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Abstract

We construct an analogue of von Neumann’s affiliated algebras for sofic group algebras over arbi-
trary fields. Consequently, we settle Kaplayisidirect finiteness coppture for sofic groups.
0 2004 Elsevier Inc. All rights reserved.
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1. Introduction
The following conjecture is due to Kaplansky.

Conjecture 1. For any group G and commutative field K, the group algebra K (G) is
directly finite. Thatisab =11in K(G) impliesba = 1.

Recently Ara, O'Meara and Perera [1] settled the conjecture for residually amenable
groups even in the case of group algebfy&5), whereD is a division ring. They also
proved that Matx,, (D(G)) is directly finite as well. It is important to note that Conjecture 1
holds for any groups if D = C, the complex field [6]. Indeed;(G) is a subalgebra of
the von Neumann algebrs (G). The algebraV(G) always satisfies the Ore-condition
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with respect to its non-zero divisors. Hence one can consider its classical ring of fractions
U (G). The algebrd/ (G) is the so-calledffiliated algebra of G and it is a continuous von
Neumann regular ring [3,7], hence it is known to be directly finite. Let us turn to another
conjecture due to Gottschalk [4].

Conjecture 2. Let G be a countable group and X a finite set. Consider the compact
metrizable space X¢ of X-valued functions on G equipped with the product topology.
Let f: X% — XY be a continuous map that commutes with the natural right G-action.
Thenif f isinjective, it issurjective aswell.

In [5] Gromov proved Gottschalk’s conjecture in the casesafic groups (the name
“sofic groups” was coined by Weiss [9]). We shall review the definitions and basic proper-
ties of sofic groups in Section 4, nevertheless, let us note that residually amenable groups
are sofic groups as well, and in [2] we constructed sofic groups that are not residually
amenable. On the other hand, there seems to be no example yet of a group which is not
sofic. Let us observe that Conjecture 2 implies Conjecture 1 for finite fieldadeed, it
is enough to prove Conjecture 1 for countable groups. Then any elemarthe group
algebraF (G) induces a continuous linear map £ commuting with the rightG-action.
Simply,a acts as convolution on the left. Théi{G) can be identified with the dense set of
elements inF¢ having only finitely many non-zero values.db = 1 on this dense subset
thenab must be equal to the identity on the whdi& . Thereforeb is injective and thus it
is a bijective continuous map by our assumption. Consequenythe inverse ob, thus
ba = 1. The goal of this paper is to replace the notion of the affiliated algebras of complex
group algebras with something similar for group algebras of sofic groups over arbitrary
division rings.

Theorem 1. Let G be a sofic group and let D be a division ring. Then D(G) can be
embedded into a simple continuous von Neumann regular ring R(G).

Therefore we extend the result of Ara, O’'Meara and Perera to the class of sofic groups.

2. Continuousvon Neumann regular rings

In this section we give a brief summary of the theory of continuous von Neumann
regular rings, based upon the monograph of Goodearl [3]. Recall that a unit& rngn
Neumann regular if for any x € R there existy € R such thatcyx = x. It is equivalent to
say that any finitely generated right ideal®fcan be generated by one single idempotent.
A ring R is calledunit-regular if for any x € R there exists a uniy such thatcyx = x.

A ring is calleddirectly finite if xy = 1 impliesyx = 1 and it is calledstably finite if
Mat, ., (R) is directly finite for alln > 1. Any unit-regular ring is necessarily stably finite.
A lattice L is called acontinuous geometry if it is modular, complete, complemented and

a/\(\/ba)z\/(aAba),

ael ael
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for any linearly ordered subsgi, }oc; C L. Avon Neumann regular ring is call@edntin-

uous if the lattices of both its finitely generated right ideals and left ideals are continuous
geometries. The continuous von Neumann regular rings are unit-regular, hence they are
stably finite as well. Division rings and matrix rings over division rings are the simplest
examples of continuous von Neumann regular rings. The first simple continuous von Neu-
mann rings which do not satisfy either the ascending or the descending chain condition
had already been constructed by John von Neumann [8]. The following proposition sum-
marizes what we need to know about such rings.

Proposition 2.1. If R is a simple continuous, von Neumann regular ring that does not
satisfy either the ascending or the descending chain condition, then

e Ko(R) =R, infact there exists a unique non-negative real -val ued dimension function
dimg on the set of finitely generated projective right modules over R taking all non-
negative values such that
(1) dimg(R) =1.

