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Abstract

Let F={P(m,F); meMr} be a multidimensional steep natural exponential family
parameterized by its domain of the means Mp and let Vg(m) be its variance function. This
paper studies the boundary behaviour of V. Necessary and sufficient conditions on a point 7
of OMF are given so that Vr admits a continuous extension Vp(7) to the point 77 . It is also
shown that the existence of V() implies the existence of a limit distribution P(7i, F)
concentrated on an exposed face of Mr containing 7. The relation between Vg () and
P(m, F) is established and some illustrating examples are given.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

Exponential families have been a distinguished topic of theoretical statistics and
probability theory for several decades. As they provide a general framework for
many practical optimization problems in statistics, their behaviour on the boundary
of natural parameter or mean parameter spaces is of theoretical interest. Our
approach in the present work is based on the natural exponential families and their
description through means (see [7]). In this context, the variance function of a
natural exponential family (NEF) appears as the most appropriate tool, and so it has
received a great deal of attention in the statistical literature. Its importance stems
from the fact that it characterizes the family within the class of all natural
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exponential families [9,11]. Several classifications of NEFs by means of variance
functions have been defined (see, [2,3,8,9]). Also, many characteristic properties of
classes of distributions have been established using variance functions (see, [4,6]).
Beside its role for the study of NEFs, the variance function itself has many nice
intrinsic algebraic properties. Jorgensen [5] asked what properties are shared by all
members of a natural exponential family F in terms of its variance function Vr. He
considered the one-dimensional version of the problem. In this case, V' is a real
valued function and the domain of the means My is an interval of R which,
naturally, has at most two extremities. The problem involves studying the behaviour
of Vr at one of the extremities of Mr. We are concerned with multidimensional steep
NEFs, that is, NEFs with the domain of their means equal to the interior of the
convex hull of the support. This global assumption is satisfied in all reasonable
multidimensional cases and it is justified from a technical point of view. The
steepness enables to apply the convex analysis methods to the convex supports of
NEFs. A natural problem within this approach is to identify the points of the
boundary of the domain of the means where the variance function Vy admits an
extension. In Section 2, we show that 'y extends continuously to a point on the
boundary if and only if Vg is bounded in its neighbourhood. We also show that this
is equivalent to the existence of a special bounded neighbourhood of the point.
Section 3 is devoted to continuous extensions of the mapping m— P(m, F) in the
weak topology. We prove that boundedness of Vy is sufficient for these extensions
and that limit distributions P(71, F) are concentrated on faces of the closure Mz. In
this section we also give the link between Vr(m) and the variance of the limit
distribution P(77, F). Proofs are postponed to Section 4.

2. Extension of a variance function

We introduce first some notation and review some basic concepts concerning
exponential families and their variance functions. For more details, we refer the
reader to [7].

For a positive Radon measure u on R?, we denote

Lﬂ:[REd—>]0,+oo[:0»—> /d exp< 0,x ) u(dx)
R

the Laplace transform, where <0, x) is the ordinary scalar product of 6 and x in R.
Also we denote

O(u) = interior{0eR’; L,(0)< + 0},

ky =log L;

ky 1s the cumulant generating function of u.

The set .#(R?) is defined as the set of positive measures u that are not
concentrated on an affine hyperplane and ©(u) is not empty.
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For p in %(Rd), the set of probabilities
F = F(u) = {P(0, 1) = exp(<0, x> — ke (0))u(dx); 0eO(u)}

is called the natural exponential family (NEF) generated by u. Of course, u and u' in

M (RY) are such that F(u) = F(u') if and only if there exists (a,b) in R? x R such
that

f(dx) = exp({a,x) + b)u(dx).

For win .4 (R?), k, is strictly convex and real analytic on @ (u), so that k;, defines a
diffeomorphism from @(u) to its image My called the mean domain of F. Let
Y, Mrp—0O(n) be the inverse function of kj, and, for m in Mp, P(m,F)=
P(y,(m), n). We denote by Ly(RY) the set of symmetric linear maps of R?. For m in
Mg, Vi(m) = k;(,(m)) is the covariance operator of P(m, F). The map from M to
Ly(RY), defined by Vp: Mg — Ly(RY); m— Vp(m), is called the variance function of
the natural exponential family F. It is easily proved that, for all m in Mg, lp;(m) is
the reciprocal of Vi (m).

