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a b s t r a c t

Generalizing the work of Doi and of Idrissi, we define a coHochschild homology theory
for chain coalgebras over any commutative ring and prove its naturality with respect to
morphisms of chain coalgebras up to strong homotopy. As a consequence we obtain that if
the comultiplication of a chain coalgebra C is itself a morphism of chain coalgebras up to
strong homotopy, then the coHochschild complex Ĥ (C) admits a natural comultiplicative
structure. In particular, if K is a reduced simplicial set and C∗K is its normalized chain
complex, then Ĥ (C∗K) is naturally a homotopy-coassociative chain coalgebra.We provide
a simple, explicit formula for the comultiplication on Ĥ (C∗K) when K is a simplicial
suspension.
The coHochschild complex construction is topologically relevant. Given two simplicial

maps g, h : K → L, where K and L are reduced, the homology of the coHochschild
complex of C∗L with coefficients in C∗K is isomorphic to the homology of the homotopy
coincidence space of the geometric realizations of g and h, and this isomorphism
respects comultiplicative structure. In particular, there is an isomorphism, respecting
comultiplicative structure, from the homology of Ĥ (C∗K) to H∗L|K |, the homology of the
free loops on the geometric realization of K .

© 2008 Elsevier B.V. All rights reserved.

0. Introduction

Hochschild homology is a well-known and very useful homology theory for algebras, which has considerable relevance
in topology as well. In particular, for any based topological space X , the Hochschild homology of S∗(ΩX), the singular chains
on the space of based loops on X , is isomorphic to the singular homology of the space L X of free loops on X (cf, e.g., [15,17]).
In [2] Doi developed a homology theory for coalgebras over a field that is analogous to the Hochschild homology of

algebras. In this article, we offer an alternate approach to Doi’s homology theory, which allows us to extend his theory,
which we call coHochschild homology, easily to chain coalgebras over any commutative ring. In particular, we describe the
coHochschild complex Ĥ (N, C) of a chain coalgebra C with coefficients in a bicomodule N as a twisted extension of the
cobar construction on C .
We prove that the coHochschild complex Ĥ (C) is natural with respect to morphisms of chain coalgebras up to strong

homotopy (Theorem 2.3). Together with the fact that the coHochschild functor is comonoidal (Theorem 1.3), this extended
naturality enables us to prove that if the comultiplication on C is itself a morphism of coalgebras up to strong homotopy,
then Ĥ (C) admits a natural comultiplication.Moreover, we determine conditions underwhich this natural comultiplication
is coassociative, either strictly or up to chain homotopy (Theorem 2.9). We also establish a more general version of this
result, for Ĥ (C, C ′), where C is a chain coalgebra seen as a C ′-bicomodule via two chain coalgebra maps f , g : C → C ′
(Theorem 2.12).
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Let K be a reduced simplicial set, and let C∗K denote the normalized chain complex on K . It follows from the purely
algebraic results cited above and from our earlier work [11,10] that Ĥ (C∗K) admits a canonical comultiplication, which is
coassociative up to chain homotopy. We provide a simple, explicit formula for this comultiplication when K is a simplicial
suspension (Example 2.11). More generally, there is a simple formula for the comultiplication in Ĥ (C∗K , C∗L), where K is a
simplicial suspension, L is a reduced simplicial set, and the C∗L-bicomodule structure on C∗K is determined by two simplicial
maps g, h : K → L (Example 2.14).
We illustrate the topological utility of the coHochschild complex and its comultiplicative structure, when we prove

the theorem below, concerning a certain homotopy-invariant version of the coincidence space of two continuous maps
g, h : X → Y :

Eg,h =
{
(x, `) ∈ X × Y I | `(0) = g(x), `(1) = h(x)

}
.

Note that the free loop space on X is just EIdX ,IdX . More generally, let Y be a manifold, and let U and V be submanifolds of
Y . Let g : U × V → Y be given by projection onto the first coordinate, while h : U × V → Y is given by projection onto
the second coordinate. The homotopy coincidence space Eg,h is then exactly the space of open strings in Y starting in U and
ending in V .

Theorem (Theorem 3.1). If g, h : K → L are simplicial maps, where L is a reduced simplicial set, then there is a quasi-
isomorphism of chain complexes

Ĥ (C∗K , C∗L)
'
−→ S∗E|g|,|h|

that is comultiplicative up to chain homotopy.

Here |g| and |h| denote the geometric realizations of the simplicial maps.
If K and L have only finitely many nondegenerate simplices, then Ĥ (C∗K , C∗L) is a finitely generated module over a

finitely generated, free algebra, endowed with a relatively simple differential and an explicitly defined comultiplication. It
is thus realistic to expect to be able tomake explicit homology computations, including comultiplicative structure, with this
model for the homotopy coincidence space.
In the Appendix to this article we show that for any pair of reduced simplicial coalgebras M• and M ′• over the base ring

R, the natural chain equivalence

f : AN(M• �M ′
•
)→ AN(M•)⊗ AN(M ′•)

is strongly homotopy comultiplicative, where � denotes levelwise tensor product over R and AN denotes the normalized
chain complex functor (Theorem A.5). As a consequence we obtain a generalization of the main results of [11], establishing
that the cobar construction on the normalized chain complex of any reduced simplicial set admits a comultiplication that is
at least homotopy-coassociative.

Remark. The coHochschild complex of a chain coalgebra plays a very important role in [12],where it is the essential building
block in the construction of a chain complexmodel for the spectrumhomology of topological cyclic homology of a topological
space. The power maps on the coHochschild complex of C∗K , as constructed in [13], which are algebraic models for the
topological power maps on the free loop space, are the key elements of this construction.
We note further that Theorem 3.1 is crucial to the proof in [13] that the algebraic power map on Ĥ (C∗K) is indeed a

model for the topological power map.

Remark. Let K be any reduced simplicial set. Dualizing the coHochschild complex Ĥ (C∗K) and its homotopy-coassociative
comultiplication, one obtains a homotopy-associative multiplication on the Hochschild cochain complex for C∗K with
coefficients in C∗K . The nature of this dualizedmultiplication is entirely different from that of thewell-knownmultiplication
on the Hochschild cochain complex for C∗K with coefficients in C∗K , which is of purely algebraic origin.

Remark. In [14] Idrissi sketched a proof of the existence of a homotopy-coassociative comultiplication on the coHochschild
complex of any chain coalgebra over a field, with comultiplication that is a morphism of coalgebras up to strong homotopy.
The proof of one crucial lemma (Lemma 1) does not seem to be complete, though. As formulated, the author’s proof requires
extended naturality of the coHochschild construction, to prove the existence of a map that is one of the factors of the
purported comultiplication. There is no proof of extended naturality in [14], however.

Notation and conventions

• Throughout this paper we are working over a principal ideal domain R. We denote the category of graded R-modules
by grModR, the category of chain complexes over R by ChR, the category of augmented chain algebras over R by AlgR
and the category of coaugmented, connected chain coalgebras by CoalgR. The underlying graded modules of all chain
(co)algebras are assumed to be R-free.
• The degree of an element v of a graded module V is denoted |v|.
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• Throughout this article we apply the Koszul sign convention for commuting elements of a graded module or for
commuting a morphism of graded modules past an element of the source module. For example, if V andW are graded
algebras and v ⊗ w, v′ ⊗ w′ ∈ V ⊗W , then

(v ⊗ w) · (v′ ⊗ w′) = (−1)|w|·|v
′
|vv′ ⊗ ww′.

Furthermore, if f : V → V ′ and g : W → W ′ are morphisms of graded modules, then for all v ⊗ w ∈ V ⊗W ,

(f ⊗ g)(v ⊗ w) = (−1)|g|·|v|f (v)⊗ g(w).

• The suspension endofunctor s on the category of gradedmodules is defined on objects V =
⊕
i∈Z Vi by (sV )i ∼= Vi−1. Given

a homogeneous element v in V , we write sv for the corresponding element of sV . The suspension s admits an obvious
inverse, which we denote s−1.
• Given chain complexes (V , d) and (W , d), the notation f : (V , d)

'
−→ (W , d) indicates that f induces an isomorphism in

homology. In this case we refer to f as a quasi-isomorphism.
• Let f , g : A → A′ be morphisms of chain algebras. A derivation homotopy from f to g consists of a chain homotopy
H : A→ A′ from f to g such that H(ab) = H(a)f (b)+ (−1)|a|g(a)H(b) for all a, b ∈ A.
• Let T denote the endofunctor on the category of free graded R-modules given by

TV =
⊕
n≥0

V⊗n,

where V⊗0 = R. An element of the summand V⊗n of TV is denoted v1| · · · |vn, where vi ∈ V for all i.
• Let N : TV → TV denote the norm operator given by

N(v1| · · · |vn) =
∑
1≤j≤n

±vj| · · · |vn|v1| · · · |vj−1,

the signed sumof cyclic permutations,where the sign is determined by theKoszul rule and by the sign of the permutation.
• If A is an augmented chain algebra, then A denotes its augmentation ideal. Similarly, the coaugmentation coideal of a
coaugmented chain coalgebra C is denoted C .
• The normalized chains functor from simplicial sets to chain complexes is denoted C∗, while the singular simplices functor
from topological spaces to simplicial sets is denoted S•. Their composite, C∗ ◦ S•, is denoted S∗. The left adjoint to S•, i.e.,
geometric realization, is denoted | − |.

1. The cobar and coHochschild complexes of a chain coalgebra

In this section we introduce the coHochschild complex of a chain coalgebra over a principal ideal domain, generalizing
the definitions in [2] and in [14]. The prefix ‘‘co’’ in the name of this complex is justified by the fact that there is an underlying
cosimplicial object in the category of chain complexes, which we do not define explicitly here.
We begin by recalling the classical bar and Hochschild complexes of a chain algebra A. Though these constructions are

well known, we consider it worthwhile to present them again briefly here, for two reasons. First, our presentation, while
fairly standard from the perspective of a topologist, is rather different from that with which algebraists are familiar. Second,
the dual constructions for chain coalgebras are easier to understand when compared directly with the known constructions
for chain algebras.
All signs in the formulas below follow from the Koszul rule. It is a matter of straightforward calculation in each case to

show that the differential squares to zero.