(2) dimg(0) =0.
(3) dimg(A & B) =dimg(A) + dimg(B).
(4) dimg(A) =dimg(B) ifandonlyif A ~ B.
e If A, B arefinitely generated submodules of a projective modulethen sois A N B, and

dimg(A N B) +dimg(A + B) =dimg(A) +dimg(B).
e Ifa e Rthen Ann(a) = {x € R: ax =0} isaprincipal right ideal and
dimg (Ann(a)) + dimg (@R) = 1.
e If A < B are finitely generated projective modules and dimg(A) = dimg(B) then
A=B.
3. A pseudo-rank function on thedirect product of matrix rings
Let I be a set and lefA,}qc; be finitely generated righb-modules, whereD is a
division ring. Consider the direct produgt= [[,.; Endp(A,), where Eng(A,) is the
endomorphism ring ofA,. This ring is directly finite, von Neumann regular, right and left

self-injective. Now we recall the nion of a pseudo-rank function [3].

Definition 3.1. A pseudo-rank function on a von Neumann regular iig a mapV : R —
[0, 1] such that

(a) N1 =1, N(@©O) =0.
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(b) N(xy) < N(x), N(xy) < N(y), forall x,y € R.
(c) N(e+ f)=N(e) + N(f) for all orthogonal idempotents f € R.

Before stating our proposition let us relctide notion of ultralimit as well. Leto be
an ultrafilter on the set. Then lim, is the unique real valued functional on the space of
bounded real sequencgs, }c; such that: if lim,({ay }«cr) = t, then for anys > 0,

laellayelt—et+el} €o.
Note that ”mo({aoz + ba}ael) = ”mw({aa}ael) + ”mw({ba}ael)-

Proposition 3.2. Define N : E — [0, 1] the following way. If r, € Endp(Ag),

dimp (Ran(ra))
dimD(Aa)

N({ra}ael) =|iur)n ,
where dimp denotes the dimension function on finite dimensional right D-modules. Then
N isa pseudo-rank function.

Proof. Clearly,N(1) =1 andN(0) =0. Letr = {ro}acs, S = {Sa }acs- Then
dimp (Ranryse)) < dimp (Ran(re)) and  dinp (Ranryse)) < dimp (Ran(s)).

HenceN(rs) < N(r), N(rs) < N(s). Now lete = {ea}aer, f = {fa}aer € E be orthogo-
nal idempotents. Then for arye I, ¢, and f,, are orthogonal idempotents in En,).
Thus

dimp (Ran(eq + fi)) = dimp (Ran(eq)) + dimp (Ran f,)).
ConsequentlyN(e + f) =N(e) + N(f). O
Note that Ke(N) = {x € E | N(x) = 0} is a two-sided ideal of.

Proposition 3.3. Thering Ry = E/Ker(N) is a simple continuous von Neumann regular
ring.

Proof. The direct product ringE is a right and left self-irgctive von Neumann regular
ring, therefore by Corollary 13.5 [3F is continuous. IfM is a maximal two-sided ideal
of E, then by Corollary 13.27 [3]E /M is a simple continuous von Neumann regular ring.
Thus it is enough to show that Kg¥) is a maximal ideal. LeD C E be the following
two-sided ideal{ay}qer € Q If {x € I | g = 0} € w. Then of courseE/Q is just the ul-
traproduct of the rings EnglA,). Note thatQ is a prime ideal since the ultraproduct of
prime rings is a prime ring as well. By Corollary 9.15 [3], satisfies the general com-
parability axiom. Hence, by Corollary 8.21 [3], the ideal K&), which containg, is a
prime ideal. Proposition 16.25]8nmediately implies that K&w) is in fact a maximal
two-sided ideal off. This completes the proof of the propositiora
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4. Sofic groups
In this section, we recall the notion ofafic group from [2] and prove Theorem 1.

Definition 4.1 [2]. For a finite setV let Map(V) denote the monoid of self-maps &f
acting on the left, the monoid operation letcomposition of self-maps. We say that two
elements, f € Map(V) ares-similar for a real numbee € (0, 1), if the number of el-
ementsv € V with e(v) # f(v) is at moste|V|. We say thak, f are (1 — ¢)-different,

if the number of elements € V with e(v) = f(v) is less thare|V|, i.e., if they are not
(1 —&)-similar.

Definition 4.2 [2]. The groupG is sofic if for each numbee € (0, 1) and any finite subset
F C G there exists a finite set and a functionp : G — Map(V) with the following
properties:

(a) Forany two elements f € F the mapp (ef) is e-similar tog (e)p (f).
(b) ¢(1) is e-similar to the identity map o¥’.
(c) Foreacte € F\ {1} the mapp(e) is (1 — ¢)-different from the identity map o¥ .

