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Abstract

We recently showed that Nexrutine®, a Phellodendron
amurense bark extract, suppresses proliferation of
prostate cancer cell lines and tumor development in
the transgenic adenocarcinoma of mouse prostate
(TRAMP) model. Our data also indicate that the anti-
proliferative effects of Nexrutine® are mediated in part by
Akt and Cyclic AMP response element binding protein
(CREB). Cyclooxygenase (Cox-2), a pro-inflammatory me-
diator, is a CREB target that induces prostaglandin E,
(PGE,) and suppresses apoptosis. Treatment of LNCaP
cells with Nexrutine® reduced tumor necrosis factor
a~induced enzymatic as well as promoter activities of
Cox-2. Nexrutine® also reduced the expression and pro-
moter activity of Cox-2 in PC-3 cells that express high
constitutive levels of Cox-2. Deletion analysis coupled
with mutational analysis of the Cox-2 promoter identified
CRE as being sufficient for mediating Nexrutine® re-
sponse. Inmunohistochemical analysis of human pros-
tate tumors show increased expression of CREB and
DNA binding activity in high-grade tumors (three-fold
higher in human prostate tumors compared to normal
prostate; P = .01). We have identified CREB-mediated
activation of Cox-2 as a potential signaling pathway in
prostate cancer which can be blocked with a nontoxic,
cost-effective dietary supplement like Nexrutine®, dem-
onstrating a prospective for development of Nexrutine®
for prostate cancer management.

Neoplasia (2007) 9, 893—-899

Keywords: Cox-2 promoter activity, prostate cancer, CREB, inflammation,
PGE,.

Introduction

Numerous studies have indicated a strong correlation
between levels of arachidonic acid metabolites and ac-
cumulation of prostaglandins in carcinogenesis [1-5].
Cyclooxygenase-2 (Cox-2) is a rate-limiting enzyme that
converts arachidonic acid into prostaglandins, which are
key inflammatory signaling molecules. Deregulation of sig-
nal transduction pathways by proinflammatory stimuli has

been implicated in tumor promotion. Increased synthesis of
prostaglandin E, (PGEoy; resulting from upregulation of Cox-2
expression) inhibits apoptosis, stimulates angiogenesis, and
promotes metastasis and immunosuppression, all of which
play critical roles in the development and progression of cancer
[6—10]. Because of the potential relationship between inflam-
mation and cancer, proinflammatory pathways offer candidates
for target-based chemoprevention agents [11-186].

Cytokines, mitogenic factors, tumor promoters, and stress-
inducing agents induce the expression of Cox-2 [17]. Cox-2 is
overexpressed in various types of tumor cells, including prostate
cells, and is associated with resistance to apoptosis [18—30].
In addition, inhibition of Cox-2 using Cox-2—specific inhibitors
showed promising antiproliferative and apoptosis-promoting
effects, both in vitro and in vivo, in preclinical animal models
[31-38].

Epidemiological studies have found a decreased incidence
of prostate cancer among men who use nonsteroidal anti-
inflammatory drugs (NSAIDs) [39—-41]. Daily intake of acetylsal-
icylic acid (Aspirin) has been shown to reduce prostate cancer
risk by 39% [42]. Furthermore, the efficacy of celecoxib, a se-
lective Cox-2 inhibitor, has been evaluated in prostate cancer
patients following radiotherapy or radical prostatectomy. Eight
of 12 patients receiving 200 mg of celecoxib (twice daily) showed
a significant reduction in serum prostate-specific antigen (PSA)
levels after 3 months of treatment [43]. Subsequent studies
by Smith et al. [44] have reported that celecoxib use after radi-
cal prostatectomy decreased mean PSA velocity by 3.4% (P =
.02). In contrast, the placebo control group showed a 3% in-
crease in mean PSA velocity. Increased expression of Cox-2
has been shown to correlate with disease relapse [45]. These
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epidemiological studies and clinical trials showing the prostate
cancer—preventive activity of Cox-2 inhibitors are encour-
aging and warrant more detailed studies [46].

