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Antiepileptic effects of quinine in the pentylenetetrazole model of seizure
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A B S T R A C T

Quinine, is an anti-malarial drug that specifically blocks connexin 36 (Cx36) at gap junction channels.

Quinine has suppressed ictal epileptiform activity in vitro without decreasing neuronal excitability. Thus,

we considered the possible anticonvulsant effects of quinine in the pentylenetetrazole (PTZ) model of

seizure. Moreover, we studied the hypnotic effect and locomotor activity of quinine in mice. In the PTZ

model, quinine at the dose of 60 mg/kg increased the latency of seizure. However, quinine at 40–60 mg/

kg decreased the duration of seizure, dose dependently. In the potentiation of pentobarbitone sleep test,

quinine significantly increased sleeping time and decreased latency to fall asleep at doses of 50 and

60 mg/kg in mice. Also, quinine decreased total locomotion in the present study. It can be concluded that

quinine possesses anticonvulsant and hypnotic effects, which could contribute to the control of seizure.

� 2008 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Epilepsy is one of the most common serious neurological
conditions with an annual incidence of 50/100,000 per year.1,2

Seizures are controlled in nearly 70% of patients with epilepsy,
mostly through drug effects on membrane ion channels or on
GABAergic or glutamatergic transmission. However, for the
remaining 20–30%, with intractable seizures, recent advances in
systemic antiepileptic drug (AED) development have had little
impact. Refractory epilepsy is associated with considerable
medical, social, and psychiatric morbidity and enormous financial
cost. Thus, novel approaches to the treatment of these patients are
needed.3,4 Abnormal synchronization of neuronal discharges is of
recognized critical importance in seizures; however, the mechan-
isms underlying this pathological synchrony remain uncertain. In
this context, there is growing interest in electrotonic communica-
tion via gap junctions, and speculation, based largely on studies in

vitro and on ex vivo brain tissue that gap junctions may be
important in the generation and propagation of seizures. The
pathogenesis of abnormal neuronal synchrony underlying sei-
zures, formerly thought to be based mainly on the chemical
synaptic transmission, now includes a role of gap junctional
communication. This concept has been strengthened by evidence
from several in vitro models, in which pharmacological manipula-
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tions of gap junctional communication predictably affect the
generation of seizures, with blockers diminishing seizures, and
enhancers increasing seizures.5,6 Thus, it seems that gap junctions
may represent a novel therapeutic target for the future. Gap
junction channels of vertebrates are formed of a family of proteins
known as connexins (Cx) that are expressed in an overlapping
pattern of tissue distribution. Quinine, an anti-malarial drug,
specifically blocks Cx36 and with lesser potency Cx50 in
mammalian cells.7 Cx36 is exclusively expressed in neurons,
being the principal connexin in adult neurons and has been linked
to other genetic markers of juvenile myoclonic epilepsy (JME).8,9 In
contrast, Cx50 is not expressed in the mammalian brain.10 Quinine
was reported to suppress ictal epileptiform activity in vitro without
decreasing neuronal excitability.11 Recently, quinine suppressed
epileptiform activity by decreasing the amplitude and frequency of
epileptiform spikes and by attenuating the epileptiform behavior
in rats.12 Moreover, it inhibited cortical spreading depression (SD)
on rat neocortical slices in vitro.13 In a previous study, we reported
that carbenoxolone, a gap junction blocker according to the
pentylenetetrazole (PTZ) model, had anticonvulsant effects. Also,
carbenoxolone showed hypnotic and muscle relaxant effects in
mice.14 Thus, we set out to investigate, in the PTZ model, the
anticonvulsant effects of another gap junction blocker, quinine;
hypothesizing that if gap junction channels are important in
seizure generation and/or propagation, they will reduce the
frequency or severity of seizures and might suggest novel
treatment strategies for seizure in humans. In the present study
we also examined the pentobarbitone sleep test and the open field
vier Ltd. All rights reserved.
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test at anticonvulsant doses of quinine. It is important to know that
at anticonvulsant doses, quinine causes a hypnotic effect and could
reduce locomotor activity. This led us to compare these behavioral
results with other gap junction blockers.

2. Materials and methods

2.1. Chemicals

Quinine anhydrous hydrochloride was purchased from Fluka.
PTZ and pentobarbitone were obtained from Sigma. Diazepam was
purchased from Daru Pakhsh Pharmaceutical Co., Iran in injectable
form. PTZ and pentobarbitone were dissolved in physiological
saline solution and quinine was dissolved in 0.8% (v/v) Tween 80.
All drugs were injected intraperitoneally (i.p.) in a volume of
10 ml/kg.