1.1. The bar and Hochschild complexes

LetB denote the bar construction functor from AlgR to ChR, defined by

BA =
(
T (sA), dB

)
where, if d is the differential on A, then

dB(sa1| · · · |san) =
∑
1≤j≤n

±sa1| · · · |s(daj)| · · · |san +
∑
1≤j<n

±sa1| · · · |s(ajaj+1)| · · · |san.

Observe that the graded R-module underlying BA is naturally a cofree coassociative coalgebra, with comultiplication
given by splitting of words. The differential dB is a coderivation with respect to this splitting comultiplication, so that BA
is itself a chain coalgebra. If C is a conilpotent chain coalgebra, then any chain coalgebra map γ : C → BA is determined by
its projection to the coalgebra cogenerators sA, denoted γ1.
Let BiMod denote the category in which the objects are pairs (A,M), where A is a connected, augmented chain R-algebra

and M a chain A-bimodule endowed with an augmentation M → R that is a morphism of A-bimodules. A morphism from
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(A,M) to (A′,M ′) consists of a pair (f , g), where f : A→ A′ is a morphism of chain algebras and g : M → M ′ is a morphism
of aumented, chain A-bimodules with respect to the A-bimodule structure onM ′ induced by f .
As a lift of the bar construction, letH (−,−) denote the Hochschild complex functor from BiMod to ChR, defined by

H (A,M) =
(
T (sA)⊗M, dH

)
where, if d denotes the differentials on A and onM , then

dH (sa1| · · · |san ⊗ x) = dB(sa1| · · · |san)⊗ x ± sa1| · · · |san ⊗ dx+ sa1| · · · |san−1 ⊗ an · x ± sa2| · · · |san ⊗ x · a1,

for all sa1| · · · |san ⊗ x ∈ T (sA)⊗M , where · denotes both the right and the left actions of A onM .
For every object (A,M) in BiMod, there is clearly a twisted extension of chain complexes

(1.1)

When A is considered as a bimodule over itself, where the bimodule structure is given by multiplication in A, we write

H (A) := H (A, A).

We considerH (−) as a functor from AlgR to ChR.

Remark 1.1. Let X be a based topological space. It is well known (e.g., [15]) that the homology ofH (S∗ΩX) is isomorphic
to the homology of the space LX of free (i.e., unbased) loops on X . In Section 3 we expand upon and generalize this result in
the context of the dual constructions for chain coalgebras.

1.2. The cobar construction

Using fairly standard notation, letΩ denote the cobar construction functor from CoalgR to ChR, defined by

ΩC =
(
T (s−1C), dΩ

)
where, if d denotes the differential on C , then

dΩ(s−1c1| · · · |s−1cn) =
∑
1≤j≤n

±s−1c1| · · · |s−1(dcj)| · · · |s−1cn +
∑
1≤j≤n

±s−1c1| · · · |s−1cji|s−1c ij | · · · |s
−1cn,

with signs determined by the Koszul rule, where the reduced comultiplication applied to cj is cji⊗ c ij (using Einstein implicit
summation notation).
Observe that the graded R-module underlying ΩC is naturally a free associative algebra, with multiplication given by

concatenation. The differential dΩ is a derivation with respect to this concatenation product, so that ΩC is itself a chain
algebra. Any chain algebra map α : ΩC → A is determined by its restriction to the algebra generators s−1C .
The cobar construction functor is comonoidal, i.e., there is a natural transformationΩ(−⊗ −)→ Ω(−)⊗Ω(−) that

is appropriately coassociative and counital. Milgram defined this natural transformation in [19] for simply connected chain
coalgebras and showed that it was a quasi-isomorphism. In [10] the authors extended the definition to all coaugmented
chain coalgebras and showed that it was actually a natural chain homotopy equivalence.

Theorem 1.2. Let C and C ′ be coaugmented chain coalgebras. There is a chain homotopy equivalence

q : Ω(C ⊗ C ′)
'
−→ ΩC ⊗ΩC ′,

specified by q
(
s−1(c ⊗ 1)

)
= s−1c ⊗ 1, q

(
s−1(1⊗ c ′)

)
= 1⊗ s−1c ′ and q

(
s−1(c ⊗ c ′)

)
= 0 if c ∈ C and c ′ ∈ C

′
.

Seen as functors from coalgebras to algebras and vice versa, the cobar and bar constructions form an adjoint pairΩ a B.
Let η : Id→ BΩ denote the unit of this adjunction. It is well known that for all coaugmented chain coalgebras C , the unit
map

ηC : C
'
−→ BΩC (1.2)

is a quasi-isomorphism of chain coalgebras. Furthermore, ηC admits a natural retraction (i.e., a left inverse)

ρC : BΩC
'
−→ C (1.3)

that is a morphism of chain complexes, but a morphism of chain coalgebras only up to strong homotopy.

1.3. The coHochschild complex

Let BiComod denote the category in which the objects are pairs (N, C), where C is a coaugmented chain R-coalgebra and
N is a chain C-bicomodule such that N admits a coaugmentation R→ N that is a morphism of C-bicomodules. A morphism
from (C,N) to (C ′,N ′) consists of a pair (g, f ), where f : C → C ′ is a morphism of chain coalgebras and g : N → N ′ is a
morphism of chain C ′-bicomodules with respect to the C ′-bicomodule structure on N induced by f .
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As an extension of the cobar construction, let Ĥ (−,−) denote the coHochschild complex functor from BiComod to
ChR, defined as follows. Let C be a connected, coaugmented chain coalgebra, and let N be a C-bicomodule, with coactions
λ : N → C ⊗ N and ρ : N → N ⊗ C . Applying the Einstein implicit-summation convention, write λ(x) = ei ⊗ xi and
ρ(x) = xj ⊗ ej. We then let

Ĥ (N, C) =
(
N ⊗ T (s−1C), dĤ

)
where

dĤ (x⊗ s−1c1| · · · |s−1cn) = dx⊗ s−1c1| · · · |s−1cn ± x⊗ dΩ(s−1c1| · · · |s−1cn)

± xj ⊗ s−1ej|s−1c1| · · · |s−1cn ± xi ⊗ s−1c1| · · · |s−1cn|s−1ei,

with the convention that applying s−1 to an element of degree 0 gives 0. The signs follow from the Koszul rule, as usual.
For every object (N, C) in BiComod, there is clearly a twisted extension of chain complexes

(1.4)

The coHochschild complex functor is comonoidal with respect to the obvious monoidal structure on the category
BiComod, via a natural chain homotopy equivalence

Ĥ (−⊗−,−⊗−)→ Ĥ (−,−)⊗ Ĥ (−,−)

that extends Milgram’s natural transformation for the cobar construction (Theorem 1.2).

Theorem 1.3. For all (N, C) and (N ′, C ′), objects in BiComod, there is a natural chain homotopy equivalence

q̂ : Ĥ (N ⊗ N ′, C ⊗ C ′)→ Ĥ (N, C)⊗ Ĥ (N ′, C ′)

such that

Ω(C ⊗ C ′)

��

q

'

// ΩC ⊗ΩC ′

��
Ĥ (N ⊗ N ′, C ⊗ C ′)

��

q̂

'

// Ĥ (N, C)⊗ Ĥ (N ′, C ′)

��
N ⊗ N ′ N ⊗ N ′

commutes, where the vertical arrows are the natural inclusions and projections.

Proof. The proof in [10, Appendix A] can easily be generalized to this situation. The morphism q̂ ofΩ(C ⊗ C ′)-modules is
specified by

q̂(x⊗ x′ ⊗ 1) = (x⊗ 1)⊗ (x′ ⊗ 1)

for all x ∈ N , x′ ∈ N ′, which clearly gives rise to a differential map when extended as a map from a free right Ω(C ⊗ C ′)-
module. There is a section of q̂

σ̂ : Ĥ (N, C)⊗ Ĥ (N ′, C ′)→ Ĥ (N ⊗ N ′, C ⊗ C ′)

given by the composite

(N ⊗ΩC)⊗ (N ′ ⊗ΩC ′) // (N ⊗Ω(C ⊗ C ′))⊗ (N ′ ⊗Ω(C ⊗ C ′))
∼=

��
(N ⊗ N ′)⊗Ω(C ⊗ C ′)⊗Ω(C ⊗ C ′)

IdN⊗N′⊗µ

��
(N ⊗ N ′)⊗Ω(C ⊗ C ′),

where the first arrow is the obvious inclusion, and µ is the multiplication map onΩ(C ⊗ C ′). It is easy to see that q̂σ̂ is the
identity. To complete the proof, one defines a chain homotopy ĥ on Ĥ (N ⊗ N ′, C ⊗ C ′) from σ̂ q̂ to the identity, extending
the homotopy h from Section A.2 of [10]. �

Example 1.4. The following special cases of the coHochschild complex are worthy of note.
(1) Considering the ground ring R as a trivial C-bicomodule, for C any chain coalgebra, we obtain that Ĥ (R, C) = ΩC .
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(2) When C is considered as a comodule over itself, where the bicomodule structure is given by the comultiplication on C
on both sides, we write

Ĥ (C) := Ĥ (C, C).

We consider Ĥ (−) as a functor from CoalgR to ChR. We show in Section 2 that Ĥ (−) is actually natural with respect to
a much larger class of morphisms (Theorem 2.3).

(3) Any coaugmented chain coalgebra C can be considered as a bicomodule over itself, where the left coaction is trivial, i.e.,
equal to the composite

C
∼=
−→ R⊗ C

η⊗IdC
−−−→ C ⊗ C .

If ηC∆ denotes C endowed with this C-bicomodule structure, then Ĥ (ηC∆, C) is the usual acyclic cobar construction on
C .

(4) More generally, ifN is a right C-comodule, with right coaction ρ, then it can be considered as a C-bicomodulewith trivial
left C-coaction

N ∼= R⊗ N
η⊗IdN
−−−→ C ⊗ N.

