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Abstract The human papillomavirus (HPV) protein E6 can
promote the ubiquitination of the p53 tumour suppressor in
vitro, providing an explanation for the ability of E6 to induce
p53 degradation in vivo and contribute to the potential tumori-
genic effect of the virus. Instead, in non-infected cells, p53 levels
are primarily destabilised by the ubiquitin E3 ligase activity of
the Mdm?2 protein. Here we have compared the effects of E6
and Mdm2 on p53 ubiquitination in vivo. We show that whereas
in the presence of Mdm2 proteasome inhibitors induce the ac-
cumulation of ubiquitinated forms of p53, this does not occur in
the presence of E6. Accordingly, we confirm that the effect of
E6 and p53 is independent of the six C-terminal lysine residues
in p53, which have previously been described to play an impor-
tant role for effective ubiquitination and degradation of 53 medi-
ated by Mdm2. We also show that other yet unidentified resi-
dues in p53 are also susceptible to ubiquitination. These results
indicate that E6 does not induce ubiquitination of p53 in the
same way as Mdm2 in order to promote its degradation, sug-
gesting important differences between the Mdm2 and E6 effects
on p53 degradation.

© 2003 Published by Elsevier Science B.V. on behalf of the
Federation of European Biochemical Societies.
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1. Introduction

The tumour suppressor p53 is activated by several kinds of
stress and induces the expression of an ever growing number
of proteins that are involved in causing the inhibition of cell
proliferation or promoting cell death by apoptosis (reviewed
in [1]). In normal non-stressed cells p53 has a very short half-
life (5-20 min) due to an autoregulatory feedback loop mech-
anism in which the Mdm?2 protein plays a key role (reviewed
in [2]). Wild-type p53 (WTp53) acts as a transcriptional acti-
vator of the Mdm2 gene. In turn, Mdm2, which itself has a
very short half-life due its susceptibility to degradation, inter-
acts with p53 and functions as a ubiquitin E3 ligase that
promotes the conjugation of ubiquitin to specific lysine resi-
dues in p53 [3-7]. This conjugation to ubiquitin serves as a tag
that effectively targets p53 for degradation by the proteasome.

Human papillomavirus (HPV) infects the basal cells of dif-
ferent epithelia, including the genital and anal areas, and HPV
DNA has been found in 90% of cervical cancers and 50% of
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vulval cancers [8]. There are over 120 different strains of HPV
[9], of which a number are known to be ‘high risk’ for cervical
carcinoma. This is the second most common cause of cancer-
related death in women worldwide, in some developing coun-
tries accounting for the highest cancer mortality [10]. As the
viral DNA integrates into the genome the expression of two
viral products, E6 and E7, is enhanced disturbing the normal
terminal differentiation process of cervical cells. E7 binds the
retinoblastoma gene product whereas E6 mediates the degra-
dation of p53, among other effects. As a result, crucial cell
cycle check-points are compromised leading to transformation
of the host cells (for review see [11]). E6 is thought to target
the tumour suppressor protein p53 for proteasome-mediated
degradation through the recruitment of E6-associated protein
(E6-AP), a cellular protein with known E3 ligase activity [12].
Through this interaction the E6/E6-AP complex would pro-
mote p53 ubiquitination and degradation [13,14] in a process
analogous to the Mdm2-mediated p53 degradation in non-
infected cells. The similarity between these two pathways of
p53 degradation, Mdm2-mediated and E6-induced, has been
assumed but never fully investigated.

Here we show clear differences in the levels of p53 ubiquiti-
nation obtained with E6 and with Mdm2 which suggest that
the degradation of p53 mediated by each of these proteins has
different requirements.

2. Materials and methods

2.1. Cells, antibodies and reagents

H1299 cells were cultured in RPMI medium supplemented with
10% foetal calf serum and gentamicin. Human p53 was detected using
the mouse monoclonal antibody DOI [26]. Human and mouse mdm?2
were detected using the 4B2 mouse monoclonal antibody [27]. p21 and
c-myc were detected using the 118 [28] and 9E10 mouse monoclonal
antibodies. Anti B-galactosidase mouse monoclonal antibodies were
obtained from Oncogene. Proteasome inhibitor MG132 was obtained
from Calbiochem.