2.2. Animals

Male BALB/c mice (25–30 g) were obtained from the Razi
Institute (Karaj, Iran). The animals were housed in standard Plexiglas
cages with free access to food (standard laboratory rodent’s chow)
and water. The animal house temperature was maintained at
23 � 3 8C with a 12-h light/dark cycle (light on from 6 a.m.).
Experiments were carried out between 8 a.m. and 1 p.m. All animal
experiments were carried out in accordance with the European
Communities Council directive of 24 November 1986 (86/609/EEC) in
such a way to minimize the number of animals and their suffering.

2.3. Anticonvulsant activity

2.3.1. Pentylenetetrazole seizure model

The mice were divided into seven groups of 10 animals each for
a total of 70 mice. In five groups, the mice were given quinine at the
doses of 20, 30, 40, 50, or 60 mg/kg 30 min before the adminis-
tration of PTZ (90 mg/kg). Two groups were injected with
diazepam, the positive control (0.5, 1 mg/kg) and one group, the
control group, was injected with normal saline + Tween 80 (10 ml/
kg) 30 min before the administration of PTZ (90 mg/kg).15 Each
animal was placed into an individual plastic cage for observation
lasting 1 h. The onset of a general clonus was used as the endpoint.
The general clonus was characterized by forelimb clonus followed
by full clonus of the body. The time taken before the onset of clonic
convulsions, the duration of clonic convulsions, and the percentage
of seizure and mortality protection were recorded.15

2.4. Potentiation of sodium pentobarbitone sleep test

Quinine at doses of 20, 30, 40, 50, 60 mg/kg, diazepam at doses
of 0.5 and 1 mg/kg, or normal saline + Tween 80 (10 ml/kg)
Table 1
Anticonvulsant effect of quinine in the pentylenetetrazole-induced convulsion in mice

Treatment (dose) Onset (s) Duration (s)

Control 51.83 � 1.64 12 � 1.80

Diazepam (0.5 mg/kg) 485.5 � 74.97*** 3.5 � 2.21***

Diazepam (1 mg/kg) 600 � 0*** 0 � 0***

Quinine (20 mg/kg) 47 � 2.5 8.8 � 1

Quinine (30 mg/kg) 49.3 � 3.9 10.7 � 1

Quinine (40 mg/kg) 49.5 � 4.5 4 � 1.5**

Quinine (50 mg/kg) 169.2 � 71.9 5 � 1**

Quinine (60 mg/kg) 399.4 � 98* 0 � 0***

Control (normal saline + Tween 80); control, diazepam and quinine were administered i.p

10 mice.
*P < 0.05; **P < 0.01; ***P < 0.001, compared to control group, Tukey–Kramer test.
injected i.p. into mice of each group, respectively. Thirty minutes
after initial drug injection, each animal was injected with sodium
pentobarbitone (30 mg/kg, i.p.). The sleeping time was noted by
recording the interval between the loss of and regaining of righting
reflex.16

2.5. Open field test

Locomotor activity was measured in the apparatus
(100 cm � 100 cm � 50 cm), made of white wood (all sides),
divided by red lines into 25 squares of 20 cm � 20 cm positioned
in a quiet room. The test room was illuminated at the same
intensity as the colony room.

Each mouse was placed in the center of the open field, and its
behavior was observed for 10 min. Total locomotion (the total
number of squares crossed), peripheral locomotion (the number of
outer squares, those adjacent to the walls, crossed), and central
locomotion (the number of inner squares crossed), were mea-
sured.17 Quinine at doses of 20, 30, 40, 50, 60 mg/kg, diazepam at
dose of 3 mg/kg, or normal saline + Tween 80 (10 ml/kg) injected
i.p. into mice of each group, 30 min before starting the experi-
ments, respectively.

2.5.1. Statistical analysis

The data were expressed as mean values � S.E.M. and tested
with analysis of variance (ANOVA) followed by the multiple
comparison test of Tukey–Kramer. Results with P < 0.05 were
considered significant.

3. Results

In PTZ model in this current study, quinine at the dose of
60 mg/kg significantly increased the latency of seizure com-
pared to control (P < 0.05). However, quinine at the doses of 40,
50, 60 mg/kg decreased the duration of seizure in a dose-
dependent manner (P < 0.01, P < 0.01, and P < 0.001, respec-
tively) (Table 1). Diazepam (0.5–1 mg/kg), the positive control,
significantly increased the latency of seizure and decreased the
duration of seizure compared to control (P < 0.001, and
P < 0.001, respectively).