The importance of the variance function stems from the fact that it characterizes
the family F in the following sense: If F and F, are two NEFs on R such that Vj
and VF, coincide on an open subset of Mrn Mp, , then F = Fj.

We examine the influence of an affine transformation on the elements of a NEF F.
Let ¢ be in the affine group of R?, i.e., x = ¢(x) = a(x) + b, where b is in R? and a is
in the linear group GL(R?). The following facts are easily checked.

@(F) = F(o(n))
Mypy = ¢(Mr)

Vory(m) = aVe(p~'(m))'a for all me M.

We evoke now the notion of steepness for a natural exponential family F = F(u)
generated by a measure u belonging to .#(R?). It was introduced by Barndorff-
Nielsen [1]. We say that the family F is steep if, for all €90 (u),

lim [}k, (0)[] = + o0,
0-0

where ||.|| denotes the Euclidean norm in R?.

Denote by conv(supp(u)) the closed convex hull of the support of u. We always
have M <int(conv(supp(u))). Barndorff-Nielsen [1] has shown that F is steep if and
only if Mp = int(conv(supp(1))).

We now come to our results concerning the extension of the variance function of a
steep NEF F = F(u). We first prove a lemma concerning the behaviour of . It is
useful because of the link between the variance function Vr and y,,.
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Lemma 2.1. Let F be a steep NEF on RY. Then for all e OMp,

T [y, ()| = +c0.

Proof. Suppose the contrary, so that there exists a sequence (m;,) in My such that
mnmm and lpu(mn) = 0,1’1_)—)% 0

For 6 in @(u), we define the following maps:
@y [0,1] >R, A ¢,(4) = ku((1 — 2)6, + 40)
and
¢:]0,1]-R; A o() =k, ((1 — 2)0 + 20).
We consider two cases.

Case 1: 0e D(1)\O(1). As g, is strictly convex, ¢ is strictly increasing on [0, 1].
Hence we have, for all 1€]0, 1],

@,(0) <@, (4) <), (1).
This implies that
Ckyy(0n), 0 = 0, ) <, (1) < <Ky (0),60 = 0, ) (2.1)

Since the sequence s, = k;(@n) is bounded, there exists a subsequence s,, = k;(an)
converging to a point 5.
Taking in (2.1) the limits when k— + co, we obtain, for all A1€]0, 1],

(5,0 -0><¢'(A)< (ki (0),0 — 0.

But, the steepness of the family F implies
Eliré ¢'(4) = 1}3& (1= 2)0+70),0 —0) = —0,

which is a contradiction.

Case 2: 0 @(u)\D(u). By the Rolle’s formula there exists 4, €0, 1] such that

?u(1) = 0,(0) = @;,(Zn)-

Since ¢/, is strictly increasing on [0, 1], we have
?,(0) = @,(1) = @;,(An) <@, (1) — @,(0).

This implies that
ku(0n) <k (0) — <kyy(0n), 0 — 6, > -

As 0¢ D(u), Fatou lemma implies that
HET@ kﬂ(en) =t

This contradicts the fact that the sequence (k,(0) — <k (0,),0 — 0, ), is bounded.
Thus we have the desired conclusion. [J
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Recall that the norm of a linear endomorphism A4 of R? is defined by
[|4]| = sup{|[A.Al[; [|A]] = 1},

and let By(x,r) and B(x,r) denote the respective closed and open balls in R?, both
with centre x and radius r.

Next we give a technical result concerning the behaviour of the function ¥, in a
neighbourhood of a boundary point in which the variance function is bounded.

Proposition 2.2. Let F be a steep NEF and let i be in OMg. Suppose that there exists
>0 such that

sup (|IV(m)||) = Ae< + 0.
me By (me) Mg

Then, for all my and m, in By(, &) Mp, we have

|lmy — ma|| < AW, (my) — ¥, (ma) ]

Proof. As
1= ([Ve(m)(Ve(m) ™ | <IIVe(m)[[|(Ve(m) ],

for all me By (m,e) N MF,

1 l

Writing the Taylor expansion with integral remainder, we obtain

Yu(my) =y, (ma),my — my )
_ /01 (Ve(1 = tymy + tma))™ my — oy, my — my) .

For an arbitrary positive definite element of L(RY) 4 and all xeR?,

(A%, x> =
This fact applied to 4 = Vg((1 — t)my + tmy) gives

/01 (Ve((1 = 0ymy + tmy)) ™ (my — may,my — my) dt>%y||m1 —m|%.
Hence

Y (my) =, (ma),my —my ) 2% |lmy — my|.