2.2. Plasmids

Expression from constructs pcDNA3 E6, pCOC-X2mdm?2,
pCMVhmdm2, pCMV-p21, pcDNA3c-myc and pcDNA3 B-galactosi-
dase was under the control of the CMV promoter. WTp53 and
pS53R273H were expressed from pcDNA3 vectors [15] and pcDNA3-
p536KR was described by Rodriguez et al. [6].

2.3. Transfection of cells and Western blotting

HI1299 cells were transfected using the calcium-phosphate method
as described in [15]. After 36 h cells were lysed in Novex loading
buffer supplemented with 0.1 M dithiothreitol and proteins were sep-
arated on 4-12% Novex polyacrylamide gels, transferred to polyviny-
lidene difluoride membranes and developed with the relevant antibod-
ies as previously described in [15].
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2.4. Purification of His-tagged ubiquitin conjugates

Purification of His-tagged ubiquitin-conjugated proteins was as de-
scribed in [15]. His-ubiquitin-tagged proteins were analysed by West-
ern blot analysis with antibodies against the relevant protein.

3. Results

3.1. Mdm2 and E6 effects on p53 polyubiquitination

In a first experiment we compared the effects of ectopic
‘high risk® HPV-16 E6 and Mdm2 on ectopic p53 levels and
ubiquitination using the p53- and HPV-negative cell line
H1299. In agreement with the current literature, both proteins
markedly decreased p53 levels; in both cases the level of pro-
tein was recovered by the proteasome inhibitor MG132 (Fig.
1A).

We also analysed the ubiquitinated forms of p53 in this
experiment using an in vivo assay that makes it possible to
obtain samples enriched in ubiquitinated products [15]. H1299
cells were transfected with expression vectors for p53 and E6
or p53 and Mdm2 together with an expression vector for
Hisg-tagged ubiquitin. Cells were lysed in strong denaturing
conditions to prevent deubiquitination and His¢-tagged com-
plexes were captured with nickel-agarose beads, electropho-
resed and blotted with the DO1 antibody against p53. As
shown in Fig. 1A, a band corresponding to the molecular
weight of non-ubiquitinated p53 could be detected in this
assay. This band appeared even in the absence of ectopic
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Fig. 1. Comparison of the p53 ubiquitination patterns in the pres-
ence of E6 or Mdm2. A: H1299 cells were transfected with 1 pg
WTp53 and 2 pg Hisg-ubiquitin expression vectors together with
2 ug vectors expressing E6 (lanes 1 and 2), Mdm?2 (lanes 5 and 6)
or control pcDNA3 vector (lanes 3 and 4). In lanes 2, 4 and 6, cells
were treated with 20 uM MG132 for 3 h before harvesting. In the
left panel, whole cell extracts were analysed by Western blot using
the DOI antibody against p53. In the right panel, p53 was detected
in Hisg-ubiquitin-enriched fractions. B: The same experiment was
carried out in the presence (lanes 1-6) or absence (lanes 7-12) of
Hisg-ubiquitin expression vector. In lanes 2, 4, 6, 8, 10 and 12, cells
were treated with 20 uM MG132 3 h before harvesting. p53 was de-
tected in total cell extracts (top panel) or Hiss-ubiquitin-enriched
fractions (lower panel) as above.
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Fig. 2. E6 does not interfere with Mdm2-mediated ubiquitination
and increased time of exposure of cells to MG132. H1299 cells were
transfected with 1 pg WTpS53 and 2 pg Hisg-ubiquitin expression
vectors together with 2 pg of vectors expressing E6 and Mdm2
(lanes 1, 5 and 9), Mdm?2 (lanes 2, 6 and 10), E6 (lanes 3, 7 and
11) or control pcDNA3 vector (lanes 4, 8 and 12). Cells were either
left untreated (lanes 1-4), treated with 20 uM MGI132 for 3 h (lanes
5-8) or treated with 10 uM MGI132 for 15 h (lanes 9-12) before
harvesting.