In the potentiation of sodium pentobarbitone sleep test, quinine
significantly increased the sleeping time in mice at doses of 50 and
60 mg/kg compared to normal saline + Tween 80 control in a dose-
dependent manner (P < 0.01, and P < 0.001, respectively)
(Table 2). Also, quinine at the doses of 50 and 60 mg/kg
significantly decreased the latency to sleep compared to control
in a dose-dependent manner (P < 0.05, and P < 0.01, respectively)
(Table 2). Furthermore, diazepam at 1 mg/kg significantly
increased the sleeping time in mice and decreased the latency
compared to control (P < 0.001).
Seizure protection (%) Mortality protection (%)

0 0

80 90

100 100

0 0

0 0

0 0

20 20

50 30

. 30 min before the injection of PTZ (90 mg/kg, i.p.); values are the mean � S.E.M. for



Table 2
Potentiation of the pentobarbital sleep with quinine in mice

Treatment (dose) Latency (min) Duration (min)

Control 8.3 � 1.9 20.3 � 1.6

Diazepam (1 mg/kg) 2.4 � 0.2*** 95.71 � 6.3***

Quinine (20 mg/kg) 9.4 � 1.1 30.7 � 9.7

Quinine (30 mg/kg) 5.9 � 0.5 39.6 � 9.1

Quinine (40 mg/kg) 5.8 � 0.6 42.8 � 4.6

Quinine (50 mg/kg) 4.9 � 0.3* 88.4 � 12.9**

Quinine (60 mg/kg) 3.7 � 0.4** 173.27 � 34.4***

Control (normal saline + Tween 80); control, diazepam and quinine were

administered i.p. 30 min, before pentobarbital (30 mg/kg). Mean latency and

duration of sleep in min � S.E.M. from 10 mice in each group.
*P < 0.05; **P < 0.01; ***P < 0.001, compared to control, Tukey–Kramer test.
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Quinine 40–60 mg/kg reduced total locomotion, as well as
peripheral and central locomotion compared to the control group
(all Ps < 0.001) (Fig. 1). Diazepam (3 mg/kg) significantly
decreased total locomotion, as well as peripheral and central
locomotion compared to the control group (P < 0.001) (Fig. 1).

4. Discussion

Our results indicate that quinine has anticonvulsant activities in
PTZ model. The inhibitory effect of quinine on the duration of
seizure appeared at lower doses than 60 mg/kg. However, it
appears that quinine can specifically inhibit both induction and
duration of seizure at a dose of 60 mg/kg. Thus, it seems that
quinine, by blocking gap junction channels, inhibits both the
induction and duration of epilepsy in the PTZ model of seizure.
Similarly, our data showed that quinine, similar to another gap
junction blocker, carbenoxolone, has anticonvulsant effects in PTZ
model.14 In line with this view, recently Bostanci and Bagirici have
shown that quinine may act as an antiepileptic drug in animal
models of epilepsy in vivo. It significantly decreased spike
frequencies, spike amplitudes, and epileptic behavioral score in
penicillin-induced generalized epileptiform activity. In this in vivo

epilepsy study quinine did not alter baseline EEG activity.12 It has
been suggested that quinine may decrease epileptiform activity via
preventing gap junction mediated communication between
neurons and furthermore, that the use of specific gap junction
blockers might be useful in the treatment of epilepsy by reducing
or even preventing the propagation and synchronization of
epileptiform activity.12

In a previous study, our results demonstrated that carbenox-
olone, at high doses, causes anticonvulsant effects that may be
related to unspecific actions on gap junction channels. Quinine, in
another previous study, was shown to close gap junction channels
in a reversible, concentration-dependent and connexin-specific
Fig. 1. Effects of quinine on open field test. Control (normal saline + Tween 80), quinine an