Recently, we have shown that Phellodendron amurense
bark extract, namely Nexrutine (Next Pharmaceuticals, Irvine,
CA), inhibited the growth of prostate tumors [47]. We have
also shown that Nexrutine prevented the development of
adenocarcinoma in the TRansgenic Adenocarcinoma of
Mouse Prostate (TRAMP) model through downregulation
of Akt-mediated activation of cyclic AMP response element
binding protein (CREB) [48]. CREB is a transcription factor
that regulates a wide variety of genes by binding to cyclic AMP
response element (CRE) elements in the promoter region,
including Cox-2 [49—-51]. However, it is not known whether
Nexrutine-induced biologic effects are mediated through
transcriptional regulation of Cox-2. In the present study, we
examined the regulation of Cox-2 by CREB in prostate
cancer and evaluated the ability of Nexrutine to inhibit CREB-
mediated transcriptional activation of Cox-2.

Materials and Methods

Preparation of Nexrutine

Nexrutine was provided by Next Pharmaceuticals. Stock
solutions of Nexrutine were prepared by dissolving 10 mg of
Nexrutine in 10 ml of DMSO (1 mg/ml). This was diluted in
growth media to obtain different concentrations (1—10 pg/ml).

Prostate Cancer Cell Lines
Human prostate cancer cell lines LNCaP and PC-3 were
grown and maintained as described previously [52—54].

Transient Expression Assays

Transient transfections were performed using a Lipofectin
reagent (Invitrogen, Carlsbad, CA), in accordance with the
manufacturer's recommendations. Briefly Cox-2 (—1452/+59)
and Cox-2 (—327/59) reporter plasmids (1 pg/well) and pRL-
TK plasmid (50 ng/well; Renilla luciferase for normalization)
were incubated with the Lipofectin reagent for 30 minutes
at room temperature. The DNA—Lipofectin mixture was then
added to the cells and incubated for 48 hours. Forty-eight
hours after transfection, the cells were treated with solvent
control or 5 pg/ml Nexrutine for 6 hours. Where indicated,
cells were also treated with tumor necrosis factor a (TNFa)
(20 ng/ml) for 30 minutes. Following treatments, cell extracts
were prepared and assayed for luciferase activity, as de-
scribed earlier [54]. Renilla luciferase activity was used to
normalize transfection efficiency. Results are expressed as
the ratio of firefly luciferase to Renilla luciferase at equal
amounts of protein.

Immunohistochemistry

Sections from formalin-fixed paraffin-embedded tissue
blocks of prostate were cut and stained with phosphory-
lated CREB (pCREB) and CREB (Cell Signaling Technology,

Inc., Danvers, MA). The secondary and tertiary antibodies
were biotinylated link and streptavidin horseradish peroxi-
dase (Biocare 4 plus Kit; Biocare Medical, Concord, CA, or
Vector Laboratories, Burlingame, CA).

Preparation of Extracts from Prostate Tumors
and CREB DNA Binding Activity

Whole-cell extracts from normal and high-grade prostate
tumors (n= 3 each) were prepared using Active Motif nuclear
extract preparation kit (Active Motif, Carlsbad, CA). CREB
DNA binding activity was measured in normal human pros-
tates and high-grade prostate tumors by using TransAM
CREB (Active Motif). Briefly, the extracts were incubated
with a CREB consensus oligonucleotide that was immobi-
lized in a 96-well plate. A primary antibody specific for an
epitope on the bound and active forms of CREB is then
added, followed by subsequent incubation with secondary
antibody and developing solution. Following this incubation
with the developing solution, CREB activity was measured
colorimetrically at 450 nm with a Spectramax plate reader
(Molecular Devices, Sunnyvale, CA).

Determination of PGE, Levels

PGE.; levels were determined using PEG, Biotrak enzyme
immunoassay system (RPN 222), in accordance with the
manufacturer's recommendations (Amersham Biosciences
Corp., Piscataway, NJ).

