β value indicates the fraction of methylated alleles in a cell
population. We considered β value less than 0.1 or greater than 0.9 as
low or high methylation level corresponding, and the β value be-
tween 0.1 and 0.9 as mediummethylation level. The whole processed
data set is a 63 by 27,578 data matrix of β values ranging between
0 and 1.

2.3. Bioinformatics analysis

UCSC Genome Browser tracks were downloaded using the Table
Browser tool. The “HAIB Methyl27” track provided the DNA methyla-
tion data of two technical replicates of GM12878. We called a CpG
site in low quality if its β value was 0 in either replicate or the β
value difference between replicates was greater than 0.05. Enrich-
ment of pre-defined gene sets in significant genes was analyzed via
the functional annotation tools of DAVID (Database for Annotation,
Visualization and Integrated Discovery) [33]. The functions/packages
used for statistical analysis are cor/stats for correlation analysis, aov/
stats for ANOVA analysis, t.test/stats for Student's t test, prcomp/stats
for principal components analysis, performance/ROCR) for ROC analy-
sis, glm/stats for logistic regression and lm/stats for linear regression
analysis. More information about the data analysis is available in Sup-
plemental methods.

3. Results

3.1. General characterization of DNA methylation around TSS

We used the Infinium HumanMethylation27 microarray platform
to measure the methylation levels of 27,587 CpG sites close to the
TSS in 63 lymphoblastoid cell lines (LCLs) after treating extracted
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DNA with bisulfite conversion. To evaluate the technical errors intro-
duced by microarray experiments, all samples were measured twice
at the same location (Wistar Institute). The detailed batch compari-
son is described in Supplemental File 1. In summary, we found that
when the measurements have the best detection p value, 1) all sam-
ples except one have high correlation between the duplicated mea-
surements (average Pearson's r=0.991); 2) outliers are common,
but they are mostly consistent between batches; 3) while about
one-eighth of the duplicated measurements have β value difference
greater than 0.05, the batch difference of a given CpG site is generally
consistent across samples; and 4) CpG sites with medium methyla-
tion level (0.1bβb0.9) are less affected by batch effect than sites
with very high or lowmethylation. We then concluded that measure-
ments with the best detection p value are precise and repeatable.
Since the proportion of measurements having the best quality is sub-
stantially higher in the second batch than in the first (97.7% vs.
45.9%), we only used the data of the second batch throughout the
rest of this study.

Starting from 27,587 CpG sites and 63 samples, we filtered the
data by removing eight samples with over 1000 less-than-the-best
quality measurements, and further excluded CpG sites having any
less-than-the-best quality measurements or extreme outliers (more
than 20 interquartile ranges from the first or third quartile). The fil-
tering substantially reduced the proportion of technical errors. The
remaining data includes 24,952 CpG sites and 55 samples of 19 gen-
der and race matched healthy controls, 2 Roberts syndrome pro-
bands, and 34 CdLS probands (21 severe and 8 mild cases with
NIPBL mutations, 4 mild cases with SMC1A mutations, and 1 mild
case with SMC3 mutation [31]).

Since most CpG sites measured by the microarray platform are
located in CpG islands (CGIs) around transcription start sites (TSSs),
the distribution of their methylation is skewed to the hypomethyla-
tion end (Supplemental Fig. 1) and the global average of β values,
which indicate the fraction of methylated alleles in all cells, is 0.22.
The average β values of 59.5% CpG sites are less than 0.1 and only
20.3% sites are hypermethylated (average β>0.5). We associated
each CpG site to its nearest TSS according to the “UCSC Genes” track
of UCSC Genome Browser. Approximately 98% of sites are located
within the −1.5 to 1.5 kb region of any TSS. Consistent with previous
studies (Fig. 4A in [6] and Fig. 1E in [7]), sites closer to the TSS are
generally less methylated, especially those in CGIs (Fig. 2A). About
43% of sites are located within CGIs according to the “CpG Islands”
track of UCSC Genome Browser. The average β values of CGI and
non-CGI sites are 0.077 and 0.334 respectively. CGI sites close to
the ends of CGI generally have higher methylation than sites in the
middle (Supplemental Fig. 2) and sites close to potential transcrip-
tion factor binding sites (TFBS) have slightly lower methylation
than sites in the flanking regions (Supplemental Fig. 3). The TFBS in-
formation was downloaded from the UCSC “TFBS conserved” track,
which includes human–mouse–rat conserved loci matching to the
consensus binding motifs of 258 transcription factors. Methylation
at TFBSs differs dramatically between those motifs (Supplemental
Table 2). For example, the average β values around loci matching to
V$HNF1_01 and V$NRF2_01 are 0.340 and 0.052 respectively.