On the other hand, we have that

Y (my) =, (ma), my — ma ) <[, (m1) — ¥, (ma)]|[|[m1 — ma]].
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Consequently,
1
1, (m1) =, (ma) || 2=l —mo||. - O]

The following result gives necessary and sufficient conditions for the extension of
VF to a point 7 on the boundary OMy of Mp. We will say that the variance function
V' can be extended to 7 if the limit of Vi (m) exists for m in M tending to 7. In this
case we write

VF(m) = Wllln’l_ VF(WI)

—->m

Theorem 2.3. Let F be a steep NEF on R? and let 7ii be in dMy. The following
properties are equivalent

(i) Vr extends to m
(i1) V is bounded in a neighbourhood of m in Mp
(iii) There exists a neighbourhood By(m, e,) N My such that the two conditions

) — (a) l//ﬂ(B/(m,eo)mMp)—&—Bﬂo,r)c@(,u)
() = (b) k(¥ (Br(7,e,)) " Mr + By(0,7)) is bounded.

are satisfied.

The following is an appealing corollary, because it concerns an important class of
natural exponential families.

Corollary 2.4. If the support of F is bounded, then the variance function Vi extends
to MF.

Proof. Since the support of u is bounded, @(x) = R? and My is bounded. Hence,
from Theorem 2.3, Vr extends to Mp. O

The following example illustrates the result in Theorem 2.3.

Example 2.1. Let F be the NEF on R? generated by the measure
p(dx,dy) = N(0,1)(dx) ® o(dy) + 60,1 (dx, dy).
Then
1
O) = R, L,(01,00) =" + 2%, My =Rx]0,1[ and

(1 — mz)z + m%mz
Vi(mi,my) = 1 —my
—mimy WZ2(1 — le)

—min
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For the point m = (my, 1)edMF, condition (a) in I(7m) is satisfied because O(u) =
R?, however, lim,,_5||VF(m)|| = 4+ 0. This shows that condition (a) in 7(7) is not
sufficient for the extension of the variance function Vg to meOMr.

Proposition 2.5. Let F be a steep NEF on R?. Then
My = {medMp; Vi(m) exists}
is an open subset of OMp.

Proof. Suppose that M} #0 and let 777 be an element of M}.. According to Theorem
2.3, the variance function is bounded in a neighbourhood B(7,¢,) N M of m. Let x
be an element of B(m,¢,) "OMp and take p = inf(e,, || — x||). It is clear that the
variance function is also bounded in B(x, p) N Mp. Again from Theorem 2.3, we
deduce that xe M}.. Hence B(7, p) nOMp< M. O

Note that the extended variance function is continuous on My U Mp.

Next we give another property of the points on the boundary of the domain of the
means in which the variance function can be extended.

Recall that an exposed face H of a convex set C in R? is defined as the intersection
of C with a non-trivial supporting hyperplane of C (see [10, p. 162]).

With the same notation and hypothesis, in particular that F = F(u) is a steep
NEF, we have.

Theorem 2.6. Let H be an exposed face of M and let me H. If Vi(m) exists, then
me conv(supp(u) N H).

Note that the converse of this theorem is not true. For instance, in the setting of
Example 2.1, H = R x {1} is an exposed face of M, m = (0, 1) € conv(supp(p) " H)
and lim,, 7 ||Vr(m)|| = + 0.

3. Limit distributions

Let F be a steep NEF on R? and let 7 be on the boundary OMy of M. We show
that if 7y extends to m, then there exists a limit distribution P(71, F)) concentrated on
an exposed face H containing 7. In this case, we determine the link between Vi (7)
and P(m, F).

Definition 3.1. Let 77 be a point of OMp. If P(m, F) has a tight limit P(7, F) when
me My tends to 7, then P(m, F) is called a limit distribution.
With this notation, we may consider the statistical model

{P(m,F); me Mru My}
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as a full NEF parametrized by the mean. It is the closure of the NEF F in the weak
topology.

Theorem 3.1. Let F be a steep NEF and let mie OMp. Suppose Vi extends to m. Then

(i) there exists a limit distribution P(m, F) in m;
(il) Vr(m) is the variance of P(m, F).

For the proof of Theorem 3.1 we need the following lemma.