Reverse Transcriptase—Polymerase Chain Reaction
for Cox-2

RNA isolated from LNCaP and PC-3 cells was amplified
using Cox-2 and 3-actin primers, as described [55]. Reverse
transcriptase—polymerase chain reaction (RT-PCR) was per-
formed using Access RT-PCR system (Promega Corporation,
Inc., Madison, WI).

Statistical Analysis

Data are presented as average + SD, and significance was
determined using Student’s t test. Differences between the
experimental groups were considered significant at P < .05.

Results and Discussion

Modulation of Cox-2 By Nexrutine

We measured the expression of Cox-2 using RT-PCR and
immunoblot analysis in androgen-responsive LNCaP and
androgen-independent PC-3 cells. Figure 1 shows that PC-
3 cells constitutively express high levels of Cox-2. In con-
trast, LNCaP cells express low levels of Cox-2 (data not
shown). These data confirm published reports examining the
expression of Cox-2 in prostate cancer cells [26,27]. We next
investigated whether Nexrutine treatment modulates Cox-2
expression in PC-3 cells. As also shown in Figure 1, Nexru-
tine reduced the message levels of Cox-2 by about 10%
within 30 minutes of treatment (P = .01) and maintained that
level for 6 hours. Immunoblot analysis using whole-cell
extracts also consistently showed undetectable to low levels
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Figure 1. Nexrutine treatment reduces the (A) expression of Cox-2 as determined by RT-PCR and Western blot analysis. (A) Total RNA was extracted from PC-3
cells treated with Nexrutine for 3 and 6 hours, as described in Materials and Methods. RNA was amplified using one-step RT-PCR. (B) Equal amounts of cell
extracts were fractionated on a 10% SDS polyacrylamide gel and transferred onto a nitrocellulose membrane. The blotted membrane was blocked with 5% nonfat
dried milk in Tris-buffered saline containing 0.1% Tween 20 (blocking solution) and incubated with indicated antibodies (Santa Cruz Biotechnology, Santa Cruz, CA;
Cell Signaling Technology, Inc.; Upstate Cell Signaling, Lake Placid, NY; Calbiochem, San Diego, CA), followed by incubation with horseradish peroxidase—
conjugated anti-rabbit IgG antibody (Sigma, St. Louis, MO) in blocking solution. Bound antibody was detected by enhanced chemiluminescence using Supersignal
West Pico Chemiluminescent Substrate, following the manufacturer’s directions (Pierce, Rockford, IL). The blot shown is a representative blot of three independent
experiments. All the blots were stripped and reprobed with 3-actin to ensure an equal loading of protein.

of Cox-2. As a reflection of Cox-2 activity, we also measured
the levels of PGE, with and without Nexrutine and TNFa
using ELISA (Amersham Biosciences Corp.). Androgen-
responsive LNCaP cells were used in these experiments
because endogenous levels of Cox-2 are low compared to
PC-3 cells. Increased production of PGE, was observed in
LNCaP cells treated with TNFa. Although 1 pug/ml Nexrutine
reduced the production of PGE, (P = .03; Figure 2), the
decrease was highly significant with treatment at 10 pg/ml
(P=.007). As shown in Figure 2, the increase in the produc-
tion of PGE, with treatment at 10 ug/ml, compared to 5 png/ml,
was not statistically significant (P = .42). We had previously
shown that Nexrutine promotes apoptosis in prostate cancer
cells under the same experimental conditions [47].