If ηNρ denotes N endowedwith this C-bicomodule structure, then Ĥ (ηNρ, C) is the usual one-sided cobar construction
on C with coefficients in N .

(5) If C is a chain coalgebra with comultiplication ∆, then C ⊗ C is naturally a C-bicomodule, where the right C-coaction
is IdC ⊗ ∆ and the left C-coaction is ∆⊗ IdC . The coHochschild complex Ĥ (C ⊗ C, C) is isomorphic to the two-sided
cobar construction on C .

(6) More generally, if M is a left C-comodule with coaction λ and N is a right C-comodule with coaction ρ, then M ⊗ N is
naturally a C-bicomodule, with left coactionλ⊗IdN and right coaction IdM⊗ρ. The coHochschild complex Ĥ (M⊗N, C)
is isomorphic to the two-sided cobar construction on C with coefficients in N on the left and inM on the right.

Remark 1.5. There is a natural and straightforward extension of the coHochschild complex of a chain coalgebra to a cocyclic
complex, analogous to the extension of the Hochschild complex of a chain algebra to the cyclic complex.

2. Comultiplicative structure on the coHochschild complex

In this section we study comultiplicative structure on the coHochschild complex, determining, in particular, under what
conditions such structure naturally exists.
We begin by establishing an ‘‘extended naturality’’ result for the coHochschild complex. It is clear from the definition of

the complex Ĥ (C) that it is natural with respect to morphisms of coalgebras. We show below that it is in fact natural with
respect to themuch larger class of coalgebramorphisms up to strong homotopy, first defined by Gugenheim andMunkholm
in [6].

Definition 2.1 ([6]). Given C, C ′ ∈ Ob CoalgR, a chainmap f : C → C ′ is called aDCSHmap or amorphism of chain coalgebras
up to strong homotopy if there is a chain algebra mapω : ΩC → ΩC ′ such thatω(s−1c) = s−1f (c)+ higher-order terms for
all c ∈ C . The chain algebra map ω is said to realize the strong homotopy structure of the DCSH map f .

Remark 2.2. A chain algebra map ω : ΩC → ΩC ′ is determined by a set of R-linear maps

{ωk : C → (C
′
)⊗k | k ≥ 1},

where

(1) ω1 = f ;
(2) ωk is homogeneous of degree k− 1 for all k; and
(3)

ωkdC + (−1)kd(C ′)⊗kωk =
∑
i+j=k

(ωi ⊗ ωj)∆C −
∑

i+j=k−2

(−1)i(Id⊗iC ′ ⊗∆C ′ ⊗ Id
⊗j
C ′ )ωk−1

for all k.

The relation between ω and the family {ωk}k is that

ω(s−1e) =
∑
k≥1

(s−1)⊗kωk(e),

for all e ∈ C .

The extended naturality of the coHochschild complex construction with respect to DCSH maps, stated precisely in the
next theorem, is the key to obtaining comultiplicative structure on the coHochschild complex of certain coalgebras.
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Theorem 2.3. A DCSH map f : C → C ′ with a fixed choice of chain algebra map ω : ΩC → ΩC ′ realizing its strong homotopy
structure naturally induces a chain map

ω̂ : Ĥ (C)→ Ĥ (C ′)

such that

ΩC

��

ω // ΩC ′

��
Ĥ (C)

��

ω̂ // Ĥ (C ′)

��
C

f // C ′

commutes, where the vertical arrows are the natural inclusions and projections.

Proof. Let {ωk : C → (C
′
)⊗k | k ≥ 1} denote the family of R-linear maps associated to ω : ΩC → ΩC ′, as in Remark 2.2.

Given e ∈ C , we use Sweedler-type notation and write

ωk(e) = e′(k,1) ⊗ · · · ⊗ e
′

(k,k),

for all k, suppressing the summation. For e⊗ w ∈ C ⊗ΩC , set

ω̂(e⊗ w) =
∑
k≥1
1≤i≤k

±e′(k,i) ⊗ s
−1e′(k,i+1)| · · · |s

−1e′(k,k) · ω(w) · s
−1e′(k,1)| · · · |s

−1e′(k,i−1),

where the sign is given by the Koszul rule.
To show that ω̂ is a chain map, we proceed as follows. Neglecting terms arising from the internal differential on C , the

summands in ω̂dĤ (e⊗ w) are in one-to-one correspondence with the summands of

N

(∑
n≥1

∑
k+l=n

(ωk ⊗ ωl)∆(e)

)
,

while the summands in dĤ ω̂(e⊗ w) are in one-to-one correspondence with the summands of

N

(∑
n≥1

∑
k+l=n−1

±(Id⊗kC ′ ⊗∆⊗ Id
⊗l
C ′ )ωn(e)

)
.

It follows from property (3) of the family {ωk | k ≥ 1} that ω̂dĤ = dĤ ω̂, since terms on either side of the equation arising
from the internal differential match up in an obvious manner. �

We can now define the type of highly structured coalgebras for which the coHochshild complex admits a natural
comultiplication.

Definition 2.4 ([11]). A weak Alexander–Whitney coalgebra consists of a chain coalgebra C such that the comultiplication
∆ : C → C ⊗ C is a DCSH map, together with a choice of chain algebra map ω : ΩC → Ω(C ⊗ C) that realizes the DCSH
structure of∆. If the composite

ΩC
ω
−→ Ω(C ⊗ C)

q
−→ ΩC ⊗ΩC

is a coassociative comultiplication onΩC , where q denotes the Milgram equivalence, then (C, ω) is an Alexander–Whitney
coalgebra. We call the composite qω the associated loop comultiplication.

If ∆ : C → C ⊗ C is a DCSH map and ω : ΩC → Ω(C ⊗ C) realizes its DCSH structure, then IdC ⊗ ∆ and ∆⊗ IdC are
both DCSH maps as well. In particular, there are chain algebra maps

IdC ∧ ω,ω ∧ IdC : Ω(C ⊗ C)→ Ω(C ⊗ C ⊗ C)
realizing their DCSH structure, where the kth-members of the associated families of R-linearmaps, (IdC∧ω)k and (ω∧IdC )k,
are given by following composites:

C ⊗ C
∆(k−1)⊗ωk
−−−−−−→ C⊗k ⊗ (C ⊗ C)⊗k

∼=
−→ (C ⊗ C ⊗ C)⊗k

and

C ⊗ C
ωk⊗∆

(k−1)

−−−−−−→ (C ⊗ C)⊗k ⊗ C⊗k
∼=
−→ (C ⊗ C ⊗ C)⊗k,

where the second map in each composite is the obvious permutation, and ωk is the kth-member of the family of R-linear
maps associated to ω. For further justification of this construction, we refer the reader to Section 1.1 in [9].
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Definition 2.5. A strict Alexander–Whitney coalgebra is a weak Alexander–Whitney coalgebra (C, ω) such that

(IdC ∧ ω)ω = (ω ∧ IdC )ω.

A quasistrict Alexander–Whitney coalgebra is a weak Alexander–Whitney coalgebra (C, ω) such that there is a derivation
homotopy from (IdC ∧ ω)ω to (ω ∧ IdC )ω.

Remark 2.6. Any strict Alexander–Whitney coalgebra is an Alexander–Whitney coalgebra, due to the naturality of the
Milgram equivalence.

Example 2.7. If C is a cocommutative coalgebra, then (C,Ω∆) is a strict Alexander–Whitney coalgebra.

Example 2.8. It was shown in [11] that for any 1-reduced simplicial set K , there is a natural choice of chain algebra map
ωK : ΩC∗K → Ω(C∗K ⊗ C∗K) such that (C∗K , ωK ) is an Alexander–Whitney coalgebra. We generalize this result in the
Appendix, showing that if K reduced, then C∗K is a quasistrict Alexander–Whitney coalgebra (Corollary A.7).
Let K ′ be a simplicial set, and let E denote the simplicial suspension functor (cf., e.g., Section 2.1(a) in [10]). Let K = EK ′.

Note that the generators of the free abelian group Cn+1K are in natural, bijective correspondencewith the generators of CnK ′,
for all n ≥ 0. If x is a generator of CnK ′, let e(x) denote the corresponding generator of Cn+1K .
Let∆ denote the usual comultiplication on C∗K ′. Let x ∈ CnK ′, and write∆(x) = x⊗ 1+ 1⊗ x+ xi ⊗ xi, using Einstein

summation notation. It follows from the proof of Proposition 4.6 in [10] that

(ωK )2 : C∗K → (C∗K ⊗ C∗K)⊗2 : e(x) 7→ ±
(
1⊗ e(xi)

)
⊗ (e(xi)⊗ 1) ,

where the sign follows from the Koszul rule, and that (ωK )n = 0 for all n ≥ 3. Recall that (ωK )1 = ∆.
In [10] the authors concluded from Proposition 4.6 that if K = EK ′, then the associated loop comultiplication

ψK := qωK : ΩC∗K → ΩC∗K ⊗ΩC∗K

satisfies and is specified by

ψK
(
s−1e(x)

)
= s−1e(x)⊗ 1+ 1⊗ s−1e(x)+ s−1e(xi)⊗ s−1e(xi).

Note that in general C∗K is not a strict Alexander–Whitney coalgebra.

Having provided families of interesting examples of Alexander–Whitney coalgebras, we now prove that their
coHochschild complexes admit natural comultiplicative structure.

Theorem 2.9. Let (C, ω) be a weak Alexander–Whitney coalgebra,and let ψ = qω : ΩC → ΩC ⊗ ΩC. The coHochschild
complex on C, Ĥ (C), admits a natural comultiplication ψ̂ such that

Ω(C)

��

ψ // ΩC ⊗ΩC

��
Ĥ (C)

��

ψ̂ // Ĥ (C)⊗ Ĥ (C ′)

��
C

∆ // C ⊗ C

commutes, where the vertical arrows are the natural inclusions and projections. Moreover, the comultiplication on Ĥ (C) is
coassociative (respectively, coassociative up to chain homotopy) if (C, ω) is a strict (respectively, quasistrict) Alexander–Whitney
coalgebra.