Hisg-tagged ubiquitin and therefore could be due to non-spe-
cific binding of p53 to the nickel-agarose beads or to the
ability of p53 to bind to nickel as reported by others [16,17].

A dramatic increase in the ratio between ubiquitinated
forms of p53 and total p53 was detected only in the presence
of Mdm?2, but not in the presence of E6 (Fig. 1A). The high
molecular weight Hisg-tagged ubiquitin—p53 complexes de-
tected in the presence of Mdm?2 have been suggested to cor-
respond to single ubiquitin residues bound to multiple lysines
in p53 (multiple mono-ubiquitinated forms) ([18]; L. Steven-
son, personal communication). Whether any of these forms
contains polyubiquitin chains bound to p53 (poly-ubiquiti-
nated forms) is still being investigated.

Even when the proteasome inhibitor MG132 was added,
the accumulation of Hisg-tagged ubiquitin—p53 complexes in
the presence of E6 was negligible in comparison with the
accumulation of ubiquitinated forms of p53 in the presence
of ectopic Mdm?2 with or without MG132.

Low levels of mono- and higher order ubiquitin—p53 com-
plexes were also detected in cells not overexpressing Mdm?2 or
E6. A band similar to the mono-ubiquitinated form was also
apparent in ubiquitination assays performed by other authors
even in the absence of ectopic Mdm?2 [19]. In order to ascer-
tain whether these forms of p53 correspond to ubiquitinated
forms of p53, and not to other forms of p53 that could bind
to the nickel-agarose beads, we carried out the same proce-
dure used in the ubiquitination assay with cells that were not
transfected with the Hisg-ubiquitin expression vector. As
shown in Fig. 1B, these bands did not appear in this assay,
and therefore we conclude that they are likely to correspond
to Hisg-ubiquitinated forms of p53. Interestingly, the levels of
these forms were not increased by MG132 as effectively as the
ubiquitinated forms induced by Mdm?2.

These forms, together with non-ubiquitinated p53, were de-
creased by the overexpression of E6 and their levels were
restored with MG132 (Fig. 1A,B). This could indicate that
although E6 does not induce a strong ubiquitination pattern
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Fig. 3. E6 does not reduce the levels of other proteins suscept-
ible to proteasome degradation. H1299 cells were transfected with
10 pg human Mdm?2, 2 pg p2l1, 5 ug c-myc, 1 pg WTp53 or 5 ug
p53R273H expression vector in the presence or absence of 2 pg E6
expression vector. Total cell extracts were analysed by Western blot-
ting using relevant antibodies.

like the one induced by Mdm?2, it can also induce the degra-
dation of ubiquitinated forms of p53. Confirming this, E6
induced the disappearance of the ubiquitinated forms pro-
duced by the co-expression of Mdm2 (Fig. 2). This result
also indicates that E6 does not interfere with the ubiquitina-
tion of p53 by Mdm2.

In order to test whether the treatment with MG132 was
simply not sufficient to induce the accumulation of ubiquiti-
nated forms of p53 in the presence of E6, we increased the
incubation time with MG132 from 3 h to 15 h. As shown in
Fig. 2 (lanes 9-12), in the presence of E6 the ratio between the
levels of Hisg-ubiquitin—p53 complexes and total p53 did not
increase significantly above the result obtained in the absence
of E6 expression.

To determine whether the degradation of p53 is a specific
effect of E6 we tested the effect of E6 expression on the levels
of other proteins that are also susceptible to proteasome-
mediated degradation, such as Mdm2, p2l and c-myc
[15,20-22]. Unlike p53, the levels of these proteins were not
significantly decreased by E6 when they were expressed ectopi-
cally (Fig. 3). This also supports that E6 is not inhibiting the
expression of the p53 from the vector since in this experiment
Mdm?2, p21 and c-myc expression are driven by the same
promoter as p53. The lack of effect of E6 on the levels of
Mdm?2 also indicates that the E6 pathway does not interfere
with the E6-mediated degradation of p53 as mentioned be-
fore. Additionally, we also showed that the levels of the tran-
scriptionally inactive mutant of p53 (p53R273H) were also
decreased by E6, and therefore the decrease of p53 levels by
E6 is not due to the expression of a p53-dependent gene.