About two CpG sites were measured around each TSS on average.
We queried whether individual sites act independently or adjacent
sites are regulated concordantly. The answer to this query will tell us
to what degree a single CpG site represents the overall methylation
status of surrounding region. We identified 10,878 adjacent pairs of
CpG sites locatedwithin 1 kb of each other and evaluated the differen-
tial methylation of paired sites. The β value difference of adjacent sites
is 0.128 on average while the global average of β value differences
between any two autosomal sites is 0.288. The average difference is
further reduced to 0.041 when sites are within 10 bases of each
other (Supplemental Fig. 3). We next evaluated the co-regulation of
adjacent sites by calculating their correlation across all 55 samples.
The average Pearson's r is only 0.114. Pairs located in the same CGI
have slightly higher correlation (average r=0.124). The correlation
between pairs generally increases as their distance becomes shorter
(Fig. 1B, blue line). Supplemental File 1 shows that the methylation
measurements have low sensitivity to subtle change at highlymethyl-
ated or unmethylated sites. Therefore, when we only use the pairs
having medium methylation at both sites, the average r increases to
0.219. Furthermore, sites within 10 bases of each other have a much
higher average r of 0.809. We compared the sequence features, such
as GC content and TFBS frequency, around correlated and uncorrelated
adjacent sites, but were unable to recognize notable differences be-
tween these two types of pairs. These results suggest that the methyl-
ation of most adjacent CpG sites is not closely co-regulated.

3.2. Differential methylation

DNA methylation at CpG sites around TSSs is highly variable be-
tween samples, especially when the β values are between 0.1 and
0.9 (Supplemental Fig. 5). To test whether such high variability is
also present in other cell types, we performed a meta-analysis of
twelve DNA methylation data sets generated from different cell
types, but using the same microarray platform (Supplemental File
2). After calculating the correlation of methylation levels between
each pair of samples in the same disease or treatment group, we com-
pared the distribution of correlation coefficients of different cell
types. LCLs have higher between-sample variation than all the other
cell types (T cells, monocytes, whole blood, and colon mucosa) with
the exception of colorectal cancer cells.

Outliers are common in the data set as 535 autosomal CpG sites
have β values ranged from less than 0.1 to more than 0.9. Principal
components analysis (PCA) using all autosomal sites was unable to
clearly separate samples by their disease status (Fig. 2A). The top
three principal components only account for less than 20% of the
total variance, suggesting that DNA methylation in LCLs is affected
by many factors, including, but not limited to, disease status, gender,
genetic background, developmental stage and cell culture condition.

Two-way ANOVA analysis of gender and disease status as two
interacting factors identified 283 CpG sites differentially methylated
between 19 controls and 21 severe CdLS patients. These sites have
ANOVA p values less than 0.01 and β value differences greater than
0.05. Among the 699 sites significantly different between females
and males, 610 and 3 are located on chromosomes X and Y respec-
tively, suggesting that gender has little impact on autosomal methyl-
ation. We took a closer look at the gender difference on the X
chromosome, and noticed that sites in CpG islands are generally
unmethylated in males but mostly have higher methylation in fe-
males (Supplemental Fig. 6). This result was indeed anticipated be-
cause increased methylation of CpG islands plays an essential role in
X inactivation [34]. An unexpected observation is that the 193 X chro-
mosome sites having greater than 0.5 β values in both genders are
significantly more methylated in males than in females (average
β=0.77 vs. 0.71, p=1.7e-20, paired t test). It is unlikely that such a
dramatic difference was caused by technical bias or data processing.
We postulate that it is more difficult for females to maintain hyper-
methylation at those sites on both X chromosomes due to the need
to methylate CpG islands. However, a valid interpretation of this
observation requires further investigation.