Proof. By Theorem 2.3, there is a natural, induced chain map

ω̂ : Ĥ (C)→ Ĥ (C ⊗ C),

extending ω. Define the comultiplication ψ̂ on Ĥ (C) to be the composite

Ĥ (C)
ω̂
−→ Ĥ (C ⊗ C) = Ĥ (C ⊗ C, C ⊗ C)

q̂
−→ Ĥ (C)⊗ Ĥ (C),

where q̂ is the extendedMilgram equivalence of Theorem 1.3. It follows easily from the formulas in the proof of Theorem 2.3
that ψ̂ is coassociative (respectively, coassociative up to chain homotopy) if (IdC ∧ω)ω = (ω∧ IdC )ω (respectively, if there
is a derivation homotopy from (IdC ∧ ω)ω to (ω ∧ IdC )ω). �

The following corollary is an immediate consequence of applying Theorem 2.9 to Example 2.8.

Corollary 2.10. If K is a reduced simplicial set, then Ĥ (C∗K) admits a natural comultiplication, which is coassociative up to
chain homotopy.
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Example 2.11. In the case of a simplicial suspension K = EK ′, the formulas from the proof of Theorem 2.3 reduce
dramatically, enabling us to give a simple and explicit formula for ψ̂ on Ĥ (C∗K).
Let x ∈ CnK ′, and, as in Example 2.8, let e(x) denote the corresponding generator of Cn+1K . Write∆(x) = x⊗ 1+ 1⊗ x+

xi⊗xi. Letw ∈ ΩC∗K , andwriteψ(w) = wj⊗wj ∈ ΩC∗K⊗ΩC∗K . It follows from the formulas in the proof of Theorem 2.3
that

ψ̂(e(x)⊗ w) =
(
e(x)⊗ wj

)
⊗ (1⊗ wj)+ (1⊗ wj)⊗

(
e(x)⊗ wj

)
±
(
1⊗ s−1e(xi) · wj

)
⊗
(
e(xi)⊗ wj

)
±
(
e(xi)⊗ wj

)
⊗
(
1⊗ wj · s−1e(xi)

)
,

where the signs follow from the Koszul rule. Note that ψ̂ is therefore strictly coassociative.
If K ′ is itself a simplicial suspension, then∆(x) = x⊗ 1+ 1⊗ x for all x ∈ C>0L, so that

ψ̂ (e(x)⊗ w) =
(
e(x)⊗ wj

)
⊗ (1⊗ wj)+ (1⊗ wj)⊗

(
e(x)⊗ wj

)
,

for allw ∈ ΩC∗K . In otherwords, if K is a double suspension, then the comultiplication on Ĥ (C∗K) is the usual, unperturbed
comultiplication on a tensor product of coalgebras.

For our topological application in Section 3, we need the following relative version of Theorem 2.9. Given twomorphisms
of coalgebras f , g : C → C ′, recall that f Cg denotes the C

′-bicomodule structure on C induced by f on the left and g on the
right.

Theorem 2.12. Let (C, ω) and (C ′, ω′) be weak Alexander–Whitney coalgebras, and let ψ = qω andψ ′ = qω′. Let f , g : C →
C ′ be morphisms of coalgebras that commute with the Alexander–Whitney structure, i.e., such that

ΩC

ω

��

Ωf // ΩC ′

ω′

��
Ω(C ⊗ C)

Ω(f⊗f )// Ω(C ′ ⊗ C ′)

and ΩC

ω

��

Ωg // ΩC ′

ω′

��
Ω(C ⊗ C)

Ω(g⊗g)// Ω(C ′ ⊗ C ′)

commute. Then Ĥ (f Cg , C
′) admits a natural comultiplication ψ̂f ,g such that

ΩC ′

��

ψ ′ // ΩC ′ ⊗ΩC ′

��
Ĥ (f Cg , C ′)

��

ψ̂f ,g // Ĥ (f Cg , C ′)⊗ Ĥ (f Cg , C ′)

��
C

∆ // C ⊗ C

commutes, where the vertical arrows are the natural inclusions and projections. Moreover, the comultiplication ψ̂f ,g is
coassociative (respectively, coassociative up to chain homotopy) if (C, ω) and (C ′, ω′) are strict (respectively, quasistrict)
Alexander–Whitney coalgebras.

Proof. We begin by defining a chain map, natural in f and g ,

ω ∗ ω′ : Ĥ (f Cg , C
′)→ Ĥ (f Cg ⊗ f Cg , C

′
⊗ C ′).

We can then define the comultiplication ψ̂f ,g on Ĥ (f Cg , C
′) to be given by the composite

Ĥ (f Cg , C
′)

ω∗ω′

−−→ Ĥ (f Cg ⊗ f Cg , C
′
⊗ C ′)

q̂
−→ Ĥ (f Cg , C

′)⊗ Ĥ (f Cg , C
′),

where q̂ is the extended Milgram equivalence (Theorem 1.3).
As in the proof of Theorem 2.3, we unfold the structure of ω and consider the associated family of R-linear maps

{ωk : C → (C ⊗ C)
⊗k
| k ≥ 1}.

Using Sweedler-type notation and suppressing summation, we write

ωk(c) = (ck1,1 ⊗ c
k
1,2)⊗ · · · ⊗ (c

k
k,1 ⊗ c

k
k,2).
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For any c ⊗ w ∈ C ⊗ΩC ′, set

ω ∗ ω′(c ⊗ w) =
∑
k≥1
1≤i≤k

±(cki,1 ⊗ c
k
i,2)⊗ s

−1 (f (cki+1,1)⊗ f (cki+1,2)) | · · · |s−1 (f (ckk,1)⊗ f (ckk,2)) · ω′(w)
· s−1

(
g(ck1,1)⊗ g(c

k
1,2)
)
| · · · |s−1

(
g(cki−1,1)⊗ g(c

k
i−1,2)

)
,

where the signs are determined by the Koszul rule. It is an exercise similar to the proof of Theorem 2.3 to show that ω ∗ ω′
is a chain map.
As in the proof of Theorem 2.9, it follows easily from the formulas in the proof of Theorem 2.3 that ψ̂f ,g is

coassociative (respectively, coassociative up to chain homotopy) if (C, ω) and (C ′, ω′) are strict (respective, quasistrict)
Alexander–Whitney coalgebras. �

Again calling upon the work of Gugenheim and Munkholm, we know that for any pair of simplicial maps g, h : K → L,
where L is reduced, the induced coalgebra maps C∗g, C∗h : C∗K → C∗L respect the natural Alexander–Whitney structure of
their source and target. The corollary below is therefore an immediate consequence of Theorem 2.12.

Corollary 2.13. For any pair of simplicial maps g, h : K → L, where L is reduced, the coHochschild complex Ĥ (C∗K , C∗L) admits
a natural comultiplication that is coassociative up to chain homotopy, where C∗K is considered as a C∗L-bicomodule via C∗g on
the left and C∗h on the right.

Example 2.14. In the case of a simplicial suspension K = EK ′, the formulas from the proof above again reduce, giving rise
to a simple and explicit formula for ψ̂g,h on Ĥ (C∗K , C∗L).
Let x ∈ CnK ′, and, as in Example 2.8, let e(x) denote the corresponding generator of Cn+1K . Write∆(x) = x⊗ 1+ 1⊗ x+

xi⊗ xi. Letw ∈ ΩC∗L, and writeψ(w) = wj⊗wj ∈ ΩC∗L⊗ΩC∗L. It follows from the formulas in the proof of Theorem 2.3
that

ψ̂g,h (e(x)⊗ w) = (e(x)⊗ wj)⊗ (1⊗ wj)+ (1⊗ wj)⊗ (e(x)⊗ wj)

±
(
1⊗ s−1f (e(xi)) · wj

)
⊗
(
e(xi)⊗ wj

)
±
(
e(xi)⊗ wj

)
⊗
(
1⊗ wj · s−1g

(
e(xi)

))
,

where the signs follow from the Koszul rule. Note that ψ̂g,h is therefore strictly coassociative.
If K ′ is itself a simplicial suspension, then∆(x) = x⊗ 1+ 1⊗ x for all x ∈ C>0K ′, so that

ψ̂(e(x)⊗ w) =
(
e(x)⊗ wj

)
⊗ (1⊗ wj)+ (1⊗ wj)⊗

(
e(x)⊗ wj

)
,

for all w ∈ ΩC∗L. In other words, if K is a double suspension, then the comultiplication on Ĥ (C∗K , C∗L) is the usual,
unperturbed comultiplication on a tensor product of coalgebras.

3. CoHochschild complexes and homotopy coincidence spaces

Given two continuous maps g, h : X → Y , their coincidence space, which we denote Eg,h, is the equalizer of g and h, i.e.,

Eg,h = {x ∈ X | g(x) = h(x)},

topologized as a subspace of X . Another useful point of view is that Eg,h is given by pulling back (g, h) : X → Y × Y over
the diagonal map∆ : Y → Y × Y , i.e., there is a pullback diagram

Eg,h

��

// Y

∆

��
X

(g,h) // Y × Y .

If Y = X , then Eg,IdX = Fix(g), the space of fixed points of g . Of course, EIdX ,IdX = X .
A homotopy-invariant version of the coincidence space of two maps g, h : X → Y is their homotopy coincidence space,

which we denote Eg,h and for which one model is given by the pullback diagram

Eg,h

��

// Y I

(ev0,ev1)

��
X

(g,h) // Y × Y ,

where Y I is the space of unbased paths on Y and evt is the map evaluating path at t . In other words,

Eg,h =
{
(x, `) ∈ X × Y I | `(0) = g(x), `(1) = h(x)

}
.

If Y = X , then Eg,IdX = Fix
ho(g), the space of homotopy fixed points of g .



