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Abstract

Let F ¼ fPðm;FÞ; mAMFg be a multidimensional steep natural exponential family

parameterized by its domain of the means MF and let VF ðmÞ be its variance function. This

paper studies the boundary behaviour of VF : Necessary and sufficient conditions on a point m

of @MF are given so that VF admits a continuous extension VF ðmÞ to the point m . It is also

shown that the existence of VF ðmÞ implies the existence of a limit distribution Pðm;FÞ
concentrated on an exposed face of MF containing m: The relation between VF ðmÞ and

Pðm;FÞ is established and some illustrating examples are given.
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1. Introduction

Exponential families have been a distinguished topic of theoretical statistics and
probability theory for several decades. As they provide a general framework for
many practical optimization problems in statistics, their behaviour on the boundary
of natural parameter or mean parameter spaces is of theoretical interest. Our
approach in the present work is based on the natural exponential families and their
description through means (see [7]). In this context, the variance function of a
natural exponential family (NEF) appears as the most appropriate tool, and so it has
received a great deal of attention in the statistical literature. Its importance stems
from the fact that it characterizes the family within the class of all natural
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exponential families [9,11]. Several classifications of NEFs by means of variance
functions have been defined (see, [2,3,8,9]). Also, many characteristic properties of
classes of distributions have been established using variance functions (see, [4,6]).
Beside its role for the study of NEFs, the variance function itself has many nice
intrinsic algebraic properties. J^rgensen [5] asked what properties are shared by all
members of a natural exponential family F in terms of its variance function VF : He
considered the one-dimensional version of the problem. In this case, VF is a real
valued function and the domain of the means MF is an interval of R which,
naturally, has at most two extremities. The problem involves studying the behaviour
of VF at one of the extremities of MF : We are concerned with multidimensional steep
NEFs, that is, NEFs with the domain of their means equal to the interior of the
convex hull of the support. This global assumption is satisfied in all reasonable
multidimensional cases and it is justified from a technical point of view. The
steepness enables to apply the convex analysis methods to the convex supports of
NEFs. A natural problem within this approach is to identify the points of the
boundary of the domain of the means where the variance function VF admits an
extension. In Section 2, we show that VF extends continuously to a point on the
boundary if and only if VF is bounded in its neighbourhood. We also show that this
is equivalent to the existence of a special bounded neighbourhood of the point.
Section 3 is devoted to continuous extensions of the mapping m/Pðm;FÞ in the
weak topology. We prove that boundedness of VF is sufficient for these extensions

and that limit distributions Pðm;FÞ are concentrated on faces of the closure MF : In
this section we also give the link between VF ðmÞ and the variance of the limit
distribution Pðm;FÞ: Proofs are postponed to Section 4.

2. Extension of a variance function

We introduce first some notation and review some basic concepts concerning
exponential families and their variance functions. For more details, we refer the
reader to [7].

For a positive Radon measure m on Rd ; we denote

Lm : Rd-�0;þN½ : y/
Z
Rd

exp/h; xSmðdxÞ

the Laplace transform, where /y; xS is the ordinary scalar product of y and x in Rd :
Also we denote

YðmÞ ¼ interiorfyARd ; LmðyÞoþNg;

km ¼ log Lm;

km is the cumulant generating function of m:
The set MðRdÞ is defined as the set of positive measures m that are not

concentrated on an affine hyperplane and YðmÞ is not empty.
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For m in MðRdÞ; the set of probabilities

F ¼ FðmÞ ¼ fPðy; mÞ ¼ expð/y; xS
 kmðyÞÞmðdxÞ; yAYðmÞg

is called the natural exponential family (NEF) generated by m: Of course, m and m0 in

MðRdÞ are such that FðmÞ ¼ Fðm0Þ if and only if there exists ða; bÞ in Rd � R such
that

m0ðdxÞ ¼ expð/a; xSþ bÞmðdxÞ:

For m in MðRdÞ; km is strictly convex and real analytic on YðmÞ; so that k0
m defines a

diffeomorphism from YðmÞ to its image MF called the mean domain of F : Let
cm : MF-YðmÞ be the inverse function of k0

m and, for m in MF ; Pðm;FÞ ¼
PðcmðmÞ; mÞ: We denote by LsðRdÞ the set of symmetric linear maps of Rd : For m in

MF ;VF ðmÞ ¼ k00
mðcmðmÞÞ is the covariance operator of Pðm;FÞ: The map from MF to

LsðRdÞ; defined by VF : MF-LsðRdÞ; m/VF ðmÞ; is called the variance function of

the natural exponential family F : It is easily proved that, for all m in MF ; c
0
mðmÞ is

the reciprocal of VF ðmÞ:
The importance of the variance function stems from the fact that it characterizes

the family F in the following sense: If F and F1 are two NEFs on Rd such that VF

and VF1
coincide on an open subset of MF-MF1

; then F ¼ F1:

We examine the influence of an affine transformation on the elements of a NEF F :

Let j be in the affine group of Rd ; i.e., x-jðxÞ ¼ aðxÞ þ b; where b is in Rd and a is

in the linear group GLðRdÞ: The following facts are easily checked.

jðFÞ ¼ FðjðmÞÞ

MjðFÞ ¼ jðMF Þ

VjðFÞðmÞ ¼ aVF ðj
1ðmÞÞt
a for all mAMjðFÞ:

We evoke now the notion of steepness for a natural exponential family F ¼ FðmÞ
generated by a measure m belonging to MðRdÞ: It was introduced by Barndorff-

Nielsen [1]. We say that the family F is steep if, for all yA@YðmÞ;

lim
y-y

jjk0
mðyÞjj ¼ þN;

where jj:jj denotes the Euclidean norm in Rd :
Denote by convðsuppðmÞÞ the closed convex hull of the support of m: We always

have MFCintðconvðsuppðmÞÞÞ: Barndorff-Nielsen [1] has shown that F is steep if and
only if MF ¼ intðconvðsuppðmÞÞÞ:

We now come to our results concerning the extension of the variance function of a
steep NEF F ¼ FðmÞ: We first prove a lemma concerning the behaviour of cm: It is

useful because of the link between the variance function VF and cm:
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Lemma 2.1. Let F be a steep NEF on Rd : Then for all mA@MF ;

lim
m-m

jjcmðmÞjj ¼ þN:

Proof. Suppose the contrary, so that there exists a sequence ðmnÞ in MF such that

mn n-þN
����!m and cmðmnÞ ¼ yn n-þN

����! y:
For y in YðmÞ; we define the following maps:

jn : ½0; 1�-R; l/jnðlÞ ¼ kmðð1 
 lÞyn þ lyÞ

and

j : �0; 1�-R; l/jðlÞ ¼ kmðð1 
 lÞyþ lyÞ:

We consider two cases.

Case 1: yADðmÞ\YðmÞ: As jn is strictly convex, j0
n is strictly increasing on ½0; 1�:

Hence we have, for all lA�0; 1½;
j0

nð0Þoj0
nðlÞoj0

nð1Þ:

This implies that

/k0
mðynÞ; y
 ynSpj0

nðlÞp/k0
mðyÞ; y
 ynS: ð2:1Þ

Since the sequence sn ¼ k0
mðynÞ is bounded, there exists a subsequence snk

¼ k0
mðynk

Þ
converging to a point s:

Taking in (2.1) the limits when k-þN; we obtain, for all lA�0; 1½;
/s; y
 ySpj0ðlÞp/k0

mðyÞ; y
 yS:

But, the steepness of the family F implies

lim
lr0

j0ðlÞ ¼ lim
lr0

/k0
mðð1 
 lÞyþ lyÞ; y
 yS ¼ 
N;

which is a contradiction.

Case 2: yAYðmÞ\DðmÞ: By the Rolle’s formula there exists lnA�0; 1½ such that

jnð1Þ 
 jnð0Þ ¼ j0
nðlnÞ:

Since j0
n is strictly increasing on ½0; 1�; we have

jnð0Þ ¼ jnð1Þ 
 j0
nðlnÞojnð1Þ 
 j0

nð0Þ:

This implies that

kmðynÞokmðyÞ 
/k0
mðynÞ; y
 ynS:

As yeDðmÞ; Fatou lemma implies that

lim
n-þN

kmðynÞ ¼ þN:

This contradicts the fact that the sequence ðkmðyÞ 
/k0
mðynÞ; y
 ynSÞn is bounded.

Thus we have the desired conclusion. &
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Recall that the norm of a linear endomorphism A of Rd is defined by

jjAjj ¼ supfjjA:hjj; jjhjj ¼ 1g;

and let Bf ðx; rÞ and Bðx; rÞ denote the respective closed and open balls in Rd ; both

with centre x and radius r:
Next we give a technical result concerning the behaviour of the function cm in a

neighbourhood of a boundary point in which the variance function is bounded.