Among the 283 sites differentially methylated between control
and severe CdLS samples, 177 are up-methylated and 106 are
down-methylated in CdLS. The corresponding false discovery rate
(FDR) is 0.24 according to a permutation procedure that shuffled
the sample labeling of disease status, but not gender. According to
DAVID functional annotation [33], a number of pre-defined gene
sets are significantly enriched in the genes downstream to those dif-
ferentially methylated sites. Some of those gene sets are evidently re-
lated to CdLS (Supplemental Table 1). For example, four genes (TBX5,



Fig. 1. Characteristics of DNA methylation in LCL. A) Each dot represents a CpG site on autosomes. The X-axis indicates the distance to the nearest TSS and the y-axis is the average β
value of 55 LCLs. The lines were generated by Lowess smoothing (black: all sites; green: CGI sites; red: non-CGI sites). Non-CGI sites have higher methylation than CGI sites in gen-
eral no matter their distance to TSS. B) Each dot represents a pair of CpG sites on autosomes. The x-axis is the distance between the two sites and the y-axis indicates their Pearson's
correlation coefficient across 55 LCLs. The lines were generated by Lowess smoothing (blue: all pairs; red: pairs whose average β values are between 0.1 and 0.9 at both sites).
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MSX1, MBNL1, and SALL4) involved in embryonic limb morphogene-
sis, which is one of the most common features of CdLS, have down-
regulated CpG sites around their TSS.

The sites differentially methylated between controls and severe
patients have two noteworthy features. First, all 283 sites have medi-
um methylation (0.1bβb0.9) in at least one group although 57.8% of
the total sites have low methylation (βb0.1) in both groups. We then
limited the remaining analysis of this section to the 9776 sites having
medium methylation. Second, the 177 sites up-methylated in CdLS
include significantly lower percentage of CGI sites than the 106
down-methylated sites (5.6% vs. 49.1%, p=4.6e-17, proportional
test) while 18.7% of the unchanged sites are located in CGIs (Supple-
mental Fig. 7). This result suggests that the likelihood and direction of
methylation change in CdLS are related to local CpG density.
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We previously used transcriptional microarray data to generate a
diagnostic index of CdLS by comparing healthy controls and severe
patients. It was shown that this index could be used to discriminate
controls and CdLS patients as well as CdLS subtypes [19]. We then
evaluated if methylation information could be used for the same
purpose via a combination of nearest centroid classification and
leave-one-out validation (details in Supplemental methods). A
methylation-based index classified control samples and severe pa-
tients with significant accuracy. In addition, this index can dis-
criminate mild CdLS cases from both controls and severe patients
(Fig. 2C). However, the leave-one-out validationmisclassified six con-
trol samples and three severe patients (accuracy=77.5%) while the
index of transcriptional data correctly classified 90.1% testing samples
(Fig. 1C in [19]). The area under ROC curves of methylation- and
transcription-based prediction is respectively 0.860 and 0.985 (Sup-
plemental Fig. 8). Therefore, DNAmethylation pattern is a less power-
ful diagnostic index of CdLS than gene transcription pattern.
3.3. The association of DNA methylation with other epigenetic features

GM12878 is a model LCL from a female donor. A variety of geno-
mic data generated from GM12878 are available through the ENCODE
(ENCyclopedia of DNA Element) project [24]. We downloaded three
sets of GM12878 data from the UCSC Genome Browser tracks: “HAIB
Methyl27” (DNA methylation data generated from Infinium microar-
rays), “UW DNaseI HS” (DNaseI hypersensitivity data generated by
deep sequencing), and “Broad Histone” (CTCF binding and eight histone
modification data generated by ChIP-seq experiments).

We were able to directly compare the average β values of two
GM12878 replicates and the female samples in our data set since
both were generated on the same microarray platform. The Pearson's
r of all autosomal sites between the two vectors of average β values is
0.895 (Supplemental Fig. 9). After low quality measurements were
removed, the between-data set correlation was improved to 0.947
while the average r value of all female sample pairs in our data set
is 0.960. We concluded that GM12878 is compatible with our samples
in terms of DNA methylation and it is possible to associate our meth-
ylation and gene expression data with data generated from GM12878.