Nexrutine Reduces TNFu-Induced Cox-2 Promoter Activity

Although Nexrutine reduced the expression of Cox-2 and
Cox-2—mediated production of PGE,, the mechanisms that
regulate its expression are not known. Cox-2 has been
shown to be regulated at multiple levels, including transcrip-
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Figure 2. Nexrutine treatment reduces TNFux-induced levels of PGE,. LNCaP
cells were set up in a 96-well plate at a density of 4000 cells/well. Seventy-two
hours later, the cells were preincubated with media containing different con-
centrations of Nexrutine, in triplicate (0, 1, 2.5, 5, and 10 ug/ml), for 6 hours.
The cells were then stimulated with TNFx (20 ng/mi) for 30 minutes, and
PGE; levels were measured using an enzyme-linked immunoassay system
(RPN 222) from Amersham Biosciences Corp., as per the manufacturer’s
recommendations. The data shown here are presented as the average + SD
of two independent experiments.
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tion, posttranscription, and protein turnover [56,57]. To in-
vestigate whether Nexrutine regulation of Cox-2 transcription
occurs through the modulation of its promoter, the full-length
Cox-2 promoter construct containing 5'-flanking sequences
of the human Cox-2 gene (—1432/+59) was produced and
transfected into LNCaP and PC-3 cells. Forty-eight hours
after transfection, the cells were treated with Nexrutine
(5 pg/ml) for 6 hours. During the last 30 minutes of the 6-hour
incubation period, the cells were coincubated with TNFa
(20 ng/ml). Luciferase activity was measured as described in
Materials and Methods. As shown in Figure 3, Cox-2 pro-
moter activity was induced consistently in response to TNFaq,
and this TNFa-induced promoter activity was reduced to basal
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Figure 3. Nexrutine reduces TNFu-induced Cox-2 promoter activity in LNCaP
cells. Transient transfections were performed with — 1452/+59 Cox-2 reporter
plasmid (1 ug/well) and pRL-TK plasmid (50 ng/well; Renilla luciferase for nor-
malization), as described in Materials and Methods, using Lipofectin reagent.
Forty-eight hours after transfection, the cells were treated with Nexrutine
(5 pg/ml) for 6 hours and stimulated with TNFu (20 ng/ml) for 30 minutes.
Firefly and Renilla luciferase activities were measured in the extracts prepared
from these using the Dual-Luciferase Reporter Assay System (Promega
Corporation, Inc.), in duplicate samples containing equal amounts of protein.
Renilla luciferase activity was used to normalize transfection efficiency. Results
are expressed as the ratio of firefly luciferase to Renilla luciferase at equal
amounts of protein. The data shown here are representative of four exper-
iments conducted with two different preparations of plasmid.
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levels in Nexrutine-treated cells. As shown in Figure 3, LNCaP
cells are more responsive to TNFa than are PC-3 cells.
Vector-transfected (pGL3basic) cells showed no significant
response to either TNFa or Nexrutine.

Sequence Elements Necessary for Nexrutine-Mediated
Reduction in Cox-2 Promoter Activity

We used PC-3 cells in subsequent studies to examine
Cox-2 regulation because they constitutively express high
levels of Cox-2. PC-3 cells were transfected with —1452/+59
and —327/+59 human Cox-2 promoter constructs, as de-
scribed in Materials and Methods. Following 48 hours of
transfection, the cells were treated with Nexrutine (5 pg/ml)
for 6 hours (time point based on reduction in Cox-2 ex-
pression), and luciferase activity was measured using the
Dual-Luciferase assay (Materials and Methods). Nexrutine
significantly reduced the promoter activity of deletion con-
structs —1452/+59 and —327/+59 (P = .006 and .006, respec-
tively). Analysis of these results indicates that sequences
between —327/+59 were sufficient to mediate Nexrutine-
induced downregulation of Cox-2 promoter activity (Figure 4).
This sequence contains potential binding sites for transcrip-
tion factors NFkB (—223/—214), CRE (—59/-53), and NF-
IL-6 (—132/—124). Based on previously published data that
showed an important role for CREB in mediating Nexrutine-
induced biologic effects, we tested whether the CRE site in
the Cox-2 promoter plays an important role in Nexrutine-
mediated downregulation of promoter activity [47,48].