Proposition 2.2. Let F be a steep NEF and let m be in @MF : Suppose that there exists

e40 such that

sup
mABf ðm;eÞ-MF

ðjjVF ðmÞjjÞ ¼ leoþN:

Then, for all m1 and m2 in Bf ðm; eÞ-MF ; we have

jjm1 
 m2jjplejjcmðm1Þ 
 cmðm2Þjj:

Proof. As

1 ¼ jjVF ðmÞðVF ðmÞÞ
1jjpjjVF ðmÞjjjjðVF ðmÞÞ
1jj;

for all mABf ðm; eÞ-MF ;

jjðVF ðmÞÞ
1jjX 1

jjVF ðmÞjjX
1

le
:

Writing the Taylor expansion with integral remainder, we obtain

/cmðm1Þ 
 cmðm2Þ;m1 
 m2S

¼
Z 1

0

ðVF ðð1 
 tÞm1 þ tm2ÞÞ
1ðm1 
 m2;m1 
 m2Þ dt:

For an arbitrary positive definite element of LsðRdÞ A and all xARd ;

/A
1x; xSX
1

jjAjj jjxjj
2:

This fact applied to A ¼ VF ðð1 
 tÞm1 þ tm2Þ givesZ 1

0

ðVF ðð1 
 tÞm1 þ tm2ÞÞ
1ðm1 
 m2;m1 
 m2Þ dtX
1

le
jjm1 
 m2jj2:

Hence

/cmðm1Þ 
 cmðm2Þ;m1 
 m2SX
1

le
jjm1 
 m2jj2:

On the other hand, we have that

/cmðm1Þ 
 cmðm2Þ;m1 
 m2Spjjcmðm1Þ 
 cmðm2Þjjjjm1 
 m2jj:
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Consequently,

jjcmðm1Þ 
 cmðm2ÞjjX
1

le
jjm1 
 m2jj: &

The following result gives necessary and sufficient conditions for the extension of
VF to a point m on the boundary @MF of MF : We will say that the variance function
VF can be extended to m if the limit of VF ðmÞ exists for m in MF tending to m: In this
case we write

VF ðmÞ ¼ lim
m-m

VF ðmÞ:

Theorem 2.3. Let F be a steep NEF on Rd and let m be in @MF : The following

properties are equivalent

(i) VF extends to m

(ii) VF is bounded in a neighbourhood of m in MF

(iii) There exists a neighbourhood Bf ðm; eoÞ-MF such that the two conditions

IðmÞ ¼
ðaÞ cmðBf ðm; eoÞ-MF Þ þ Bf ðo; rÞCYðmÞ
ðbÞ k0

mðcmðBf ðm; eoÞÞ-MF þ Bf ðo; rÞÞ is bounded:

(

are satisfied.

The following is an appealing corollary, because it concerns an important class of
natural exponential families.

Corollary 2.4. If the support of F is bounded, then the variance function VF extends

to MF :

Proof. Since the support of m is bounded, YðmÞ ¼ Rd and MF is bounded. Hence,

from Theorem 2.3, VF extends to MF : &

The following example illustrates the result in Theorem 2.3.

Example 2.1. Let F be the NEF on R2 generated by the measure

mðdx; dyÞ ¼ Nð0; 1ÞðdxÞ#doðdyÞ þ dð0;1Þðdx; dyÞ:

Then

YðmÞ ¼ R2; Lmðy1; y2Þ ¼ ey2 þ e
1
2
y2

1 ; MF ¼ R��0; 1½ and

VF ðm1;m2Þ ¼
ð1 
 m2Þ2 þ m2

1m2

1 
 m2

m1m2


m1m2 m2ð1 
 m2Þ

0
B@

1
CA:
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For the point m ¼ ðm1; 1ÞA@MF ; condition (a) in IðmÞ is satisfied because YðmÞ ¼
R2; however, limm-mjjVF ðmÞjj ¼ þN: This shows that condition (a) in IðmÞ is not
sufficient for the extension of the variance function VF to mA@MF :

Proposition 2.5. Let F be a steep NEF on Rd : Then

M�
F ¼ fmA@MF ; VF ðmÞ existsg

is an open subset of @MF :

Proof. Suppose that M�
Fa| and let m be an element of M�

F : According to Theorem

2.3, the variance function is bounded in a neighbourhood Bðm; eoÞ-MF of m: Let x

be an element of Bðm; eoÞ-@MF and take r ¼ infðeo; jjm 
 xjjÞ: It is clear that the
variance function is also bounded in Bðx; rÞ-MF : Again from Theorem 2.3, we
deduce that xAM�

F : Hence Bðm; rÞ-@MFCM�
F : &

Note that the extended variance function is continuous on M�
F,MF :

Next we give another property of the points on the boundary of the domain of the
means in which the variance function can be extended.

Recall that an exposed face H of a convex set C in Rd is defined as the intersection
of C with a non-trivial supporting hyperplane of C (see [10, p. 162]).

With the same notation and hypothesis, in particular that F ¼ FðmÞ is a steep
NEF, we have.