DNaseI hypersensitivity is a sequence feature related to DNA acces-
sibility [35]. More than 100,000 short DNaseI hypersensitivity regions
were identified from each of two GM12878 replicates. We mapped
the CpG sites in our data to those regions and found that sites located
within those regions have significantly lower β values than the other
sites (0.045 vs. 0.262, pb1e-300). Since CGIs and DNaseI hypersensitiv-
ity regions are often overlapped, we asked whether CpG density and
DNaseI hypersensitivity affect DNA methylation independently. Sites
located in DNaseI hypersensitivity region only have slightly lower aver-
age β than sites located in CGIs only (0.075 vs. 0.089, p=0.0001), and
the average β of sites located in overlapping regions is further reduced
to 0.028 (Supplemental Fig. 10). Therefore, CpG density and DNaseI
hypersensitivity have additive effect on DNA methylation and DNaseI
hypersensitivity is probably a stronger indicator of low methylation
than CpG density.

Histone modifications are likely more involved in transcriptional
regulation than DNA methylation. ChIP-seq data of eight histone
Fig. 2. Differential methylation. A) Principal components analysis of LCLs using all mea-
sured CpG sites on autosomes. Colors indicate disease status (green = control; red =
severe CdLS; orange = mild CdLS with NIPBL mutation; brown = CdLS with SMC1A
mutation; pink = CdLS with SMC3 mutation; and blue = Roberts Syndrome). B) Dif-
ferential methylation between control and severe CdLS samples. Each dot represents
one autosomal site. Significant sites (pb0.01 and |Δβ|>0.05) were highlighted
(green = CGI sites and red = non-CGI sites). C) The control, mild CdLS, and severe
CdLS samples could be distinguished according to their methylation pattern. The y-
axis indicates the discriminant score that is corresponding to the relative similarity of
each sample to the centroids of control and severe CdLS groups. The scores of controls
and severe patients were obtained via a leave-one-out procedure, and the scores of
mild patients were based on the 283 sites differentially methylated between controls
and severe patients (details in Materials and methods). By default, samples with
score>0 would be classified as CdLS. Each diamond represents a sample (colored as
in Fig. 2A). The p values are the results of Student's t test.

image of Fig.�2


Fig. 3. The association between DNAmethylation and histone modifications. The y-axis represents the average tag enrichment based on ChIP-seq data. A) The correlation of average
methylation to CTCF binding and eight histone marks in GM12878 at all autosomal CpG sites. B) Histone status at CpG sites that were down-methylated, unchanged, and up-
methylated in severe patients. The unchanged group include only sites with medium methylation (0.1bβb0.9). The p values are results of Student's t test comparing the down-
and up-methylated sites.
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modifications and CTCF binding of GM12878 are available at
the 24,379 CpG sites measured by this study. We calculated the
correlation between β value and tag enrichment at those sites
(Fig. 3A) and found that DNAmethylation has a negative and relative-
ly stronger correlation with euchromatin (decondensed chromatin)
marks such as H3K4me3 and H3K9ac [36], and positive but weak
correlation with heterochromatin (condensed chromatin) marks
such as H3K27me3 and H4K20me1 [37]. This observation is in agree-
ment with previous studies. For example, Brunner et al. reported
that H3K4me3 and H3K27me3 signals are respectively correlated to
unmethylated and methylated status in human embryonic stem
cells [8], and Wu et al. found that DNA methylation has a negative
correlation to H3K9ac in a mouse leukemia cell line [38]. These results
suggest that the association between DNA methylation and histone
modifications has similar pattern in different cell types and species.
The association between DNA methylation and histone modifications
is not particularly affected by CpG density except H3K27me3 (Sup-
plemental Fig. 11).

Histone modifications are also related to the direction of methyla-
tion alterations. CpG sites down-methylated in CdLS have lower tag
enrichment of CTCF and all histone modifications except H3K27me3
than up-methylated and unchanged sites (Fig. 3B). The exception of
H3K27me3 is probably caused by the fact that down-methylated
sites include higher percentage of CGI sites than up-methylated and
unchanged sites (Supplemental Fig. 7) while CGI sites have substan-
tially higher H3K27me3 than non-CGI sites (Supplemental Fig. 11).
However, CpG density has little effect on other histone modifications.
For example, while CGI sites have slightly higher H3K9ac than non-
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CGI sites, down- methylated sites have significantly lower H3K9ac
than other sites. Altogether, these results suggest that histone modi-
fications are not only correlated to baseline DNA methylation, but
are also related to the likelihood and direction of methylation alter-
ations in LCL.