546 K. Hess et al. / Journal of Pure and Applied Algebra 213 (2009) 536–556

Note that EIdX ,IdX = Fix
ho(IdX ) is the space of free loops on X , denoted L X . More generally, if X = U × V , where U and

V are submanifolds of a manifold Y and g, h : U × V → Y are given by projection onto the first and second coordinates,
respectively, then Eg,h is then exactly the space of open strings in Y starting in U and ending in V .
Homotopy coincidence spaces play an important role in the study of geodesics on Riemannian manifolds. Let M be a

closed, compact Riemannian manifold. A slight generalization of a result of Gromoll and Meyer [4] states that if there is a
field k such that the set of {dimk H∗(LM; k)} of k-Betti numbers of the free loop space onM is unbounded, thenM admits an
infinite number of distinct prime geodesics. In [5] Grove and Tanaka generalized Gromoll and Meyer’s result, showing that
if ϕ is an isometry of finite order on M , then M admits an infinite number of distinct, prime, ϕ-invariant geodesics if there
is a field k such that the set of {dimk H∗(Fixho(ϕ); k)} is unbounded.
Homotopy coincidence spaces also show up in the theory of p-compact groups, where they give rise to p-compact groups

of Lie type. Given an outer automorphism α of a p-compact group BX , one considers BX(α) = Fixho(α) [16].
A model that facilitates computation of the comultiplicative structure of the homology of homotopy coincidence spaces

should therefore have interesting applications in both homotopy theory and geometry, and perhaps in string topology as
well. In this section we prove that the coHochschild complex provides just such a model, including the comultiplicative
structure. More precisely, we prove the following theorem.

Theorem 3.1. If g, h : K → L are simplicial maps, where L is a reduced simplicial set, then there is a quasi-isomorphism of chain
complexes

Ĥ (C∗K , C∗L)
'
−→ S∗E|g|,|h|

that respects comultiplication up to chain homotopy, where Ĥ (C∗K , C∗L) denotes the coHochschild complex, with C∗K considered
as a C∗L-bicomodule via C∗g on the left and via C∗h on the right.

Example 3.2. Let n ≥ 1, and let K = S2n+1, the simplicial sphere of dimension 2n+1 with only one nondegenerate simplex
of positive dimension, in dimension 2n+ 1. It is an easy exercise to show that the differential in Ĥ (C∗S2n+1) is exactly zero.
Moreover, S2n+1 is a double simplicial suspension, which implies (Example 2.11) that the comultiplication on Ĥ (C∗S2n+1) is
the ordinary tensor product comultiplication. Upon dualization, Theorem 3.1 therefore implies the well-known result that
H∗LS2n+1 is isomorphic as an algebra to H∗(S2n+1)⊗ H∗(ΩS2n+1).

In general, if K is a simplicial double suspension, the fact that the comultiplication on Ĥ (C∗K , C∗L) is simply the usual
comultiplication on a tensor product of coalgebras (Example 2.14) should make calculating the comultiplicative structure
of H∗E|g|,|h| straightforward, once the homology has been calculated as graded abelian group.
To prove Theorem 3.1, we begin by describing a simplicial model for homotopy coincidence spaces, generalizing the

simplicial free loop space model developed in [8]. We build this model as a twisted cartesian product, so we first recall the
definition of this notion. For anypair of simplicialmaps g, hwith reduced codomain,we then apply homological perturbation
theory to obtain a relatively small, homotopy-coassociative chain coalgebra, denoted T (g, h), that is quasi-isomorphic to the
normalized chain coalgebra on the simplicial homotopy coincidence construction on g and h. Finally, we prove the existence
of a quasi-isomorphism from Ĥ (C∗K , C∗L) to T (g, h) that respects the comultiplications up to chain homotopy.

3.1. A simplicial model for homotopy coincidence spaces

We construct the simplicial model of a homotopy coincidence space as a twisted cartesian product, so we begin by
recalling the necessary definitions from the theory of simplicial sets.

Definition 3.3. Let K be a simplicial set and G a simplicial group, where the neutral element in any dimension is noted e. A
degree−1 map of graded sets τ : K → G is a twisting function if

∂0τ(x) = (τ (∂0x))−1 τ(∂1x)
∂iτ(x) = τ(∂i+1x) i > 0
siτ(x) = τ(si+1x) i ≥ 0
τ(s0x) = e

for all x ∈ K .

Remark 3.4. Let K be a reduced simplicial set, and let GK denote the Kan simplicial loop group on K [18]. Let x̄ ∈ (GK)n−1
denote a free group generator, corresponding to x ∈ Kn. There is a universal, canonical twisting function τK : K → GK , given
by τK (x) = x̄.

Given a twisting function τ : K → G, whereG operates on the left on a simplicial set L, we can construct a twisted cartesian
product of K and L, denoted K ×τ L, which is a simplicial set such that (K ×

τ
L)n = Kn × Ln, with faces and degeneracies
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given by

∂0(x, y) = (∂0x, τ (x) · ∂0y)
∂i(x, y) = (∂ix, ∂iy) i > 0
si(x, y) = (six, siy) i ≥ 0.

If L is a Kan complex, then the projection K ×
τ
L→ K is a Kan fibration [18].

We can now generalize the construction of the simplicial free loop space model in [8] to model homotopy coincidence
spaces.

Definition 3.5. Let g, h : K → L be simplicial maps, where L is a reduced simplicial set. The canonical homotopy coincidence
construction on g and h, denoted Eg,h, is the twisted cartesian product K ×

τg,h
GL,where

τg,h = (Gg ◦ τK ,Gh ◦ τK ) : K → GL× GL,

and GL× GL acts on GL by (v,w) · u = uvw−1.

Note that the construction of Eg,h is clearly natural, which enables us to formulate the following definition.

Definition 3.6. Let Pair denote the category where the objects are all pairs of simplicial maps g, h : K → L, for all simplicial
sets K and all reduced simplicial sets L. A morphism in Pair from a pair g, h : K → L to a pair g ′, h′ : K ′ → L′ consists of a
pair of simplicial morphisms a : K → K ′ and b : L→ L′ such that f ′a = bf and g ′a = bg .
The homotopy coincidence functor E : Pair→ sSet associates to any pair (g, h) its homotopy coincidence space Eg,h and

to any morphism (a, b) : (g, h)→ (g ′, h′) the simplicial map

Ea,b : Eg,h → Eg ′,h′ : (x, ȳ±11 · · · ȳ
±1
k ) 7→

(
a(x), b(y1)

±1
· · · b(yk)

±1
)
.

We now show that the simplicial homotopy coincidence construction does indeed provide simplicial models for
topological homotopy coincidence spaces.

Proposition 3.7. There is a commutative diagram of simplicial maps

GL

'

��

j // Eg,h

'

��

q // K

'

��
S•|GL| ' S•Ω|L|

S•i // S•E|g|,|h|
S•e // S•|K |,

(3.1)

where j and q are the natural inclusion and projection, the vertical maps are weak equivalences of simplicial sets, and

Ω|L|
i
−→ E|g|,|h|

e
−→ |K |

is the obvious fibration sequence.

Consequently, H∗ Eg,h and H∗ E|g|,|h| are isomorphic graded algebras. For further details, we refer the reader to section 2.1
of [8]. The proofs there generalize easily from the case of free loop spaces to the case of homotopy coincidence spaces.

3.2. Homological perturbation theory and a chain complex model for Eg,h

The following classical notion from homological perturbation theory is necessary for our explanation of the relationship
between E|g|,|h| and Ĥ (C∗K , C∗L).

Definition 3.8. Suppose that ∇ : (X, ∂)→ (Y , d) and f : (Y , d)→ (X, ∂) are morphisms of (filtered) chain complexes. If
f∇ = IdX and there exists a (filtered) chain homotopy h : (Y , d)→ (Y , d) such that

(1) dh+ hd = ∇f − IdY ,
(2) h∇ = 0,
(3) fh = 0, and
(4) h2 = 0,

then (X, d)
∇



f
(Y , d) 	 h is a (filtered) strong deformation retract (SDR) of chain complexes. It is called Eilenberg–Zilber data if

X and Y are chain coalgebras and ∇ is a morphism of coalgebras.
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Remark 3.9. If (X, d)
∇



f
(Y , d) 	 h is Eilenberg–Zilber data, then

(d⊗ IdX + IdX ⊗ d) ((f ⊗ f )∆Yh)+ ((f ⊗ f )∆Yh) d = ∆X f − (f ⊗ f )∆Y ,

i.e., f is a map of coalgebras up to chain homotopy. In fact, as stated precisely in the next theorem (due to Gugenheim and
Munkholm and slightly strengthened in Section 2.3 of [10]), f is a DCSH map, under reasonable local finiteness conditions.

Theorem 3.10 ([6,10]). Let (X, d)
∇



f
(Y , d) 	 h be Eilenberg–Zilber data such that X and Y are connected. Let F0 = 0, and let F1

be the composite

Y
f
−→ X

s−1
−→ s−1X .

For k ≥ 2, let

Fk = −
∑
i+j=k

(Fi ⊗ Fj)∆Yh : Y → T k(s−1X).

If for all y ∈ Y , there exists N(y) ∈ N such that Fk(y) = 0 for all k > N(y), then

F =
∏
k≥1

Fk =
⊕
k≥1

Fk : Y → ΩX

is a twisting cochain. In particular, f : Y → X is a DCSH map, and αF : ΩY → ΩX realizes its strong homotopy structure.

Example 3.11. Let K and L be two simplicial sets. There is filtered Eilenberg–Zilber data

C∗K ⊗ C∗L
∇K ,L


fK ,L
C∗(K × L) 	 hK ,L, (3.2)

where all structure is natural in K and in L. The map ∇K ,L is the shuffle (or Eilenberg–Zilber) map, while fK ,L is the
Alexander–Whitney map.
If K and L are 1-reduced, then Theorem 3.10 implies immediately that fK ,L is a DCSH map. In Section 3.3 we show, as a

corollary of a more general result (Theorem A.5), that fK ,L is in fact a DCSH map for all reduced simplicial sets K and L.

The following result is the fundamental theorem of homological perturbation theory.