mean � S.E.M., n = 10, *P < 0.05, **P < 0.01, ***P < 0.001, Tukey–Kramer test.
manner at an intracellular binding site.7 These results, taken
together, support the proposed role of gap junction channels in the
generation of seizures and are the first reported results to
demonstrate the efficacy of gap junction blockade in a model of
generalized clonic, or tonic clonic, seizures in vivo. Seizures have
traditionally been recognized as a symptom of abnormal neuronal
synchronization, and until recently have been thought to be a
result of aberrant synaptic communication.4 Modeling studies
indicate that neuronal synchronization can be mediated by low
densities of gap junctions either between dendrites, as long as
these dendrites are excitable, or between the axons of pyramidal
cells.18,19 Furthermore, the electrotonic coupling could be pro-
moted during epileptogenesis.20,21 It has been shown that targeted
focal delivery of gap junction blockers significantly reduces
percentage of seizure time in a model of epilepsy that is resistant
to traditional treatment, including treatment with high-dose
phenytoin, diazepam, and focally delivered tiagabine and does so
without significant systemic side effects.4 Gigout and colleagues
have shown that gap junction channels play a role in synchronizing
human neocortical networks and, similar to other studies, have
shown that these channels may initiate epileptiform activity in
focal cortical dysplasia (FCD).22 It has been reported that GABA
reduces gap junction-mediated communications between supra-
chiasmatic neurons by interacting with GABAA receptors, allowing
an increase in the influx of Cl� thus, altering electrical properties of
the cell membranes.23 Moreover, there is strong evidence for the
role of the GABAergic system in modulating gap junction channels:
Muscimol, a GABAA receptor agonist, demonstrated uncoupling
effects in a dose-dependent manner and these effects were
abolished by application of bicuculline.18,24 However, there are
several controversial reports about the role of GABA receptor-
mediated mechanisms in initiating and maintaining epileptiform
synchronization.25,26 Cx36 is expressed in GABAergic interneurons
in several brain regions.8 Spontaneous field inhibitory post-
synaptic potentials (IPSPs) and GABAergic ictal-like events were
completely and reversibly blocked by quinine.26 In this context,
another gap junction blocker, carbenoxolone, also suppressed
inhibitory IPSPs generated by rodent CA3 pyramidal cells in
presence of the K+ channel blocker 4-aminopyridine (4AP).27 Thus,
although it is possible that quinine expresses its anticonvulsive
effects via preventing gap junction mediated communication
between neurons in generalized clonic or tonic clonic seizures; it is
also possible that quinine exerts its antiseizure effect via another
independent mechanism.

In this current study at anticonvulsant doses, quinine produced
a hypnotic effect in the pentobarbitone sleep test. This effect was
similar to the hypnotic effect of carbenoxolone in a previous
study.14 Also, the effects of quinine on the locomotor activity were
evaluated by open field test; a test used extensively for examining
d diazepam (i.p.) were injected 30 min, before open field test. Data were reported as



M. Nassiri-Asl et al. / Seizure 18 (2009) 129–132132
the behavioral effects of drugs and anxiety.28 As a result, it
appeared that quinine significantly reduced motor activity in mice
at the doses required to suppress seizures. A similar result has been
observed with carbenoxolone.14

Synchronized firing is a widespread phenomenon in the
mammalian brain,29,30 including the motor cortex,31 respiratory
motor neurons,32,33 and limb motor neurons.34,35 Collectively,
these studies have demonstrated the presence of gap junctions at
many levels of the motor system, in both motor neurons and in
premotor pattern generating circuits. Further, gap junction
coupling has been shown to bring about robust coordination
patterns, even in the absence of chemical synapses, and has been
shown to mediate synchronization of neurons during motor
behaviors.36 One possibility exists that the effects of quinine on
seizure characteristics might be secondary to the effects of quinine
on behavior or on sleep. At least, clear behavioral effects and
‘‘sleep’’ promoting effects have been shown here.

Moreover, quinine is widely used as an effective therapy for
idiopathic leg cramps. But, the mechanism for this effect is
unknown. It appears to decrease the excitability of the motor end
plate, thereby reducing muscle contractility.37 Therefore, it is
possible that quinine by blocking these channels has significant
effects on locomotor performance. However, a demonstration of
whether these channels are, in fact, capable of mediating electrical
transmission requires physiological experimentation.

5. Conclusions

In brief, the present study provides evidence for anticonvulsant
activity of quinine in the generalized clonic seizure of PTZ model.
At anticonvulsant doses, it also demonstrated hypnotic effects and
decreased locomotion. As a result of these finding, we suggest that
gap junctions represent an appropriate target for the development
of drugs aimed at decreasing epileptiform synchronization and
preventing epileptogenesis. It is suggested that structure–activity
studies of quinine will perhaps lead to the synthesis of a quinine-
based derivative that will be effective in treatment of seizure
disorders in humans.
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