Remark. The origin of this notion is [5], where Gromov introduced the concept of initially
subamenable graphs. The term “sofic group”is introduced in [9]: a finitely generated group
is called sofic if its Cayley graph is initially subamenable. The above definition is taken
from [2] (with right action replaced by left actn, which is more appropriate here). This is

the formulation which suits our need the best. In the case of finitely generated groups the
two definitions in [9] and [2] are equivalent. Although we shall not use it later, for the sake
of completeness we prove their equivalentebegin with, we recall some notation, and

the definition from [9].

Definition 4.3[9]. Let G be a finitely generated group, aBdc G a fixed finite, symmetric
(i.e., B = B~1) generating set. The Cayley graph@fs a directed grapli’, whose edges
are labeled by the elements Bf the set of vertices is jugt, and the edges with label
b € B are the pairgg, bg) for all g € G. Let N, denote the-ball around 1 I" (it is an
edge-colored graph, and also a finite subsé&)nThe groupG is called sofic in [9], if for
eachs > 0 and eaclr € N there is a finite directed graplv, E) edge-labeled by, and a
subsetVp C V with the properties, that:

(1) For each poinv € Vp there is a functiony, : N, — V which is an isomorphism (of
labeled graphs) betweeY}. and ther-ball in V aroundv.
(2) [Vol =2 @ —=d)|V].

Proposition 4.4. For a finitely generated group G the above two notions of soficity are
equivalent. In particular, Definition 4.3 does not depend on the choice of the generating
set B.
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Proof of 4.3 = 4.2. Lete > 0 andF C G a finite subset. We chosee N such that
the product sef - F is contained inV,. Let (V, E) andVy C V be the labeled directed
graph, and subset correspondingte: ¢ andr. We shall use this finite sét, and define
the functiong : G — Map(V) as follows. Forg € N, andv € Vg let ¢(g)(v) = ¥, (g).
Otherwise, forg € G \ N, and/orv € V \ Vp, we definep (g)(v) arbitrarily. It is an easy
calculation to check conditions (a)—(c) of Definition 4.2

Proof of 4.2 = 4.3. Let § > 0 andr € N. We setF = Na,12, and choose any > 0.
Let ¢: G — Map(V) be the function of Definition 4.2 for thigF, ). We use thisV as
the vertex set of our new graph, and for each V we definey, : Nyy1 — V, ¥, (g) =
¢(g)(v). Let Vg be the set of those € V for which

(A) Yry(bg) =Yy, )(b) forall g e N and allb € B,
(B) ‘ﬁv (1) - Ul
(C) ¥y(g) # ¥y (h) wheneverg, h € N,41 are different elements.

Finally we build the labeled edges &f: for eachb € B andv € V we add the edge

(v, ¥y (b)) with labelb. It is easy to see that conditions (A) and (C) imply that i€ Vo

then the restriction ofy, to N, is an isomorphism of labeled graphs, and condition (B)
implies that its image is the-neighborhood ob in V. Hence Definition 4.3(1) is satis-
fied. There argN,| - |B| + 1 equations to check in (A) and (B), and less thah,1|°
inequalities in (C). We know from Definition 4.2(a) that each of the equations can fail
on at mosk|V| exceptionab. Now we estimate the number of elements V such that

Y (g) = Yy (h), Wwhereg, h are two fixed distinct elements of. 1. If ¥, (g) = ¥, (k) then

¢ (g)(v) = ¢ (h)(v), therefore

?(g7) (9 ) = (g H) (e (M) (). 1)

The following sets have at leagt — ¢)| V| elements:

We=1{veV]|o(eg ) (o) =0},
Wi={veV|s(g (o) =0¢(g *h) )},
Wop={veV|o(g ) oD}

If v satisfies (1) them ¢ W, "W, "W’ ,. Hence each inequality in (C) can fail on at most
3¢|V| exceptionab. Hence Definition 4.3(2) holds if we choose

8
&< 2 .
3INr+1l“+ N/ |- |B| +1

For the sake of completeness, we quote without proof some important properties of sofic
groups:
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Proposition 4.5 [2]. Direct products, subgroups, inverse limits, direct limits, and free prod-
ucts of sofic groups are sofic. If N <1 G, N issoficand G/N is amenable, then G isalso
sofic.

Proposition 4.6 [2,9]. If G is a residually amenable group then G is sofic. In particular,
amenable and residually finite groups are sofic.

Proof of Theorem 1. Let G be a sofic group. We define the index set:
I ={(F,¢) | F € G finite ande € (0, 1)}
and for each indexH, §) € I we define the non-empty subset
Igs={(F.e)el|HCFands <8} C 1.