Theorem 3.12 (The Basic Perturbation Lemma [1]). Let (X, ∂)
∇



f
(Y , d) 	 h be a filtered SDR of chain complexes, where the

filtrations are increasing and bounded below. Let θ : Y → Y be a filtration-lowering linear map of degree −1 such that
(d+ θ)2 = 0. Define

∇∞ = ∇ +

∑
k>0

(hθ)k∇ f∞ = f +
∑
k>0

f (θh)k

∂∞ = ∂ +
∑
k>0

f (θh)k−1θ∇ h∞ = h+
∑
k>0

h(θh)k

= h+
∑
k>0

(hθ)kh.

Then ∂∞, ∇∞, f∞, and h∞ are all locally finite sums and

(X, ∂∞)
∇∞


f∞
(Y , d+ θ) 	 h∞

is a filtered SDR with respect to the original filtrations of X and Y .

Hess proved an extended version of the Basic Perturbation Lemma in [7, Theorem 4.1], explaining how to perturb a wide
variety of algebraic structures in an SDR. The next theorem follows immediately from this Extended Basic Perturbation
Lemma.

Theorem 3.13 ([7]). Let (X, ∂)
∇



f
(Y , d) 	 h be filtered Eilenberg–Zilber data, where the filtrations are increasing and bounded

below. Let δ and ∆ denote the comultiplications on X and Y , respectively. Given filtration-lowering linear maps θ : Y → Y
of degree −1 and ζ : Y → Y ⊗ Y of degree 0 such that (Y ,∆ + ζ , d + θ) is a chain coalgebra, there exists a chain map
δ∞ : (X, ∂∞)→ (X, ∂∞)⊗ (X, ∂∞) such that

(1) δ∞ − δ is filtration-decreasing;
(2) δ∞ is coassociative up to chain homotopy; and
(3) f∞ : (Y ,∆+ ζ , d+ θ)→ (X, δ∞, ∂∞) is comultiplicative up to chain homotopy.
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Explicit, natural formulas for δ∞ and for the chain homotopy from δ∞f∞ to (f∞ ⊗ f∞)(∆+ ζ ) can be deduced from the
formulas in Theorem 4.1 of [7].

Remark 3.14. It is probably true that δ∞ is not only coassociative up to chain homotopy, but actually endows X with the
structure of an A∞-coalgebra. Moreover, we expect that ∇∞ and f∞ are A∞-coalgebra morphisms up to strong homotopy.
Since we did not require such powerful results in this article, we leave their proof to the ambitious reader.

As explained in Section 6.2 of [7], if τ : K → G is a twisting function and G acts on L, then the chain coalgebra C∗(K ×τ L)
is obtained by filtration-lowering perturbation of the differential and of the comultiplication in C∗(K × L). We can therefore
apply Theorem 3.13 to the Eilenberg–Zilber SDR (3.2) and establish the following result.

Theorem 3.15. For each twisting function τ : K → G and every simplicial set L admitting a left action by G, there exists a
homotopy-coassociative chain coalgebra C∗K⊗̃τC∗L, obtained by filtration-lowering, natural perturbation of the differential and
comultiplication of C∗K ⊗ C∗L, together with an SDR

C∗K⊗̃τC∗L
∇τ


fτ
C∗(K ×τ L) 	 ϕτ ,

where ∇τ , fτ and ϕτ can be chosen naturally, and ∇τ and fτ are comultiplicative up to natural chain homotopy.

Applying Theorem 3.15 to the twisting function τg,h : K → GL× GL and to the conjugation action of GL× GL on GL, we
obtain an SDR

C∗K⊗̃g,hC∗GL
∇g,h


fg,h
C∗(Eg,h) 	 ϕg,h,

where ⊗̃g,h,∇g,h, fg,h and ϕg,h are abbreviations for ⊗̃τg,h ,∇τg,h , fτg,h and ϕτg,h . Since all the constructions involved are natural
in the pair (g, h), there is a functor

T : Pair→ CoalghcR , (3.3)

defined on objects by T (g, h) = C∗K⊗̃g,hC∗GL, where CoalghcR is the category of homotopy-coassociative chain coalgebras
and of homotopy-comultiplicative chain maps.

3.3. The comparison map

We now clarify the relationship between the two chain-level homotopy coincidence space models, T (g, h) =
C∗K⊗̃g,hC∗GL and Ĥ (C∗K , C∗L), by constructing a comparison map and showing that it is a quasi-isomorphism, respecting
comultiplicative structure up to chain homotopy.
The foundation of our comparison map is the natural Szczarba equivalence

αL : ΩC∗L
'
−→ C∗GL,

which is a quasi-isomorphism of chain algebras and a DCSH map for all reduced simplicial sets [11].

Theorem 3.16. Let g, h : K → L be simplicialmaps,where L is a reduced simplicial set. Let Ĥ (C∗K , C∗L) denote the coHochschild
complex, where C∗K is considered as a C∗L-bicomodule via C∗g on the left and C∗h on the right. Then there is a commutative
diagram of chain complexes

ΩC∗L

αL '

��

ι // Ĥ (C∗K , C∗L)

θg,h '

��

πĤ // // C∗K

C∗GL
ι // C∗K ⊗g,h C∗GL

πT // // C∗K ,

(3.4)

where the verticalmaps respect comultiplication, at least up to chain homotopy; θg,h is natural in the pair (g, h); and the projection
mapsπĤ andπT are both defined in terms of the natural augmentation C∗GL→ R sending the neutral element e in degree0 to1 in
R and all other generators of C0GL to 0.

Proof. In Proposition 4.3 of [11] the authors proved that αL is a morphism of chain coalgebras up to chain homotopy. The
existence of θg,h and of its associated chain homotopy can be proved by a multi-stage inductive argument involving acyclic
models.
Define a partial order on the set

(Z+)N = {(m1, . . . ,mk) | k ≥ 0,mi ∈ Z+ ∀i}
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of positive integer sequences (including the empty sequence) by

(m1, . . . ,mk) < (n1, . . . , nl)⇐⇒



k∑
i=1

mi <
l∑
j=1

nj

or
k∑
i=1

mi =
l∑
j=1

nj and k > l.

Given a graded R-module V and Em = (m1, . . . ,mk) ∈ ZN
+
, let V Em denote the R-module Vm1−1⊗· · ·⊗Vmk−1. For anym ∈ Z+,

let

(Z+)Nm =

{
(m1, . . . ,mk) ∈ (Z+)N

∣∣∣∣∣ k∑
i=1

mi = m

}
.

For anym, k ∈ Z+, let

(Z+)Nm,k = {(m1, . . . ,mj) ∈ (Z+)
N
m | j ≥ k}.

Note that

(m1, . . . ,mk) ∈ (Z+)Nm =⇒ k ≤ m,

i.e., (Z+)Nm,m+k = (Z+)
N
m,m for all k ≥ 0. On the other hand, (Z+)

N
m = (Z+)

N
m,1.

For any n ∈ Z+ and Em ∈ (Z+)N, let Ĥ (g, h)n; Em denote the subcomplex((
CnK ⊗

⊕
Em′≤Em

(s−1C+L) Em′

)
⊕
(
C<nK ⊗ Ts−1C+L

)
, dĤ

)
of the coHochschild complex Ĥ (C∗K , C∗L). Note that Ĥ (g, h)n; Em is also a sub coalgebra of Ĥ (C∗K , C∗L). Furthermore, given
any simplicial maps g, h : K → L, where L is reduced, there are comultiplicative isomorphisms

Ĥ (g, h)n; Em ∼= C∗K �
C∗(L×L)

Ĥ (p1, p2)n; Em, (3.5)

while

T (g, h) ∼= C∗K �
C∗(L×L)

T (p1, p2), (3.6)

where p1, p2 : L× L→ L denote the projections onto the first and second coordinate, respectively and

M �
C
N

denotes the cotensor product of a right C-comoduleM and a left C-comodule N over a coalgebra C .
Let ∆[n] denote the quotient of the standard simplicial n-simplex ∆[n] by its 0-skeleton. For all Em = (m1, . . . ,mk) ∈

(Z+)N, let

∆[ Em] = ∆[m1] ∨ · · · ∨∆[mk].

For n ≥ 2, let ιn denote the canonical generator of Cn∆[n] and let ῑn denote both the canonical generator of Cn∆[n] and the
image of this canonical generator in Cn∆[ Em]whenmi = n for some i.
For any n ∈ Z+ and Em ∈ (Z+)N, let

j1, j2 : ∆[n] → ∆[n] ∨∆[ Em] ∨∆[n]

denote the quotient map ∆[n] → ∆[n] followed by the inclusion as the first, respectively last, summand of the wedge.
Since C∗G∆[m] admits a contracting homotopy in positive degrees for allm, as proved byMorace and Prouté in [20], an easy
spectral sequence argument implies that

Hk
(
C∗∆[n]⊗j1,j2 C∗G(∆[n] ∨∆[ Em] ∨∆[n])

)
= 0 (3.7)

and therefore that

Hk(kerπT) = 0 (3.8)

for all k > 0.
Let J ⊂ N, and let V ⊂ (Z+)N. For the purposes of this induction, we say that a collection of chain maps

ΘJ,V = {θ
n, Em
g,h : Ĥ (g, h)n, Em → T(g, h) | n ∈ J, Em ∈ V , (g, h) ∈ Ob Pair}
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is coherently admissible if

(1) the collection is natural with respect to the pairs (g, h);
(2) the restrictions of θn, Emg,h and of θ

n′, Em′
g,h to the intersection of their domains are equal for all n, n′ ∈ J and all Em, Em′ ∈ V ;

(3) the appropriate restrictions of diagram (3.4) commute;
(4) the image of the restriction of θn, Emg,h to kerπĤ lies in kerπT for all (n, Em) ∈ J × V ; and

(5) each θn, Emg,h respects the comultiplications up to a natural chain homotopy

Hn, Emg,h : Ĥ (g, h)n, Em → T (g, h),

and the restrictions of Hn, Emg,h and of H
n′, Em′
g,h to the intersection of their domains are equal for all n, n′ ∈ J and all Em, Em′ ∈ V .