3.4. The association between DNA methylation and gene transcription

We previously published a gene expression microarray data set
that included LCLs of 39 human subjects: 18 controls, 17 severe
CdLS probands, 2 Roberts syndrome probands and 2 Alagille syn-
drome probands [19]. The DNA methylation of 27 of those subjects
(13 controls and 14 severe CdLS patients) was also measured by
this study. The probes of Affymetrix U133 Plus 2.0 platform used for
the expression experiments were remapped to the current version
of NCBI Entrez genes [39] and grouped into 17,726 unique Entrez
genes. 10,430 genes measured by at least six mRNA probes and one
CpG probe (within−1.5 to 1.5 kb of TSS) were used in the remaining
analyses of this section. According to MAS5.0 algorithm [40], 51.7%
and 21.8% of these genes were respectively called present and absent
in all samples. These genes were considered universally active or in-
active in LCL regardless of gender, disease state, or other factors.
The details about data processing, gene filtering and annotation map-
ping are available in Supplemental methods.

The methylation–expression association of 19,615 pairs of CpG
sites and genes is summarized in Fig. 4A, which illustrates that the
association is dependant on the relative location of CpG sites to the
TSSs of downstream genes. In the boxed area of Fig. 5A, the overall
methylation–expression correlation is negative and highly significant
(Spearman's ρ=−0.54, p=1.8e-272). However, the correlation was
non-linear. When β value is higher than 0.1, methylation level has lit-
tle impact on gene expression level (ρ=0.013, p=0.67). The overall
pattern in Fig. 5A is consistent with the common perception of how
DNA methylation regulates gene expression. Around the TSS and in
the 5′-UTR, methylation regulates downstream transcription mainly
through physical blocking, so high methylation represses gene ex-
pression. In the promoter region, DNA methylation indirectly regu-
lates transcription by adjusting histone and transcription factor
accessibility, so its correlation to gene expression could be in either
direction. A previous study reported that exons usually have high
methylation and the gene body of highly expressed genes is more
methylated than the body of inactive genes [6]. This result explains
the concurrence of high methylation and high expression in the re-
gion beginning approximately 1 kb downstream of the TSS where
the coding region of some genes has started.

Consistent with earlier results demonstrating that methylation at
TFBSs varies dramatically between transcription factors, the tran-
scription of TF target genes also differs significantly in LCL (Supple-
mental Table 2). The TFBS motif having the lowest average
methylation, V$NRF2_01, has the highest average expression of target
genes, which is more than 250% of the global average of gene expres-
sion. On the other hand, V$HNF1_01 has the highest methylation and
lowest target expression. The average methylation and expression
have a negative correlation of 0.743 across TFs and change concor-
dantly in a linear pattern (Fig. 4B). Interestingly, ten TFBS motifs
have both lower methylation and expression than the global aver-
age, probably because lower methylation reduces the binding of
those TFs or the increased binding of those TFs is repressive to gene
expression. Overall, the combined analysis of genomic sequence,
DNAmethylation, and gene expression information provides a refer-
ence of TF activity in LCL. It also indicates that DNA methylation may
affect gene expression through regulating TF binding.

We demonstrated in our previous study that changes in DNA
methylation contributes little to the overall gene expression variation
in CdLS [30]. Although more than one thousand genes demonstrate
significantly changed expression in CdLS, the changes usually are of
a small magnitude. A deficiency in cohesin or other transcription
factors is more likely to be the cause of these subtle expression
changes rather than differences in DNA methylation. The latter is
probably involved in more dramatic events such as gene activation
or inactivation. We hypothesized that a methylation–expression
association is more evident when large between-sample variance ex-
ists. The methylation–expression correlation across 27 samples com-
mon to both studies were calculated for 1006 CpG-gene pairs on
autosomes whose between-sample variance is at the top 25% in
both methylation and transcription data. As shown in Fig. 4C, the
overall correlation is skewed slightly towards the negative side (aver-
age Spearman's ρ=−0.043, p=2.5e-8). There are 38 pairs having ρ
values less than −0.5, corresponding to a permutation FDR of 0.12.
Six genes, C21orf56, CIDEB, DDX43, DENND2D, LDHC, and LOXL3,
have ρ values less than −0.5 with two CpG sites around their TSSs,
indicating that the expression of these genes is more likely to be di-
rectly regulated by DNA methylation. There are 17 pairs having ρ
values greater than 0.5 (FDR=0.27). On average, CpG sites positively
correlated to gene expression are located more upstream than sites
negatively correlated to gene expression. (−250 vs. +155 bases of
TSS, p=0.04).