Lemma 3.2. Let medMp. Suppose that the two conditions (a) and (b) in I(m) are
satisfied; then for all 0 in Br(o,r),

(i) for me Mg, the map defined on the interval |0, 1] by
trs I (1, (7 + 1(m — 7)) + 0),m — 7
extends by continuity to 0
(ii) the map ¢ :m—k,(y,(m) + 0) extends by continuity to m.
Proof. (i) Consider the function
f(@) = <k (m+ t(m —m)) + 0),m —m ).
It is differentiable on ]0, 1] with
S'() = <K, (7 + t(m — 1)) + 0) (Ve (M + t(m — )~ (m — ), m — 7).
As ky is strictly convex, ky(y,(m + t(m —m)) + 0) and (Vp(m + t(m — m))) " are
positive definite and symmetric. Hence so is
K/, (7 + t(m — 1)) + 0) (Vi (i + t(m — 1))~

This implies that f/(¢) >0 for all 7€]0, 1] and so f is strictly increasing in ]0, 1]. As f is
bounded, it admits a finite limit at zero.
(i1) Follows from (i). [

Proof of Theorem 3.1. (i) Let (m,)
know that for all 0€ By (o,r),

According to Lemma 3.2, lim - + o K}, 1) (0) exists for all 0€ By (o, r); we denote it
by ¢g(0). If we set

2o = Sup{||kp, py (O)|; 0€By(o,r) and me B(mi,e,)},

sen D€ @ sequence in My converging to m. We

then, for all 0 and 0’ € B/ (o, r),
(1 Py ) (0) = Ko, i) (0) | < 2610 — €] (3.1)



A. Hassairi, A. Masmoudi | Journal of Multivariate Analysis 92 (2005) 239-256 247

Hence, according to Ascoli theorem, kp(,, r) has a sub-sequence that converges
uniformly on the closed ball By(o,r) to a function L. The inequality (3.1) implies
then that

1L(60) = L(O)II< 4]0 — 0/l
and so L is continuous on By (o, r). We verify now that the limit L is independent of

the sequence (m,), ., and depends only on 7. In fact, let (m,),  and (m1,), . be
two sequences in My converging to 77 and let L; and L, be defined on By(o,r) by

L](Q) = HETOC kp(,nmp)((‘)) and Lz(@) = 'IEIPm kp(,,,;ﬂ,:)(@).

Then L; and L, are differentiable on By(o,r) and we have
Li(0) =¢(6) and L)(0) = g(0).
This implies that
L (0) = Ly(0) +c.
Since L;(0) = L,(0) =0, we obtain ¢ = 0. Finally, Levy theorem guarantees the
existence of a distribution P(7, F') such that kpg; gy (0) = L(0) for all 0€ Br(o,r).

(ii) Since limy -, 1.0 Kp,,,, 1 (0) = Vi (), we conclude that Vr(m) is the variance of
P(m,F). O

Theorem 3.1 provides a sufficient condition for the existence of a limit distribution
P(m, F). We show now that, under this condition, P(7, F) is concentrated on an
exposed face of M containing .

Proposition 3.3. Let F be a steep NEF and let mi be an element of an exposed face H of
M. If Vi(m) exists, then the limit distribution P(m, F) is concentrated on H.

Proof. Suppose that the dimension of H is equal to k. Then, without loss of

generality, we may assume that H < RF x {0}/ 7%,
Let u be an exterior normal vector on H such that,

H=Mpn{xeR’ (x,ud =0} and Mrc{xeR? {(x,u)<0}.
For ¢>0, we set

A,(u) = {xeR% (x,u) < —¢}.
As

P(m, F)(A,(u)) < —%/ {x,uy P(m, F)(dx)< —% {myu)

Ag(u)
and

lim <m,u) = {(m,u)y =0,

m-m
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we obtain that

lim P(m, F)(A:(u)) = 0.

m—T7i
Hence, for any ¢>0, we have

P(m, F)(A,(u)) = 0.
Thus

P(m, F) is concentrated on H. O

The following corollary gives a relation between the dimension of a face H
containing the point 7z and the rank of V(7). In this case, V() is a degenerate
martrix.

Corollary 3.4. Let F be a steep NEF and let H be an exposed face of Mg with
dimension k. Suppose that, for me H, Vp(m) exists. Then

(i) rank Vp(m)<k;
(ii) Vr(m) =0 if and only if P(m,F) = 05.