The collection of non-empty subsédts; s} is closed under finite intersection, so there is an
ultrafilter w of subsets of containing all/g s. Next, for each indexF, ¢) € I we choose a
finite subseVr . and a functionpr . : G — Map(Vr ) satisfying the conditions (a)—(c) of
Definition 4.2. As in Section 3, for each indexs I A, denotes thé)-D-bimodule with
right (and left) basi¥/,, Endp (Ay) denotes the endomorphism ringAy as a rightD-mo-
dule, E denotes the product of the rings Edi,) and N is the pseudo-rank function of
Proposition 3.2. Finally®(G) = Ry denotes the quotient ring/ Ker(N). This R(G) is a
simple continuous von Neumann regular ring, the ring we seek in the Theorem. The left
multiplication onA, by anyd € D is a right D-module endomorphism (mapping each
v e V, todv). So,D is embedded as a subring of E5(di,). ThenD is embedded (via
the diagonal map) as a subring Bf and (composing with the quotient map) as a subring
of R(G). D also embeds as a subring of the group algebra (the sidisett | d € D,

1€ G} C D(G)). The elements diMap(V,) extendD-linearly (with respect to the lefb
action onA,) to endomorphisms of the rigli-moduleA,, hence the functiong, induce
functionsG — Endp(Ay), and can be extended to (lefd)-linear functions

Ty : D(G) — Endp(Ay).

Taking the product of thesE,, and then composing with the quotient m&p~> R(G), we
obtain theD-linear functions:

T:D(G)— E,
T:D(G) — R(G).

We shall prove that thi§" is an injective homomorphism, completing the proof of The-
orem 1. Note, that the subsét c D(G) commutes with the subring — D(G), and

its imageT, (G) C Endp(A,) commutes with the above subridy< Endp (A,). Hence

T (G) C R(G) also commutes with the subriig<— R(G). We still need to check that the
restriction ofT to the groupG c D(G) is a group homomorphism. We see from property
(a) of Definition 4.2 that for each, h € G
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N(T ()T (h) — T(gh)) =lim rankp (Ty () To (h) — To(gh))

dimD(Aa)
< "ar)n l{veVy I¢a(g)(¢algl)|(v)) 7 ¢a(gh) (L)}
<lime=0.
e—0

Similarly, it follows from property (b) thatv (7' (1) — 1) = 0. Therefore the map is a ring
unital homomorphism. The only that thing remains to be shown is the injectivity. &o
let S C G be afinite subset, and for eack S let k;, € D be a non-zero element. We shall
show thatT (3", gkss) =) ,csksT(s) # 0 in R(G). For each indexy = (F,¢) € I we
choose a maximal subsgt, C V,, such thatifp, g € X, ands, r € S with eitherp # ¢ or

s #t thenT,(s)(p) # T,(t)(g). SinceX, is maximal, for eaclp € V,, \ X, either there
exist elements # ¢ € S such that

T (s)(p) = Ta()(p) 2)

or there is an elemente X, and elements, ¢ € S such that

To(s)(p) = Ta(D)(q). (3)

If SUS~! c F then by the argument applied in Proposition 4.4, for a fixed pa#

t € S the number of elements for which (2) holds is at most&3V,|. Hence (2) holds
(with somes # ¢ in S) for at most 3|V,||S|? possible values op. The right hand side
of (3) can take at mogfS| - | X, | different values. On the other hand, by Definition 4.2(b)
and (c), if S U S~1 c F then the subset¥; = {v e V, | T,(1)(v) # v} and W, = {v €

Vo | Tu(s™H(Th(s)(v)) # To(1)(v)} have at most|V,| elements, and the map, (s) is
injective onV,, \ (W1 U W;). Hence for each value ofthere are at mosts2V, | + | S| - | X |
possible values op satisfying (3) for some € S. ThereforeifSu S~ c F;

[V \ Xo| < 2618 - [Vi| + S+ | Xa| + 3| Vi S|2.
Thus

1— 2¢|S| — 3¢|S|?
ISI24+1

| Xa| 2

[Val.

If a non-zero element of A, is spanned by, then(} ¢k Tw(s))(x) # 0. Hence

- 1-2¢|S|—3elS)2 1
(Zk T(s)) ||m| al S im eI5| = 3¢l 5] 0.
Vol ~ 60 [S|24 1 |S|2+1

seS

This proves that' (3 ;¢ kss) # 0. Theorem 1 is proved now.0

Corollary 4.7. If G isa sofic group and D isa division ring then D(G) is stably finite.
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