3.5. Prediction of gene transcription based on epigenetic status around
the TSS

Fig. 4A shows that DNA methylation at TSSs and 5′-UTRs has a rel-
atively consistent association with gene expression in LCLs. We que-
ried whether DNA methylation in those regions could be used to
predict the activation of downstream transcription. The analysis was
first limited to 3048 genes that are unanimously active or inactive
according to expression microarray data and have at least one mea-
sured CpG site located between 100 bases upstream of the TSS and
100 bases downstream of the TSS or the end of 5′-UTR (whichever
comes first). These genes were split into two groups of 887 inactive
and 2161 active genes. The vast majority (~95%) active genes have
low methylation (βb0.1), while only about two-thirds of inactive
genes have non-low methylation (β>0.1) around their TSS
(Fig. 5A). Therefore, low methylation is a necessary, but not a suffi-
cient condition of downstream transcription, which also involves
histone modifications, TF binding, and polymerase activation. The X
chromosome demonstrated an interesting pattern (Supplemental
Fig. 12). Due to X inactivation in females, the majority of X-linked
genes have non-low methylation regardless of whether they are
expressed or not; while in males, almost all active genes have low
methylation. Among the 102 genes that have active expression but
non-low methylation, 79 have no CGI around their TSS, so inhibitory
action of high methylation on downstream transcription is weak-
ened when genes have low CpG density around TSS.

We applied a training–testing procedure during which 2048
genes were randomly selected to train a logistic regression model
and the remaining 1000 genes were used to test model performance.
This procedure was repeated 100 times to remove sampling bias.
As expected, DNA methylation around the TSS is a highly sensitive,
but non-specific, predictor of active transcription and its model out-
performs the model using CpG density as predictor (Table 1A). The
multivariate model using both CpG density and methylation as pre-
dictors has improved performance and predicted gene activation
with 84% accuracy. Models using our previous cohesin binding data
[19] as well as CTCF and histone data of GM12878 as predictors
were also created and tested. Remarkably, some histone modifica-
tions are strong predictors of gene expression even although the
data were generated independently from unrelated sample. For ex-
ample, H3K9ac alone can predict gene expression with 93.7% accura-
cy, 93.6% sensitivity and 94.1% specificity. Finally, we integrated all
available predictors into one multivariate model, which has better
and more balanced performance than univariate models.



Fig. 4. The association between DNA methylation around TSS and downstream gene transcription. A) The distance of the CpG sites to TSS affected the methylation-transcription
association based on 19,615 CpG-transcript pairs. Color indicates average transcription level after local smoothing. The black box shows a distinctive pattern of negative correlation
when the CpG sites are located within [−100, 100] around TSSs. B) The linearly correlated methylation around TFBS and expression of target genes. Each diamond corresponds to
one of 258 TFBS motifs. X-axis represents the average methylation of CpG sites within [−250, 250] around TFBS and y-axis represents average expression of genes with at least one
TFBS within [−1500, 1500] of their TSS. Color indicates whether the averages are significantly (pb0.01) different from the global average. More details are available in Supplemen-
tal Table 1. C) The distribution of Spearman's ρ values of CpG-gene pairs. All pairs include CpG site and gene both having high variance across 27 common samples. Blue line in-
dicates the background distribution generated by 1000 re-sampling permutations. Among a total of 1006 pairs, 568 (56.5%) have negative ρ values.
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Fig. 5. The prediction of gene expression using epigenetic information. A) The average
DNA methylation at TSS and 5′-UTR and the average expression of autosomal genes
that are active (red) or inactive (green) in all samples. X chromosome genes are plotted
separately in Supplemental Fig. 12. B) Predicted vs. observed expression level of 1000
testing genes (green: inactive, red: active; black partially active). The prediction is
based on a linear regression model trained with DNA methylation, cohesin, CTCF and
histone modification data of 3100 genes.
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Predicting gene expression level is more challenging than
predicting gene activation as epigenetic modifications are not the
only regulators of gene expression. Downstream regulators such as
transcription factors and miRNAs are probably more important to
the tuning of gene expression levels. In addition, gene expression
measurements are biased by hybridization efficiency of microarray
probes, so they are not exactly correlated to mRNA abundance. To
evaluate the predictive ability of epigenetic status on gene expression
level, we applied the same training–testing/permutation procedure
and used the same predictors to build a series of linear regression
models during which 1052 poised genes (active in part of the 39
samples) were added to make a pool of 4100 genes in total. While
3100 genes were randomly selected for training models, the perfor-
mance of the models was evaluated by the correlation between pre-
dicted and observed expression level of the remaining 1000 genes.
The average Pearson's r of 100 permutations is 0.726 with the multi-
variate model of all available predictors (Table 1B). However, the
correlation is mainly determined by the dramatic difference between
inactive and active genes (Fig. 6B). When using active genes only, the
correlation between expected and observed expression level was
substantially decreased, but still significant (average r=0.272,
p=2.2e-10). The involvement of H3K9ac in gene expression is
supported by both types of models and its univariate model has per-
formance close to the full model. The regulatory function of H3K9ac
on gene expression has been reported in T cells [41].