Note that the naturality of a coherently admissible collection ΘJ,V implies that for any simplicial maps g, h : K → L,
where L is reduced, θn, Emg,h is induced by the commuting diagram of left C∗(L× L)-comodules

Ĥ (p1, p2)n; Em

θ
n, Em
p1,p2

��

// // C∗(L× L) C∗K
C∗(g,h)oo

T (p1, p2) // // C∗(L× L) C∗K ,
C∗(g,h)oo

(3.9)

for all (n, Em) ∈ J × V , where p1, p2 : L× L→ L are the projections onto the first and second factors, respectively. Here, we
use the isomorphisms (3.5) and (3.6).
We say furthermore that

• condition CAn is satisfied if there is a coherently admissible collectionΘJ,V , where J = {k ∈ N | k ≤ n} and V = (Z+)N;
• condition CAn,m is satisfied if there is a coherently admissible collectionΘJ,V , where J = {k ∈ N | k ≤ n} and V = (Z+)Nm;
• condition CAn,m,l is satisfied if there is a coherently admissible collection ΘJ,V , where J = {k ∈ N | k ≤ n} and
V = (Z+)Nm,l.

Our goal is to prove that condition CAn holds for all n, as this implies immediately that the desired chain map θg,h :
Ĥ (C∗K , C∗L)→ T (g, h) exists, is natural in the pair (g, h) and is comultiplicative up to chain homotopy.
Assuming that condition CAn holds for all n, it remains to show that each θg,h is a quasi-isomorphism. Consider first the

case of the pair (p1, p2). Composing C∗p1 with πĤ and πT , when (g, h) = (p1, p2), we obtain a commutative diagram

Ĥ (C∗(L× L), C∗L)

θp1,p2

��

' // // C∗L

T (p1, p2)
' // // C∗L,

(3.10)

in which the horizontal arrows are quasi-isomorphisms. It follows that θp1,p2 is a quasi-isomorphism as well. Since, as
observed above, θg,h is induced by

Ĥ (p1, p2)

θp1,p2 '

��

// // C∗(L× L) C∗K
C∗(g,h)oo

T (p1, p2) // // C∗(L× L) C∗K ,
C∗(g,h)oo

(3.11)

where both the source and the target of θp1,p2 are C∗(L× L)-cofree, we conclude that every θg,h is a quasi-isomorphism.
To prove that condition CAn holds for all n, we proceed inductively, establishing the following claims.

(1) Condition CA0 holds such that θg,hι = ιαL for all pairs (g, h) : K → L× L (cf., diagram (3.4)).
(2) If condition CAn,m−1 holds, then condition CAn,m,m holds.
(3) If condition CAn,m,l+1 holds, then condition CAn,m,l holds.
(4) If condition CAn holds, then condition CAn+1,0 holds.

Since (Z+)Nm = (Z+)Nm,1 for all m ∈ Z+ and (Z+)Nm,m+k = (Z+)Nm,m for all k ≥ 0, it is clear that if this sequence of claims
holds, then condition CAn holds for all n.
Proof of Claim (1): It is easy to see that, since the differential on Ĥ (C∗K , C∗L)0; Em is untwisted for all Em ∈ (Z+)N, we can

choose θ0, Emg,h to be the restriction of IdC∗K ⊗ αL to Ĥ (C∗K , C∗L)0; Em.
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Proof of Claim (2): Let Em = (1, . . . , 1) ∈ (Z+)Nm. We now extend θg,h and Hg,h naturally over Ĥ (C∗K , C∗L)n, Em. Consider

ιn ⊗ s−1 ῑ1| · · · |s−1 ῑ1,

which is an element of

Ĥ (j1, j2)n, Em,

where the bicomodule structure on C∗∆[n] is induced by C∗j1 on the left and by C∗j2 on the right. Note that dĤ (ιn ⊗
s−1 ῑ1| · · · |s−1 ῑ1) is an element of ∑

Em′∈(Z+)Nm
Em′< Em

Ĥ
(
C∗∆[n], C∗(∆[n] ∨∆[ Em′] ∨∆[n])

)
n, Em′

⋂ kerπĤ .

Condition CAn,m−1 implies that θj1,j2
(
dĤ (ιn ⊗ s−1 ῑ1| · · · |s−1 ῑ1)

)
is defined and is a cycle in kerπT . If n > 1, it follows from

(3.8) that there existsΦ ∈ kerπT such that

dT Φ = θj1,j2dĤ (ιn ⊗ s−1 ῑ1| · · · |s−1 ῑ1),

where dT denotes the differential in T (g, h). We can therefore set

θj1,j2(ιn ⊗ s
−1 ῑ1| · · · |s−1 ῑ1) = Φ.

If n = 0 or n = 1, a simple calculation shows that we can set

θj1,j2(ιn ⊗ s
−1 ῑ1| · · · |s−1 ῑ1) = ιn ⊗ α(s−1 ῑ1| · · · |s−1 ῑ1).

For arbitrary g, h : K → L and generators x ∈ CnK and yi ∈ C1L for 1 ≤ i ≤ m, let x̂ : ∆[n] → K , ŷi : ∆[1] → L denote
the representing simplicial maps. It is clear that (x̂, g ◦ x̂ + ŷ1 + · · · + ŷk−1 + h ◦ x̂) is a morphism in Pair from (j1, j2) to
(g, h), which implies that the pair (x̂, g ◦ x̂+ ŷ1 + · · · + ŷk−1 + h ◦ x̂) induces chain maps

Ĥ (x; Ey) : Ĥ
(
C∗∆[n], C∗(∆[n] ∨∆[ Em] ∨∆[n])

)
→ Ĥ (C∗K , C∗L)

and

x ∗ GEy : T (j1, j2)→ T (g, h).

We set

θg,h(x⊗ s−1y1| · · · |s−1ym) = (x ∗ GEy) ◦ θj1,j2(ιn ⊗ s
−1 ῑ1| · · · |s−1 ῑ1),

so that θg,h ◦ Ĥ (x; Ey) = (x ∗ GEy) ◦ θj1,j2 , when applied to ιn ⊗ s
−1 ῑ1| · · · |s−1 ῑ1.

Conditions (1)–(4) of the definition of a coherently admissible collection are then clearly satisfied, for J = {k ∈ N | k ≤ n}
and V = (Z+)Nm,m. Moreover, we can again call upon (3.8), in order to extend the collection of chain homotopies H

n; Em
g,h

naturally to J = {k ∈ N | k ≤ n} and V = (Z+)Nm,m as well, thus fulfilling condition (5) of the definition of a coherently
admissible collection. In other words, condition CAn,m,m holds.
Proof of Claim (3): The proof of this claim very closely resembles that of Claim (2). We begin by using (3.8) to construct

θ
n; Em
j1,j2
and its comultiplicativity chain homotopy Hn; Emj1,j2 , for all Em = (m1, . . . ,ml) ∈ (Z+)

N
m,l, where

j1, j2 : ∆[n] → ∆[n] ∨∆[ Em] ∨∆[n]

are the usual quotient maps followed by inclusions. We then extend to all pairs (g, h) by naturality.
Proof of Claim (4): Consider the pair j1, j2 : ∆[n] → ∆[n] ∨ ∆[n]. We need to show that if CAn holds, then there exists

Φ ∈ ker(πT : T (j1, j2)→ C∗∆[n]) such that

dT Φ = θj1,j2dĤ (ιn ⊗ 1)− dT(ιn ⊗ e). (3.12)

We can then set θn+1,∅g,h (ιn ⊗ 1) = ιn ⊗ e+ Φ , which implies that

πTθ
n+1,∅
j1,j2

(ιn ⊗ 1) = πĤ (ιn ⊗ 1).

Extending by naturality, we obtain a collection of chain maps

{θ
n+1,∅
g,h : Ĥ (C∗K , C∗L)n+1;∅ → T (g, h) | (g, h) ∈ Ob Pair}
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such that

Ĥ (C∗K , C∗L)n+1,∅

θg,h

��

πĤ // // C≤n+1K

��
T (g, h)

πT // // C∗K

commutes for all pairs (g, h).
By condition CAn, the right-hand side of Eq. (3.12) is a well-defined cycle in kerπT . Eq. (3.8) therefore guarantees us the

existence of the desiredΦ . Again, a similar argument permit us to extend the comultiplicativity chain homotopy as well.
Having now proved the four claims, we have completed the proof of the theorem. �

The proof of Theorem 3.1 follows easily from the theorems above.
Proof of Theorem 3.1. The desired quasi-isomorphism is equal to the following composite.

Ĥ (C∗K , C∗L) '

θg,h //C∗K ⊗tg,h C∗GL '

∇g,h //C∗Eg,h
'

//S∗E|g|,|h|.

Note that the first two maps in this composite are natural in g and h. The last map is obtained by applying the normalized
chain functor to the middle vertical map in the diagram (3.1), which is not necessarily natural in g and h. �
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Appendix. The Eilenberg–MacLane SDR

Our goal in this section is to prove a general existence result for DCSH maps, which implies in particular that the
Alexander–Whitney map

fK ,L : C∗(K × L)→ C∗K ⊗ C∗L
is a DCSH map, for all reduced simplicial sets K and L. It follows that C∗K is naturally an Alexander–Whitney coalgebra for
all reduced simplicial sets K .
We begin by an observation concerning the formula for the twisting cochain in Theorem 3.10 that proves useful in

reaching our goal.

Remark A.1. Given Eilenberg–Zilber data (X, d)
∇



f
(Y , d) 	 h, there is a closed formula for each of the Fk’s in the statement

of Theorem 3.10. For any k ≥ 2, let

hk =
∑

0≤i≤k−2

Id⊗iY ⊗∆Yh⊗ Id
⊗k−i−2
Y : Y⊗k−1 → Y⊗k

and let

Hk = hk ◦ hk−1 ◦ · · · ◦ h2 : Y → Y⊗k. (A.1)

Then

Fk = (−1)k+1(s−1f )⊗k ◦ Hk.

In the development below, we use the following helpful notation for simplicial expressions.

Conventions A.2. If J is any set of non-negative integers j1 < j2 < · · · < jr , let sJ denote the iterated degeneracy sjr · · · sj1 ,
and let |J| = r .
For anym ≤ n ∈ N, let [m, n] = {j ∈ N | m ≤ j ≤ n}. Let1 denote the category with objects

Ob1 = {[0, n] | n ≥ 0}

and

1([0,m], [0, n]) = {f : [0,m] → [0, n] | f order-preserving set map}.