Theorem 2.6. Let H be an exposed face of MF and let mAH: If VF ðmÞ exists, then

mAconvðsuppðmÞ-HÞ:

Note that the converse of this theorem is not true. For instance, in the setting of

Example 2.1, H ¼ R� f1g is an exposed face of MF ; m ¼ ð0; 1ÞAconvðsuppðmÞ-HÞ
and limm-m jjVF ðmÞjj ¼ þN:

3. Limit distributions

Let F be a steep NEF on Rd and let m be on the boundary @MF of MF : We show
that if VF extends to m; then there exists a limit distribution Pðm;FÞ concentrated on
an exposed face H containing m: In this case, we determine the link between VF ðmÞ
and Pðm;FÞ:

Definition 3.1. Let m be a point of @MF : If Pðm;FÞ has a tight limit Pðm;FÞ when
mAMF tends to m; then Pðm;FÞ is called a limit distribution.

With this notation, we may consider the statistical model

fPðm;FÞ; mAMF,M�
Fg
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as a full NEF parametrized by the mean. It is the closure of the NEF F in the weak
topology.

Theorem 3.1. Let F be a steep NEF and let mA@MF : Suppose VF extends to m: Then

(i) there exists a limit distribution Pðm;FÞ in m;
(ii) VF ðmÞ is the variance of Pðm;FÞ:

For the proof of Theorem 3.1 we need the following lemma.

Lemma 3.2. Let mA@MF : Suppose that the two conditions (a) and (b) in IðmÞ are

satisfied; then for all y in Bf ðo; rÞ;

(i) for mAMF ; the map defined on the interval �0; 1� by

t//k0
mðcmðm þ tðm 
 mÞÞ þ yÞ;m 
 mS

extends by continuity to 0
(ii) the map j : m/k0

mðcmðmÞ þ yÞ extends by continuity to m:

Proof. (i) Consider the function

f ðtÞ ¼ /k0
mðcmðm þ tðm 
 mÞÞ þ yÞ;m 
 mS:

It is differentiable on �0; 1� with

f 0ðtÞ ¼ /k00
mðcmðm þ tðm 
 mÞÞ þ yÞðVF ðm þ tðm 
 mÞÞÞ
1ðm 
 mÞ;m 
 mS:

As km is strictly convex, k00
mðcmðm þ tðm 
 mÞÞ þ yÞ and ðVF ðm þ tðm 
 mÞÞÞ
1 are

positive definite and symmetric. Hence so is

k00
mðcmðm þ tðm 
 mÞÞ þ yÞðVF ðm þ tðm 
 mÞÞÞ
1:

This implies that f 0ðtÞ40 for all tA�0; 1� and so f is strictly increasing in �0; 1�: As f is
bounded, it admits a finite limit at zero.

(ii) Follows from (i). &

Proof of Theorem 3.1. (i) Let ðmnÞnAN be a sequence in MF converging to m: We

know that for all yABf ðo; rÞ;

k0
Pðmn;FÞðyÞ ¼ k0

mðcmðmnÞ þ yÞ:

According to Lemma 3.2, limn-þN k0
Pðmn;FÞðyÞ exists for all yABf ðo; rÞ; we denote it

by gðyÞ: If we set

lo ¼ supfjjk0
Pðm;FÞðyÞjj; yABf ðo; rÞ and mABðm; eoÞg;

then, for all y and y0ABf ðo; rÞ;

jjkPðmn;FÞðyÞ 
 kPðmn;FÞðy0Þjjplojjy
 y0jj: ð3:1Þ
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Hence, according to Ascoli theorem, kPðmn;FÞ has a sub-sequence that converges

uniformly on the closed ball Bf ðo; rÞ to a function L: The inequality (3.1) implies

then that

jjLðyÞ 
 Lðy0Þjjplojjy
 y0jj;

and so L is continuous on Bf ðo; rÞ: We verify now that the limit L is independent of

the sequence ðmnÞnAN and depends only on m: In fact, let ðmnÞnAN and ðm0
nÞnAN be

two sequences in MF converging to m and let L1 and L2 be defined on Bf ðo; rÞ by

L1ðyÞ ¼ lim
n-þN

kPðmn;FÞðyÞ and L2ðyÞ ¼ lim
n-þN

kPðm0
n;FÞðyÞ:

Then L1 and L2 are differentiable on Bf ðo; rÞ and we have

L0
1ðyÞ ¼ gðyÞ and L0

2ðyÞ ¼ gðyÞ:

This implies that

L1ðyÞ ¼ L2ðyÞ þ c:

Since L1ð0Þ ¼ L2ð0Þ ¼ 0; we obtain c ¼ 0: Finally, Levy theorem guarantees the
existence of a distribution Pðm;FÞ such that kPðm;FÞðyÞ ¼ LðyÞ for all yABf ðo; rÞ:

(ii) Since limn-þN k00
Pðmn;FÞð0Þ ¼ VF ðmÞ; we conclude that VF ðmÞ is the variance of

Pðm;FÞ: &

Theorem 3.1 provides a sufficient condition for the existence of a limit distribution
Pðm;FÞ: We show now that, under this condition, Pðm;FÞ is concentrated on an

exposed face of MF containing m:

Proposition 3.3. Let F be a steep NEF and let m be an element of an exposed face H of

MF : If VF ðmÞ exists, then the limit distribution Pðm;FÞ is concentrated on H:

Proof. Suppose that the dimension of H is equal to k: Then, without loss of

generality, we may assume that HCRk � f0gd
k:
Let u be an exterior normal vector on H such that,

H ¼ MF-fxARd ; /x; uS ¼ 0g and MFCfxARd ;/x; uSp0g:

For e40; we set

AeðuÞ ¼ fxARd ; /x; uSp
 eg:

As

Pðm;FÞðAeðuÞÞp
 1

e

Z
AeðuÞ

/x; uSPðm;FÞðdxÞp
 1

e
/m; uS

and

lim
m-m

/m; uS ¼ /m; uS ¼ 0;
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we obtain that

lim
m-m

Pðm;FÞðAeðuÞÞ ¼ 0:

Hence, for any e40; we have

Pðm;FÞðAeðuÞÞ ¼ 0:

Thus

Pðm;FÞ is concentrated on H: &

The following corollary gives a relation between the dimension of a face H

containing the point m and the rank of VF ðmÞ: In this case, VF ðmÞ is a degenerate
matrix.

Corollary 3.4. Let F be a steep NEF and let H be an exposed face of MF with

dimension k: Suppose that, for mAH;VF ðmÞ exists. Then

(i) rank VF ðmÞpk;
(ii) VF ðmÞ ¼ 0 if and only if Pðm;FÞ ¼ dm:

Proof. (i) Since k00
Pðm;FÞð0Þ ¼ VF ðmÞ; we have k00

Pðm;FÞð0Þ ¼ VF ðmÞ:
From Proposition 3.3, we know that the limit distribution Pðm;FÞ is concentrated

on H: This implies that

rank VF ðmÞpk:

(ii) VF ðmÞ ¼ k00
Pðm;FÞð0Þ ¼ 0 if and only if the limit distribution Pðm;FÞ ¼ dm: &

Note that for k ¼ 0; this means that H ¼ fmg and so VF ðmÞ ¼ 0: This generalizes
the result of J^rgensen [5] for a real NEF.

Example 3.1. The bivariate inverse Gaussian distribution (see [3]).
Let F be the NEF generated by the measure m concentrated on �0;þN½�R defined

by

mðdx; dyÞ ¼ 1

2px2
exp 
 1

2x
ð1 þ y2Þ


 �
1�0;þN½ðxÞ dx dy:

Its variance function is defined on MF ¼�0;þN½�R by

VF ðm1;m2Þ ¼
m3

1 m2
1m2

m2
1m2 ð1 þ m2

2Þm1

 !
:

For an element m ¼ ð0;m2Þ of the exposed face H ¼ f0g � R; we have
limm-m VF ðmÞ ¼ 0: Hence in this case, for all m in H; the limit distribution
Pðm;FÞ is equal to dm: This example shows in particular that the inequality
rank VF ðmÞpk in Corollary 3.4 may be strict.
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We conclude this paragraph by another example.

Example 3.2. Let F be the NEF on R2 generated by the measure

mðdx; dyÞ ¼ 1

2
ðdð0;1Þðdx; dyÞ þ e
x1RþðxÞdx#doðdyÞÞ:

The Laplace transform of m is defined on YðmÞ ¼� 
N; 1½�R by

Lmðy1; y2Þ ¼
1

2
ey2 þ 1

1 
 y1

� �
:

The calculation of the variance function leads to

MF ¼�0;þN½��0; 1½ and

VF ðm1;m2Þ ¼
m2

1ð1 þ m2Þ
1 
 m2


m1m2


m1m2 m2ð1 
 m2Þ

0
@

1
A:

We observe that the variance function VF does not extend to the face H1 ¼
½0;þN½�f1g: However VF extends to the face H2 ¼ ½0;þN½�f0g and for all
m ¼ ðm1; 0ÞAH2\fð0; 0Þg; we have

Pðm;FÞðdxÞ ¼ 1

m1
e

 1

m1
x
1RþðxÞdx

and

Pð0;FÞ ¼ d0:

4. Proof of Theorems 2.3 and 2.6

We first prove in the following proposition a technical result which gives an
equivalent version to the condition IðmÞ in Theorem 2.3.