3.2. p53 can be ubiquitinated at sites different from its six
C-terminal residues

The six C-terminal lysine residues in the human p53 se-
quence (370, 372, 373, 381, 382, and 386) are required for
effective Mdm2-mediated ubiquitination and degradation of
p53 in vivo [6]. In another study, Nakamura and co-workers
[7] showed that mutation of only four of these lysine residues
to alanine (372, 373, 381 and 382) was sufficient to observe a
decrease in Mdm2-mediated degradation of p53. However,
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neither of these studies totally excluded the existence of other
ubiquitination sites in p53. As shown in Fig. 4, when higher
amounts of Mdm2 expression plasmid were used than those
described by Rodriguez et al. [6], the p53 mutant in its six
lysine C-terminal residues (p536KR) was still susceptible,
although to a lower extent than wild-type p53, to Mdm2-
mediated degradation. This indicated that residues other
than the six C-terminal lysines in p53 are involved in
Mdm2-mediated degradation of p53.

Furthermore, when the nickel-agarose pull-down was car-
ried out, we observed that in our conditions, ubiquitinated
forms of p53 could still be detected with the p5S36KR mutant
(Fig. 4). Nevertheless, the apparent mobility of these ubiqui-
tinated forms was significantly faster than that of the ubiqui-
tin—p53 complexes obtained with the p53 wild-type protein
and ectopic Mdm2. This result shows that although the six
C-terminal lysine residues of p53 are necessary for efficient
ubiquitination of p53 by Mdm2, other residues in p53 are
susceptible to Mdm2-mediated ubiquitination, at least when
this protein is expressed at higher levels. Accordingly, in vitro
ubiquitination assays showed that the pS36KR mutant could
still be efficiently ubiquitinated [6]. Interestingly, even in the
absence of ectopic Mdm?2, a mono-ubiquitinated form(s) of
the p536KR mutant was as easily detected as with WTp53,
indicating that the appearance of this form is due to the ac-
tivity of the low levels of endogenous Mdm?2 in these cells or
to the activity of another ubiquitinating factor.

3.3. The six C-terminal lysine residues in human p53 are not
necessary for E6-mediated degradation of p53
The results described in Section 3.2 showed that E6 and
Mdm?2 clearly differ in their effects on p53 ubiquitination pat-
terns. To confirm this difference, we carried out experiments
with a p53 mutant that is defective for Mdm2-induced ubig-
uitination and degradation.
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53 TOTAL
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Fig. 4. Ubiquitination of the pS536KR mutant. H1299 cells were
transfected with 1 pg WTp53 (lanes 1-4) or p536KR (lanes 5-8) ex-
pression vectors together with 2 ug control pcDNA3 vector (lanes
1, 2, 5 and 6) or Mdm2 expression vector (lanes 3, 4, 7 and 8). In
all lanes, 2 ug of Hisg-ubiquitin expression vector was included. In
lanes 2, 4, 6 and 8, cells were treated with 20 uM MGI132 for 3 h
before harvesting. Whole extracts (top panel) or Hisg-ubiquitin-en-
riched fractions (lower panel) were analysed by Western blot using
the DOI1 antibody against p53.
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Fig. 5. H1299 cells were transfected with 1 ug WTp53 (lanes 1-6)
or p536KR (lanes 7-12) expression vectors together with 2 pg of
vectors expressing E6 (lanes 1, 2, 7 and 8), Mdm2 (lanes 5, 6, 11
and 12) or control pcDNA3 vector (lanes 3, 4, 9 and 10). In lanes
2,4, 6,8, 10 and 12, cells were treated with 20 uM MGI132 for 3 h
before harvesting. Whole cell extracts were analysed by Western
blot using the DOI1 antibody against p53.
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When the involvement of the six C-terminal lysine residues
in the degradation of p53 in the presence of E6 was analysed,
different conclusions were reached by different authors.
Whereas Rodriguez et al. [6] suggested that mutation of these
lysine residues impaired p53 degradation in HeLa cells, in the
other report Nakamura et al. [7] observed that the mutated
form of p53 with lysines 372, 373, 381 and 382 replaced by
alanine was still susceptible to E6-mediated degradation in
H1299 cells. In order to clarify this dilemma, we repeated
these experiments using the same cell line (H1299) as Naka-
mura et al. [7] with the pS36KR mutant. As shown in Fig. 5,
in agreement with these authors, we observed that the
p536KR mutant was as susceptible to E6-induced degradation
as the wild-type protein. This leads us to conclude that the six
C-terminal lysine residues in p53 are not involved in E6-medi-
ated degradation of p53 in H1299 cells and supports the ex-
istence of important differences between the degradation of
p53 by E6 and Mdm?2 as suggested in the previous experi-
ments described here.