Viewing the simplicial R-module M• as a contravariant functor from 1 to the category of R-modules, given x ∈ Mn :=
M([0, n]) and 0 ≤ a1 < a2 < · · · < am ≤ n, let

xa1...am := M(a)(x) ∈ Mm
where a : [0,m] → [0, n] : j 7→ aj.
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LetAdenote the usual functor from simplicialR-modules toChR, i.e., for any simplicialR-moduleM•, the gradedR-module
underlying A(M•) is {Mn}n≥0, and the differential in degree n is given by the alternating sum of the face maps from Mn to
Mn−1. Let AN denote its normalized variant.
In Theorem 2.1(a) of [3] Eilenberg and MacLane gave explicit formulas for a natural SDR of chain complexes

AN(M•)⊗ AN(M ′•)
∇



f

AN(M• �M ′
•
) 	 h, (A.2)

where � denotes the levelwise tensor product of simplicial R-modules. In particular, if x ∈ Mm and x′ ∈ M ′n, then

f (x � y) =
∑
0≤`≤n

x0...` ⊗ y`...n (A.3)

and

∇(x⊗ x′) =
∑
0≤`≤n

∑
A∪B=[0,n−1]
|A|=n−`,|B|=`

±sAx � sBx′, (A.4)

where the sign of a summand is the sign of the shuffle permutation corresponding to the pair (A, B).

Example A.3. If R[K ] denotes the free simplicial R-module generated by a simplicial set K , then C∗K ⊗ R ∼= AN (R[K ]).
It follows that, when applied to M• = R[K ] and M ′• = R[L], for simplicial sets K and L, Eilenberg and MacLane’s strong
deformation retract becomes the usual Eilenberg–Zilber/Alexander–Whitney equivalence

C∗K ⊗ C∗L
∇



f
C∗(K × L) 	 h,

which is in fact Eilenberg–Zilber data.

Remark A.4. LetM• be a simplicial coalgebra over R, with levelwise comultiplication

δ : M• → M• �M•.

The Eilenberg–MacLane SDR (A.2) induces a coalgebra structure on AN(M•), with coassociative comultiplication

AN(M•)
AN (δ)
−−−→ AN(M• �M•)

f
−→ AN(M•)⊗ AN(M•).

Consequently, if M• and M ′• are reduced simplicial coalgebras over R, then both AN(M• � M ′
•
) and AN(M•) ⊗ AN(M ′•) are

naturally chain coalgebras.

Theorem A.5. If M• and M ′• are reduced simplicial coalgebras over R, with free underlying graded R-modules, then the
Alexander–Whitney map

f : AN(M• �M ′
•
)→ AN(M•)⊗ AN(M ′•)

is a DCSH map.

To prove Theorem A.5, we apply Theorem 3.10 to the Eilenberg–MacLane SDR (A.2). We must therefore prove local
finiteness of the associated Fk’s, which follows from a technical result proved in [11] (Lemma 5.3), expressed below in terms
of simplicial R-modules instead of simplicial sets.

Lemma A.6 ([11]). Let M• and M ′• be simplicial R-modules. Let m < r ≤ n be non-negative integers, and let A and B be disjoint
sets of non-negative integers such that A ∪ B = [m+ 1, n] and |B| = r −m.
Let hA,B : (M �M ′)n → (M �M ′)n+1 be the R-linear map given by

hA,B(x � x′) = sA∪{m} x0...r � sB x′0...mr...n

for all x ∈ Mn and x′ ∈ M ′n. Then the Eilenberg–MacLane homotopy in level n

h : An(M• �M ′
•
) = Mn ⊗M ′n → Mn+1 ⊗M ′n+1 = An+1(M• �M ′

•
)

is given by

h(x � x′) =
∑

m<rA∪B=[m+1,n]
|A|=n−r, |B|=r−m

±hA,B(x � x′),

where the sign corresponds to the sign of shuffle permutation associated to the couple (A, B).
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Proof of Theorem A.5. Fix R-bases Bn and B′n ofMn andM
′
n, respectively, for all n ≥ 0. Define weight functions ζ : Bn → N

and ζ ′ : B′n → N as follows. If x ∈ Bn, then

ζ (x) = max{k ∈ N | ∃(j1, . . . , jk) ∈ Nk, y ∈ Mn−k such that x = sjk · · · sj1y}.

The function ζ ′ is defined similarly.
Let x ∈ Bn and x′ ∈ B′n. Observe that if ζ (x) + ζ (x

′) > n, then x � x′ is necessarily a degenerate element of M• � M ′
•
. In

other words,

0 6= x � x′ ∈ AN(M• �M ′
•
)n =⇒ ζ (x)+ ζ (x′) ≤ n. (A.5)

Consider the following bifiltration of AN(M• �M ′
•
). For p, n ≥ 0, let

F
p,n (

AN(M• �M ′
•
)
)

denote the graded submodule of AN(M• �M ′
•
) that is generated by the set

{x � x′ | x ∈ B≤n, x′ ∈ B′
≤n, ζ (x)+ ζ (x

′) ≥ p}.

It follows from (A.5) that Fp,n
(
AN(M• �M ′

•
)
)
= 0 for all p > n, so that we have a decreasing filtration

0 ⊂ F
n,n (

AN(M• �M ′
•
)
)
⊂ · · · ⊂ F

1,n (
AN(M• �M ′

•
)
)
⊂ AN(M• �M ′

•
).

For any k ≥ 1, consider the induced bifiltration

F
p,n (

AN(M• �M ′
•
)⊗k
)
=

⊕
p1+···+pk=p
n1+···+nk=n

F
p1,n1

(
AN(M• �M ′

•
)
)
⊗ · · · ⊗ F

pk,nk
(
AN(M• �M ′

•
)
)
.

It is easy to check that the comultiplication

AN(M• �M ′
•
)→ AN(M• �M ′

•
)⊗ AN(M• �M ′

•
)

is a bifiltered map. Moreover, it follows from implication (A.5) that

F
p,n (

AN(M• �M ′
•
)⊗k
)
= 0 for all p > n and k ≥ 1. (A.6)

To complete the proof of the theorem, we show that

h
(
F
p,n (

AN(M• �M ′
•
)
))
⊂ F

p+2,n+1 (
AN(M• �M ′

•
)
)

(A.7)

for all p, n ≥ 0. If (A.7) holds, then

∆h
(
F
p,n (

AN(M• �M ′
•
)
))
⊂ F

p+2,n+1 (
AN(M• �M ′

•
)⊗ AN(M• �M ′

•
)
)
,

which is the base step in an easy recursive argument showing that

Hk+1
(
F
p,n (

AN(M• �M ′
•
)
))
⊂ F

p+2k,n+k (
AN(M• �M ′

•
)⊗k
)
,

for all k ≥ 1, where the map Hk is defined as in (A.1).
Eq. (A.6) therefore implies that for allw ∈ Fp,n

(
AN(M• �M ′

•
)
)
and for all k > n− p+ 1,

Fk(w) = (s−1f )⊗k ◦ Hk(w) = 0.

We have thus established the local finiteness of the Fk’s, which allows us to apply Theorem 3.10 and therefore conclude that
f : AN(M• �M ′

•
)→ AN(M•)⊗ An(M ′•) is a DCSH map.

It remains only to verify (A.7). Let x ∈ Bn and x′ ∈ B′n. If ζ (x) = l and ζ
′(x′) = m, then there exist y ∈ Mn−l and y′ ∈ M ′n−m

such that x0···n = yj0···jn and x
′

0···n = y
′

j′0···j
′
n
, where 0 ≤ j0 ≤ · · · ≤ jn ≤ n− l and 0 ≤ j′0 ≤ · · · ≤ j

′
n ≤ n− m. It is clear that

the level tensor product x� x′ is degenerate if and only if there exists k ∈ [0, n− 1] such that jk = jk+1 and j′k = j
′

k+1. On the
other hand, if l+m > n, so that (n− l)+ (n−m) < n, then the Pigeonhole Principle implies that there exists k ∈ [0, n− 1]
such that jk = jk+1 and j′k = j

′

k+1 and so x � x′ is indeed degenerate. �

Corollary A.7. If K is a reduced simplicial set, then C∗K is a quasistrict Alexander–Whitney coalgebra. If K is 1-reduced, then its
associated loop comultiplication is strictly coassociative.

Proof. Theorem A.5 implies that C∗K is at least a weak Alexander–Whitney coalgebra, if K is reduced. To verify that it is
quasistrict, we apply an acyclic models argument.
Let ωK : ΩC∗K → Ω(C∗K ⊗ C∗K) denote the natural chain algebra map realizing the DCSH structure of the

comultiplication on C∗K . Both (IdC∗K ∧ ωK )ωK and (ωK ∧ IdC∗K )ωK are natural in K and therefore associated to families
of R-linear morphisms

(ω′K )k, (ω
′′

K )k : C∗K → (C∗K ⊗ C∗K ⊗ C∗K)⊗k,
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of degree k−1, for all k ≥ 1, which are also natural in K . Using as models the set {∆[n] | n ≥ 0} of quotients of the standard
n-simplices by their 0-skeletons, we can then prove by induction the existence of a family of R-linear morphisms

(ΦK )k : C∗K → (C∗K ⊗ C∗K ⊗ C∗K)⊗k,

of degree k, for all k ≥ 1, and natural in K giving rise to a derivation homotopy

Φ =
∑
k≥1

(s−1)⊗kΦk : ΩC∗K → Ω(C∗K ⊗ C∗K ⊗ C∗K)

from (IdC∗K ∧ ωK )ωK and (ωK ∧ IdC∗K )ωK .
The 1-reduced case was treated in [11]. �

Remark A.8. It may be true that C∗K is in fact an Alexander–Whitney coalgebra for all reduced K , i.e., its associated loop
comultiplication is strictly coassociative, but we have not yet proved it, as we did not need it for this article.
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