Proof. (i) Since k}’,(m F)(O) = Vr(m), we have k’,’)(ﬁ ) (0) = Vr(m).
From Proposition 3.3, we know that the limit distribution P(7, F) is concentrated
on H. This implies that
rank Vi(m)<k.

(ii) Vr(m) = kp ¢)(0) = 0if and only if the limit distribution P(m, F) = o7. [

Note that for k = 0, this means that H = {m} and so V() = 0. This generalizes
the result of Jorgensen [5] for a real NEF.

Example 3.1. The bivariate inverse Gaussian distribution (see [3]).
Let F be the NEF generated by the measure p concentrated on ]0, + oo [x R defined
by

1 1
uldx, dy) = 5 exp [—2)((1 + yz)} Lo+ o0 ((x) dx dy.

Its variance function is defined on My =]0, + 00 [xR by

3
i

minn
mimy (1+md)m )
For an element 7= (0,m;) of the exposed face H = {0} xR, we have
lim,, .7 Vp(m) = 0. Hence in this case, for all 7 in H, the limit distribution

P(m,F) is equal to J7. This example shows in particular that the inequality
rank Vg (m)<k in Corollary 3.4 may be strict.

Vi(my,my) = (
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We conclude this paragraph by another example.

Example 3.2. Let F be the NEF on R? generated by the measure

1 :
w(dx,dy) = 5(5(0,1)(dx, dy) + e "1p, (X)dx® 0,(dy)).

The Laplace transform of p is defined on @(u) =] — oo, [[xR by

71 ) 1
LH(91702) 2(6 + 1 _9]).

The calculation of the variance function leads to
Myp =]0,+00[x]0,1] and

m3(1 + my) S
Vp(ml,m2) = 1 —my .

—mmy  ma(1 —my)

We observe that the variance function Vy does not extend to the face H, =
[0,4+c0[x{1}. However Vp extends to the face H, = [0,+0o0[x{0} and for all
m = (m,0)e H\{(0,0)}, we have

L‘C
P(m, F)(dx) = mil e ™ lgy(x)dx

and

P(0,F) = d.

4. Proof of Theorems 2.3 and 2.6

We first prove in the following proposition a technical result which gives an
equivalent version to the condition /() in Theorem 2.3.

Proposition 4.1. Let m be in OMp. Then the following statements are equivalent

(1) (i) in Theorem 2.3 is satisfied.
(i) there exist &,>0 and p>0 such that

(@) Y, (By(m,e,) " Mp) + By(0,p) = O(n),
(b) L., (Br(m,e,) " Mp) + Br(o, p)) is bounded.

Proof. (i) = (ii)) Assumption (i) implies that
SUP{[|Kp( ) (O)I; M€ By (M, e0) " Mp, 0€Bs(0,r)} =< + 0.

This, with the finite increments theorem, implies that
1 pion, ) (0) = K pion, ) (0)] < 210
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Since  kppur)(0) =0 and  kpg,p) = log(Lpnr)), we obtain that, for all
me By(mi, e,) " My and 0€ Br(0,7), Lpgr)(0) <e™’, which proves (ii).
(ii) = (i) Let

K, = Sup{LP(m,F)(O); MEBf(my So)mMFa Ger(Oap)}

and let / be in the sphere S(0,5) with centre 0 and radius §. If 0e By(0,%), then

| <L;’(m,F) (0)7 h> | <

/{ R, o> 300 <x,h>e<9’x>P(m,F)(dx)
xeRY; (xh) >

+

/{ . 0}<x7h>e<H’X>P(m,F)(dx)
xeRY: (xh)<

Using the inequality u<<e“, we obtain that

/{ wr com0) {x,h> e<9’x>P(m,F)(dx)

< / 0 Pl F) (dx) <K,
{xeRd; (x,hd >0}

S sy oM P FY @9
xeR%; (x,hy<

< ~/{xele; oo e p(m, F)(dx) < K,.
This implies
| {Lip,py(0), h )| < 2K,
As the function 0 kp(,, r)(0) is convex and k}(m_F) (0) = m, we have

kP(m,F)(e) - kP(m,F)(O) = <ma 0> .