Proposition 4.1. Let m be in @MF : Then the following statements are equivalent

(i) (iii) in Theorem 2.3 is satisfied.
(ii) there exist eo40 and r40 such that

ðaÞ cmðBf ðm; eoÞ-MF Þ þ Bf ðo; rÞCYðmÞ;
ðbÞ LmðcmðBf ðm; eoÞ-MF Þ þ Bf ðo; rÞÞ is bounded:

(

Proof. (i) ) (ii) Assumption (i) implies that

supfjjk0
Pðm;FÞðyÞjj; mABf ðm; eoÞ-MF ; yABf ðo; rÞg ¼ looþN:

This, with the finite increments theorem, implies that

jkPðm;FÞðyÞ 
 kPðm;FÞð0Þjplojjyjj:
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Since kPðm;FÞð0Þ ¼ 0 and kPðm;FÞ ¼ logðLPðm;FÞÞ; we obtain that, for all

mABf ðm; eoÞ-MF and yABf ðo; rÞ; LPðm;FÞðyÞpelor; which proves (ii).

(ii) ) (i) Let

Ko ¼ supfLPðm;FÞðyÞ; mABf ðm; eoÞ-MF ; yABf ðo;rÞg

and let h be in the sphere Sðo; r
3
Þ with centre o and radius r

3
: If yABf ðo; r3Þ; then

j/L0
Pðm;FÞðyÞ; hSjp

Z
fxARd ; /x;hSX0g

/x; hSe/y;xSPðm;FÞðdxÞ
�����

�����
þ
Z
fxARd ; /x;hSo0g

/x; hSe/y;xSPðm;FÞðdxÞ
�����

�����:
Using the inequality upeu; we obtain thatZ

fxARd ; /x;hSX0g
/x; hS e/y;xSPðm;FÞðdxÞ

�����
�����

p
Z
fxARd ; /x;hSX0g

e/yþh;xSPðm;FÞðdxÞpKo

Z
fxARd ; /x;hSo0g

/x; hSe/y;xSPðm;FÞðdxÞ
�����

�����
p
Z
fxARd ; /x;hSo0g

e/y
h;xSPðm;FÞðdxÞpKo:

This implies

j/L0
Pðm;FÞðyÞ; hSjp2Ko:

As the function y/kPðm;FÞðyÞ is convex and k0
Pðm;FÞð0Þ ¼ m; we have

kPðm;FÞðyÞ 
 kPðm;FÞð0ÞX/m; yS:

Therefore


kPðm;FÞðyÞp
/m; ySpjjmjjjjyjjp1

3
rðeo þ jjmjjÞ ¼ c:

As we have

/k0
Pðm;FÞðyÞ; hS ¼

Z
Rd

/x; hSe/y;xS
kPðm;FÞðyÞPðm;FÞðdxÞ;

we deduce that

j/k0
Pðm;FÞðyÞ; hSjp2Koec:

ARTICLE IN PRESS
A. Hassairi, A. Masmoudi / Journal of Multivariate Analysis 92 (2005) 239–256250



Let now u be in the unit sphere Sðo; 1Þ and take h ¼ r
3
u: Then

j/k0
Pðm;FÞðyÞ; uSjp6Koec

r
:

Thus

jjk0
Pðm;FÞðyÞjjp

6Koec

r

which proves (i). &

The proof of Theorem 2.3 relies on the following lemma. For a proof we can
consult [7, p. 40].

Lemma 4.2. Let mn be a sequence of probability measures on Rd which converges

tightly to m: Consider g : Rd-R a continuous function such that, for all e40; there

exists Ae40 such that, for all AXAe and nAN;Z
fxARd ; jjxjjXAg

jgðxÞjmnðdxÞoe:

Then

lim
n-þN

Z
Rd

gðxÞmnðdxÞ ¼
Z
Rd

gðxÞmðdxÞ:

Proof of Theorem 2.3. (iii) ) (i) Let m be in @MF and let ðmnÞnAN be a sequence in

MF converging to m: We will verify that, for eo40; there exists, noAN such that, for
all nXno;

mnABf ðm; eoÞ-MF and sup
nXno

Z
Rd

jjxjj2Pðmn;FÞðdxÞ is finite:

In fact, let AAR�
þhARd and denote

EðAÞ ¼ fxARd ; jjxjjXAg;

EþðAÞ ¼ fxARd ; /x; hSX0 and jjxjjXAg;

E
ðAÞ ¼ fxARd ; /x; hSp0 and jjxjjXAg:

According to Proposition 4.1, we set

Ko ¼ supfLPðm;FÞðyÞ; mABf ðm; eoÞ-MF and yABf ðo; rÞg:
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As u2peu for uX0; we obtain, for all h in Bf ðo; r
2
Þ;Z

EðAÞ
/x; hS2Pðmn;FÞðdxÞp

Z
EþðAÞ

/x; hS2Pðmn;FÞðdxÞ

þ
Z

E
ðAÞ
/x; hS2Pðmn;FÞðdxÞ

p
Z

EþðAÞ
e/x;hSPðmn;FÞðdxÞ

þ
Z

E
ðAÞ
e
/x;hSPðmn;FÞðdxÞ:

So Z
EþðAÞ

/x; hS2Pðmn;FÞðdxÞp2Ko: ð4:1Þ

Using Hölder inequality, we obtainZ
EþðAÞ

e/x;hSPðmn;FÞðdxÞp ðLPðmn;FÞ ð2hÞÞ
1
2ðPðmn;FÞðEþðAÞÞÞ

1
2

p
ffiffiffiffiffiffi
Ko

p
ðPðmn;FÞðEþðAÞÞ

1
2

p
ffiffiffiffiffiffi
Ko

p
ðPðmn;FÞðEðAÞÞ

1
2:

Similarly, we haveZ
E
ðAÞ

e
/x;hSPðmn;FÞðdxÞp
ffiffiffiffiffiffi
Ko

p
ðPðmn;FÞðEðAÞÞ

1
2:

HenceZ
EðAÞ

/x; hS2Pðmn;FÞðdxÞp2
ffiffiffiffiffiffi
Ko

p
ðPðmn;FÞðEðAÞÞ

1
2:

As the Chebyshev inequality implies

Pðmn;FÞðEðAÞÞp 1

A2

Z
Rd

jjxjj2Pðmn;FÞðdxÞ;

we obtain thatZ
EðAÞ

/x; hS2Pðmn;FÞðdxÞp2
ffiffiffiffiffiffi
Ko

p

A

Z
Rd

jjxjj2Pðmn;FÞðdxÞ
� �1

2
:

Let now ðeiÞ1pipd be any orthonormal basis in Rd and make h ¼ r
2

ei in (4.1), for

i ¼ 1;y; d: Then we obtain, for x ¼
P

1pipd xiei;Z
Rd

/x; hS2Pðmn;FÞðdxÞ ¼ r2

4

Z
Rd

x2
i Pðmn;FÞðdxÞp2Ko:
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ThereforeZ
Rd

jjxjj2Pðmn;FÞðdxÞ ¼
X

1pipd

Z
Rd

x2
i Pðmn;FÞðdxÞp8dKo

r2
: ð4:2Þ

This done, we have thatZ
EðAÞ

/x; hS2Pðmn;FÞðdxÞp2
ffiffiffiffiffiffi
Ko

p

A

Z
Rd

jjxjj2Pðmn;FÞðdxÞ
� �1

2
p

C

A
; ð4:3Þ

where C ¼ 4Ko

ffiffiffiffi
2d

p

r
:

According to (4.3) and using the Hölder inequality, we have, for h; k in Bf ðo; r
4
Þ;Z

EðAÞ
j/x; hS/x; kSjPðmn;FÞðdxÞ

p
Z

EðAÞ
/x; hS2Pðmn;FÞðdxÞ

 !1
2 Z

EðAÞ
/x; kS2Pðmn;FÞðdxÞ

 !1
2

p
C

A
:

It follows that for e40; there exists Ae40 such that, for all A4Ae;Z
EðAÞ

j/x; hS/x; kSjPðmn;FÞðdxÞoe:

As, from Theorem 3.1, Pðmn;FÞ converges tightly to Pðm;FÞ when n-þN;
Lemma 4.2 implies that

lim
n-þN

Z
Rd

/x; hS/x; kSPðmn;FÞðdxÞ ¼
Z
Rd

/x; hS/x; kSPðm;FÞðdxÞ:

Since

VF ðmnÞðh; kÞ ¼
Z
Rd

/x; hS/x; kSPðmn;FÞðdxÞ 
/mn; hS/mn; kS;

we deduce that limn-þN VF ðmnÞ exists and does not depend on the choice of the
sequence ðmnÞnAN: More precisely, we have

VF ðmÞ ¼ lim
n-þN

VF ðmnÞ ¼ k00
Pðm;FÞð0Þ:

(i) ) (ii) Since VF extends to m; then VF is bounded in a neighbourhood of
m in MF :

(ii) ) (iii) Let mA@MF : Suppose that there exists e40 such that the variance
function VF is bounded on Ie ¼ Bf ðm; eÞ-MF : This means that

sup
mAIe

jjVF ðmÞjj ¼ leoþN:

On the other hand, the steepness of the family F implies that

@ðcmðIeÞÞCYðmÞ:
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For mABf ðm;
e
2
Þ-MF ; denote

rm ¼ inffjjcmðmÞ 
 yjj; yA@ðcmðIeÞÞg:

Then
rm ¼ inffjjcmðmÞ 
 yjj; yA@ðcmðIeÞÞg ¼ inffjjcmðmÞ 
 yjj; yA@ðcmðIeÞÞ-YðmÞg:

As cm is a diffeomorphism from MF into YðmÞ we have that

cmðSðm; eÞ-MF Þ ¼ @ðcmðIeÞÞ-YðmÞ:

In fact, writing @ðIeÞ ¼ I e-Ic
e ; where Ic

e is the complement of Ie in Rd ; we have

cmð@ðIeÞ-MF Þ ¼cmðIc
e ;-Ie-MF Þ

¼cmðIe-MF Þ-cmðIc
e-MF Þ

¼cmðIeÞ-ðcmðIeÞÞ
c-YðmÞ

¼ @ðcmðIeÞÞ-YðmÞ:

On the other hand,

@ðIeÞ-MF ¼ Sðm; eÞ-MF :

Hence

rm ¼ inffjjcmðmÞ 
 cmðxÞjj; xASðm; eÞ-MFg:

Finally we show that lim infm-m rma0:
Suppose the contrary, that is, there exists a sequence ðmnÞnAN in MF converging to

m so that limn-þN rmn ¼ 0: Then, there exists ðxk
nÞkCSðm; eÞ-MF such that

xk
n k-þN
����! xn and jjcmðmnÞ 
 cmðxk

nÞjj k-þN
����! rn:

For xneMF ; Lemma 2.1 implies that limk-þN jjcmðxk
nÞjj ¼ þN: This contradicts

the fact that jjcmðmnÞ 
 cmðxk
nÞjj k-þN

����! rn: Hence, for all nAN; xnAMF-Sðm; eÞ and

so ðxnÞnAN is bounded. We may then assume that ðxnÞnAN converges to a point x of

Sðm; eÞ-MF :
Using the inequality in Proposition 2.2, we obtain

jjcmðxnÞ 
 cmðmnÞjjX
1

le
jjxn 
 mnjj:

Letting n-þN; we get

0X
1

le
jjx 
 mjj ¼ e

le
;

which is a contradiction. Therefore

lim inf
m-m

rm ¼ ra0:

We can now verify that, for all m in Bf ðm; e
2
Þ-MF ;

BðcmðmÞ; rÞCcmðIeÞCYðmÞ: ð4:4Þ
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Suppose that there exists y in BðcmðmÞ; rÞ\cmðIeÞ: Then the segment ½y;cmðmÞ� cuts

cmðIeÞ and cuts also its complement. As ½y;cmðmÞ� is connected,

½y;cmðmÞ�-@ðcmðIeÞÞa|:

Let yo be an element of ½y;cmðmÞ�-@ðcmðIeÞÞ: We have that

rprmpjjcmðmÞ 
 yojjpjjy
 cmðmÞjj

which contradicts the fact that yABðcmðmÞ; rÞ:
Inclusion (4.4) is then established. Thus, for all mABf ðm; e

2
Þ-MF ; we have

cmðmÞ þ Bðo; rÞCcmðIeÞ; and so cmðBf ðm; e
2
Þ-MF Þ þ Bðo; rÞCcmðIeÞ:

Taking the images by k0
m; we get

k0
m cm Bf m;

e
2

� �
-MF

� �
þ Bðo; rÞ

� �
CIe ¼ Bf ðm; eÞ-MF :

This ends the proof of Theorem 2.3 and we give now the proof of Theorem 2.6. &

Proof of Theorem 2.6. Let m be in H\convðsuppðmÞ-HÞ and suppose that VF ðmÞ
exists. According to Theorem 3.1, the existence of VF ðmÞ guarantees the existence of
a limit distribution Pðm;FÞ: From Proposition 3.3, we have

suppðPðm;FÞÞCH:

Let us suppose that

suppðPðm;FÞÞCsuppðmÞ-H: ð4:5Þ

Then

convðsuppðPðm;FÞÞÞCconvðsuppðmÞ-HÞ:

As meconvðsuppðmÞ-HÞ; then meconvðsuppðPðm;FÞÞÞ: This contradicts the fact
that k0

Pðm;FÞð0Þ ¼ mAconvðsuppðPðm;FÞÞÞ:
It remains to prove (4.5). Suppose that x is a point of H which does not belong to

suppðmÞ: Then there exists eo40 such that

mðBf ðx; eoÞÞ ¼ 0:

Choose e in �0; eo� such that Pðm;FÞðSðx; eÞÞ ¼ 0 and let ðmnÞnAN be a sequence in

MF converging to m: Since Pðmn;FÞ converges tightly to Pðm;FÞ; then

Pðmn;FÞðBf ðx; eÞÞ n-þN
����! Pðm;FÞðBf ðx; eÞÞ:

The fact that Pðmn;FÞðdxÞ ¼ e/cmðmnÞ;xS
kmðcmðmnÞÞmðdxÞ and mðBf ðx; eÞÞ ¼ 0 implies

that

Pðmn;FÞðBf ðx; eÞÞ ¼ 0; for all nAN:

Therefore

Pðm;FÞðBf ðx; eÞÞ ¼ 0

and in particular xesuppðPðm;FÞÞ: &
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