4. Discussions

One of the most striking observations of this study is the high var-
iability of methylation at CpG sites while known clinical factors, such
as gender and disease-causing DNA mutations, only account for a
small portion of the total variance between samples. The total vari-
ance is a composite of the following components: 1) measurement
error of the microarray experiments; 2) bias introduced by bisulfate
treatment or other DNA preparation steps; 3) methylation alteration
caused by EBV transformation and cell culturing; and 4) variance
inherited from the donors. Since the replicated measurements of the
same samples have strong correlation (r=0.99) between two micro-
array batches and the fact that we applied a strict filtering procedure
to exclude questionable measurements and samples from data analy-
sis, the contribution of measurement error to the total variance is
minimized. Replicated samples in the same microarray batch, but
processed separately through DNA preparation, also have much bet-
ter correlation to each other than the correlation of any pairs of differ-
ent samples (Supplemental File 1). We thus concluded that the
majority of the total variance is not from the microarray experiments.

Virus transformation and continuous cell culturing and storage
may contribute more to the total variance although our meta-
analysis shows that LCLs are more similar to lymphocytes than
other cell types (Supplemental File 2). Previous studies have reported
altered methylation in LCLs at different chromosomal locations, ques-
tioning the fidelity of DNA methylation in LCLs to its in vivo status
[27,29]. Furthermore, the meta-analysis demonstrates that LCLs
have a much larger between-sample variance than most types of
fresh cells. Similarly, Grafodatskaya et al. recently observed that
LCLs have larger between-sample variance than white blood cells
and suggested that methylation alteration in LCLs occurs at random
locations [28]. Nevertheless, our results show that GM12878 and
LCLs used in this study have highly correlated DNA methylation pat-
tern although as a model cell line, GM12878 has been cultured for
many generations (Supplemental Fig. 9). Conversely, if methylation
alterations take place randomly and accumulatively, we would ob-
serve a reduced between-sample correlation over generations.

We postulate that while the biological systems such as the methy-
lome and the transcriptome go through certain alterations during the
establishment of LCLs, they will maintain a relatively stable status
during cell culturing. Furthermore, the alterations are not random
events, so LCLs generated separately from the same donor will have
more similar methylation and transcription patterns than those gen-
erated from different donors. If proved true, this feature of LCLs will
advocate its value in studying genetic disorders. Unlike fresh cells
whose status is usually confounded by many uncontrollable factors,
cultured cells are more homogeneous and grown under controlled
environment. The effect of etiological mutations on biological systems
is more isolated and recognizable in cell lines. For example, our previ-
ous study used LCLs to identify over one thousand genes significantly
dysregulated in CdLS [19] while the magnitude of differential expres-
sion is mostly too small to be detected in fresh cells due to their lack
of homogeneity. Therefore, LCLs are often a more practical experi-
mental material for studying how etiologic mutations cause abnor-
malities in downstream systems although it cannot preserve the
complexity of in vivo status as fresh or primary cells do. Future exper-
iments that trace methylation alterations throughout LCL culturing
and compare methylation patterns before and after EBV transforma-
tion in multiple sample groups will more conclusively test these
hypotheses.