Therefore

—kpn.r) (0)< — (m, 0) <Hm|||\9||<%p(so + |[m]]) = c.
As we have

K,y (0), 1) = /R |y e O P, F) (),

we deduce that

| <Kpn,y (0), 1) | <2Koe”.
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Let now u be in the unit sphere S(o,1) and take 4 = u. Then

6K, e

|<k;’(mF)(9)’ Ll> | <

Thus

6K, e¢
K p ) (O)]] < po

which proves (i). O

The proof of Theorem 2.3 relies on the following lemma. For a proof we can
consult [7, p. 40].

Lemma 4.2. Let u, be a sequence of probability measures on R which converges

tightly to . Consider g:R?—R a continuous function such that, for all ¢>0, there
exists A, >0 such that, for all A=A, and neN,

[ e <e
{xeRY; ||x][> 4}

Then

fim, [ o) = [ gsinta)

n—+oo R

Proof of Theorem 2.3. (iii) = (i) Let 777 be in M and let (m,), . be a sequence in
My converging to m. We will verify that, for ¢, >0, there exists, n, €N such that, for
all n=n,,

my, € By (i, e,) "M and  sup / ||x|[>P(my, F)(dx) is finite.
Rd

n=ny
In fact, let AeR" he R’ and denote

E(4) = {xeR%; ||x[|>4},
E.(A) ={xeR?% (x,h)>>0 and ||x||>4},

E_(A) = {xeR? {(x,h)<0 and |]x]|>4}.
According to Proposition 4.1, we set

K, = sup{Lp(r(0); meBs(m,e,) " Mr and 0e Br(o,7)}.
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As 1> <e" for u=0, we obtain, for all & in B(0,%),
[ pomp s [ Guypom, P
B(4) £, (4)
[ Gy POm F)(a
E_(4)
< / e P(my,, F)(dx)
E.(4)
+ / e P, F) (dx).
E_(4)
So
/ {x,hY>P(m,, F)(dx) <2K
E;(4)

Using Holder inequality, we obtain

1 1
[ e P, F)Ax) < (L, (0)2(P O F)(EL ()2
E(A)

/N
ol—

VEo(P(my, F)(E.(4))
< VEy(P(mn, F)(E(4)).

Similarly, we have

/ e X P(my,, F)(dx) < /Ko (P(my, F)(E(A))
E_(4)

Bo|—

Hence

/E . <6 2Py, F) (d) <23/Ko (P, F)(E(A))2.
As the Chebyshev inequality implies

Pny P)E() <5 [ PPl F)(c),

we obtain that

/E<A Gty Plom, F) ) 2*/_(/ [P, )(dx)).

Let now (e;),<,<, be any orthonormal basis in R? and make & =
i=1,...,d. Then we obtain, for x =, ., x;e;,

Bo|—

2
/R R Plny, F)dx) =" [ 33 P(m,, F)(an) <2K

(4.1)

5e; in (4.1), for
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Therefore

8dK,
2 _ 2 0
/Rd |1l P(mn,F)(dX)—ngd /Rd X; P(my, F)(dx) =5+ (4.2)

This done, we have that

1
> 2V K, 2 2 C
[, cxom e pa <2 ([ rpm @ ) <G @

where C = 4Kov2d

r

According to (4.3) and using the Hélder inequality, we have, for 7,k in Br(o,),

/ (x> Cx, ke | Py, F) (d)
E(A)

3 3
<< / <x,h>2P(mn,F><dx>> ( / <x,k>2P<mn,F)<dx>> <
E(4) E(4)

It follows that for £>0, there exists 4,>0 such that, for all 4> A4,,

/ > <k | P, F) (d) <.
E(4)

LS

As, from Theorem 3.1, P(m,,F) converges tightly to P(m,F) when n— + o0,
Lemma 4.2 implies that

m1/ @ﬁxn@HWJWMZ/ (x> <x, kS P(7, F) (d).
R4 R4

n—+o

Since
Velmn) (k) = [ Gy ey Plomy, F)) = ooy o,

we deduce that lim,_, ., Vr(m,) exists and does not depend on the choice of the
sequence (m,), - More precisely, we have

Vi(m) = lim Vp(m,) = k;(m,F)(O)'

n— 00

(i) = (i) Since Vp extends to mi, then Vp is bounded in a neighbourhood of
m in MF.