4. Discussion

We have shown that Mdm?2 and E6 have strikingly different
effects on the ubiquitination patterns of p53 in vivo. These
observations may suggest that the degradation of p53 by E6
does not require a ubiquitination event in vivo. Supporting
that ubiquitination is not an essential event for p53 degrada-
tion, Asher and co-workers have recently shown that the
NAD(P)H quinone oxidoreductase (NQO1) inhibitor dicou-
marol can induce the degradation of p53 and that this degra-
dation pathway is not associated with accumulation of ubiq-
uitinated forms of p53 [23]. Interestingly, these authors
previously showed that NQOI1 expression inhibits the degra-
dation of p53 in the presence of E6 but not when Mdm?2 is
overexpressed. Whether E6 can directly affect the NQO1-regu-
lated pathway for p53 degradation needs further research.
This interpretation is in total disagreement with the results
obtained in vitro, where E6 clearly induces the ubiquitination
of p53 [13,14]. Another explanation that makes it possible to
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reconcile the results presented here with the observation of
E6-induced ubiquitination of p53 in vitro is that E6 is more
efficient at inducing poly-ubiquitination of p53 than Mdm?2,
which as shown by many authors induces the appearance of
relatively low molecular weight forms of ubiquitinated p53
that probably correspond to multiple mono-ubiquitinated
forms of p53 and not to poly-ubiquitinated forms of the pro-
tein. Supporting this interpretation, it is interesting to note
that the pattern of ubiquitination obtained in vitro with
each of these proteins differs substantially. Whereas Mdm?2
induces a ladder of ubiquitination similar to that obtained
in vivo, therefore probably corresponding primarily to multi-
ple mono-ubiquitinated forms of p53 [24,6], the ubiquitinated
forms of p53 induced by E6 in vitro have a significantly higher
molecular mass [13,14]. This suggests the intriguing possibility
that E6 promotes the conjugation of polyubiquitin chains that
are immediately degraded and also difficult to detect by West-
ern blot techniques. However, no qualitative change in the
p53 ubiquitination ladder was detected even when exposure
to MG132 was increased and when blots were performed with
7% polyacrylamide gels (data not shown).

Contributing to the difficulties in detecting the high molec-
ular weight polyubiquitin-conjugated p53 forms even in the
presence of MG132, one can speculate that proteasome inhi-
bition could activate or allow deubiquitination of p53 by en-
zymes such as the HAUSP [25].

We also report the detection of ubiquitinated forms of the
p536KR mutant that suggest the existence of ubiquitination
sites on p53 other than the six C-terminal lysines. The evolu-
tion of the contribution of these novel sites to Mdm2-medi-
ated degradation of p53 and whether the E6-induced degra-
dation of p53 is dependent on ubiquitination at all will require
the identification of these novel lysine residues.
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