Although current data cannot directly validate that biological sys-
tems in different LCLs will reach and maintain a stable status, this

image of Fig.�5


Table 1
Predict gene expression with regression models. Results in the tables are the summary of 100 re-sampling permutations of genes and each permutation randomly 1000 genes to test
the models trained with the other genes. “NA” indicates that the model has no better performance than random prediction. A) Gene expression is represented as a binomial variable
(whether a gene is expressed) and logistic regression is used for the modeling. The three best values are highlighted in bold. B). Gene expression is represented as continuous var-
iable (how much a gene is expressed) and so linear regression is used instead. Numbers indicate the Pearson's correlation coefficients between predicted and observed expression
level. Island =within or out of CpG island; Meth = average DNA methylation; AUC= area under ROC curve; ACC = accuracy of prediction; SENS = sensitivity; SPEC = specificity;
PPV = positive predictive value; and NPV = negative predictive value. All genes include active, inactive, and partially active genes.

Univariate Multivariate

Island Meth Cohesin CTCF H3K4me1 H3K4me2 H3K4me3 H3K9ac H3K27ac H3K27me3 H3K36me3 H4K20me1 Island*Meth Full

Table 1A Prediction of whether genes were active in LCLs by logistic regression models
AUC 71.1 89.5 80.5 83.8 65.3 90.1 96.4 97.0 97.1 85.7 60.3 71.4 88.2 97.4
ACC 75.8 81.7 77.8 71.0 70.9 91.1 93.7 93.7 93.5 85.7 70.9 71.8 84.0 95.1
SENS 82.3 96.8 91.8 NA NA 95.1 95.6 93.6 92.9 97.0 NA 94.2 95.8 96.7
SPEC 59.8 44.9 43.7 NA NA 81.4 89.2 94.1 94.8 58.4 NA 17.2 55.3 91.3
PPV 83.3 81.1 80.0 NA NA 92.6 95.6 97.5 97.8 85.1 NA 73.5 83.9 96.4
NPV 58.1 85.4 68.6 NA NA 87.3 89.2 85.8 84.6 88.8 NA 55.1 84.4 91.9

Table 1B Prediction of how much genes were expressed by linear regression models
All genes NA 0.40 0.31 0.16 0.10 0.47 0.65 0.66 0.61 0.48 0.65 0.19 0.44 0.73
Active NA 0.10 0.03 −0.03 −0.03 −0.02 0.13 0.28 0.29 0.08 0.00 −0.06 0.09 0.28
Inactive NA −0.04 0.01 −0.02 0.06 0.05 0.10 0.13 0.10 0.13 −0.04 −0.11 −0.02 0.16
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hypothesis is strongly supported by the fact that histone modifica-
tions in GM12878 alone can predict gene expression in an unrelated
sample set with 95% accuracy (Table 1B). This result also suggests
that epigenetic status is the determinant factor of gene activation in
LCL. The prediction accuracy is remarkably high considering the exis-
tence of a few technical difficulties, such as the small number of sam-
ples used for most predictive variables and the possible error of
mapping epigenetic status around TSS to 3′-biased expression mea-
surements. Therefore, the actual impact of epigenetic status on tran-
scription activation could be even higher.

This study also suggests that a β of 0.1, or the methylation of 10%
of alleles in a cell population, is enough to indicate gene inactivation
(Fig. 4A). This is unlikely a consequence of biased Cy3/Cy5 measure-
ments because the average β value of all three universally methylated
controls is higher than 0.9. This observation brings up a series of ques-
tions. What is the cause of such heterogeneity? If a β of 0.1 is enough
to inactivate transcription, is it necessary for cells to further increase
methylation levels? If maintaining hyper-methylation status around
the TSS requires extra energy, does it present an evolutionary disad-
vantage? In CdLS, there is a trend towards higher methylation levels
at non-CGI sites (Fig. 2B), which usually has no effect on gene expres-
sion since most of the downstream genes are already silenced in con-
trol samples. Whether this represents a dysfunctional regulatory
system of DNAmethylation in CdLS will be one of the topics of our fu-
ture studies.

Supplementary materials related to this article can be found on-
line at doi:10.1016/j.ygeno.2012.01.002.
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