(i1) = (iii)) Let medMp. Suppose that there exists ¢>0 such that the variance
function ¥ is bounded on I, = By(m, &) " M. This means that

sup [|[Ve(m)|| = 2. < + .

mel;

On the other hand, the steepness of the family F implies that
O, (I;)) = O(p).
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For me By (m, g) N Mp, denote
rm = inf{|[y, (m) = 0l; 0€d(y, (L))}

Then
rm = inf{[[y,(m) — 0[|; 0€d( (L))} = inf{|[,(m) —0[; 0€0(y,(L))NO(u)}.

As y, is a diffeomorphism from Mp into @(u) we have that
V, (S(m, &) " M) = (W, (1)) N O (u).

I¢, where I is the complement of 7, in R, we have

In fact, writing 9(I,) = I,
Y, (0(L:) 0 Myp) =y, (I, 0T, Mr)
=, (L. M) 0, (I 0 M)
=, (L) (Y, (L) 0O (n)
=00, (L)) " O ()

On the other hand,
)" Mp = S(m,e) " Mp.

Hence
= inf{|jyp, (m) =¥, (x)|l; xeS(m,e)nMr}.
Finally we show that lim inf,,_, r;, #0.
Suppose the contrary, that is, there exists a sequence (71,),., in MF converging to
m so that lim,, ; ,, 7, = 0. Then, there exists (x¥), =S(m, &) N My such that

k _
C‘-_>xn and ||lpﬂ(mn) _wy(xn)||k_>+w Fn-

nk— + oo
For x,¢ My, Lemma 2.1 implies that limy_, . [, (x})|| = +co. This contradicts

the fact that ||y, (m,) — tﬁu(xﬁ)H 7= I Hence, for all neN, x, e Mp N S(m, ¢) and
$0 (xp),cn 1s bounded. We may then assume that (x,), ., converges to a point x of

S(m,e) " Mrp.
Using the inequality in Proposition 2.2, we obtain

X

1, () — wu<mn>||>i||xn — ]

Letting n— + oo, we get
&

1
0=—|}x —ml| = —,
A g

which is a contradiction. Therefore

liminf r,, = r#0.
m-m

We can now verify that, for all m in By(m,5) n M,

By, (m),r) =, (I,) = O(p). (4.4)
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Suppose that there exists 0 in B(y,(m), )\, (I;). Then the segment [0, ,(m)] cuts

,(I;) and cuts also its complement. As [0,y (m)] is connected,
[0, (m)] 0O, (1)) #9.

Let 0, be an element of [0, v, (m)]nO(y,(I;)). We have that
r<rm <[, (m) = 0,||< 10 =, (m)]]

which contradicts the fact that 0€ B(y,(m),r).
Inclusion (4.4) is then established. Thus, for all me By (7,5) n M, we have
() + B(o,r) =, (1,), and 0 1, (B (71,5) 0 M) + Blo, 1) =, (I,).
Taking the images by k,, we get

__ & —
K, (.//ﬂ (Bf (rnz) mMF) + B(o, r)) <1, = By (i, ) A Mp.
This ends the proof of Theorem 2.3 and we give now the proof of Theorem 2.6. [

Proof of Theorem 2.6. Let m be in H\conv(supp(u) nH) and suppose that Vi (m)
exists. According to Theorem 3.1, the existence of V() guarantees the existence of
a limit distribution P(m, F)). From Proposition 3.3, we have

supp(P(m, F))c H.
Let us suppose that

supp(P(m, F)) = supp(u) N H. (4.5)
Then

conv(supp(P(m, F))) < conv(supp(u) " H).

As mi¢ conv(supp(u) N H), then mi¢ conv(supp(P(m, F))). This contradicts the fact
that k}’(mﬁF)(O) = me conv(supp(P(m, F))).

It remains to prove (4.5). Suppose that x is a point of H which does not belong to
supp(p). Then there exists ¢, >0 such that

u(By (x.5,)) = 0.

Choose ¢ in 0, ¢,] such that P(7, F)(S(x,¢)) = 0 and let (m,),., be a sequence in
M converging to m. Since P(m,, F) converges tightly to P(m, F), then

P(mmF)(Bf(X, &) —— P(m, F)(Bf(xv £))-

n— + o

The fact that P(m,, F)(dx) = e<¥utm)x>—ku(ulm)) y(dx) and p(By(x,e)) = 0 implies
that

P(m,, F)(Br(x,e)) =0, for all neN.
Therefore

P(m, F)(By (x,£)) = 0
and in particular x¢ supp(P(m, F)). O
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