CRE Is Sufficient for Nexrutine-Mediated Reduction
in Cox-2 Promoter Activity

To examine the direct involvement of CRE in mediating
Nexrutine-inhibited Cox-2 promoter activity, transient ex-
pression assays were performed with a reporter plasmid that
had a mutation in the CRE site transfected into PC-3 cells.
The promoter activity obtained with the mutated CRE binding
site was about 60% of that with the wild-type CRE site (—327/
+59). However, when the mutant construct was used in the

s 2 m &

transfections, Nexrutine marginally reduced promoter activ-
ity (about 10%, P = .005; Figure 4). These data indicate that
the CRE site is critical for mediating Nexrutine-mediated
inhibition of Cox-2 promoter activity. This is also consistent
with our published data showing that Nexrutine reduces the
levels of pPCREB and CREB DNA binding activity in prostate
cancer cells, as well as in prostate tumors from TRAMP mice
[47,48]. Although this is the first report to show an important
role for CREB in the transcriptional regulation of Cox-2 in
PC-3 cells, these data are consistent with published reports
demonstrating a role for CREB in the transcriptional regula-
tion of Cox-2 in keratinocytes [58]. A potential role for NFxB
or NF-IL-6, either directly or in association with CREB, cannot
be ruled out at present because the Cox-2 promoter contains
binding sites for these factors.

Expression of CREB in Human Prostate Tumors
Formalin-fixed paraffin-embedded samples of human
prostate tissues were studied by immunohistochemistry to
determine whether expression of CREB can serve as a
marker for prostate cancer. Histologic sections of tissue ar-
rays containing eight cases each of normal, low, and high
Gleason grades from prostatectomy specimens were exam-
ined. The intensity of CREB and pCREB expression was
scored semiquantitatively as 1+ (no expression), 2+ (low ex-
pression), 3+ (moderate expression), and 4+ (high expres-
sion), as described previously [48]. CREB and pCREB
staining was observed mainly in the nucleus. Furthermore,
CREB and pCREB staining was detected only in epithelial
cells (benign or malignant), but not in stromal cells (Figure 5).
Fifty percent of the high-Gleason-grade (> 8 of 10) tumors
showed 4+ staining, whereas 75% of low-Gleason-grade (< 7
of 10) tumors showed 2+ staining. These data suggest that
CREB is modulated during prostate cancer progression and
that activation of CREB may drive prostate carcinogenesis
through transcriptional regulation of genes such as Cox-2that
are involved in inflammation. We also measured CREB
binding activity in extracts of frozen normal human prostate
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Figure 4. Sequence elements between —327/+59 are sufficient for mediating Nexrutine response. Diagrammatic representation of Cox-2 promoter constructs used
in transfection experiments. Transient transfections were performed as described above in Figure 3 using the indicated constructs of Cox-2 promoter, and promoter
activity was measured following treatment with Nexrutine (5 ng/ml for 6 hours). The results are presented as the average + SD of three independent experiments

conducted in triplicate.
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Figure 5. Detection of CREB and pCREB in prostate tumor specimens by
immunohistochemistry. A human prostate tissue array containing low-grade
and high-grade tumors with paired normal prostate was stained with CREB
and pCREB. CREB and pCREB were used at a dilution of 1:100 in PBS and
incubated overnight at 4°C. Immune complexes were revealed using a uni-
versal secondary antibody (100 pnl for 30 minutes) followed by chromogen,
as described in Materials and Methods. Negative controls were included by
omitting the primary antibody (data not shown).

tissues and prostate tumors (three samples from each). As
shown in Figure 6, CREB DNA binding activity was low in
normal prostate tissues and increased by approximately
three-fold in tumor samples (P=.01). These preliminary data
from immunohistochemical studies and DNA binding activity
suggest that CREB levels and transcriptional activation are
modulated during prostate cancer evolution.
Chemoprevention is an important and practical strategy
for the management of cancer. Many naturally occurring
substances such as phytochemicals (compounds derived
from plants such as fruits and vegetables) have been iden-
tified as potential chemopreventive agents. Furthermore,
chronic inflammation has been shown to be associated with
an increased risk of various malignancies, including prostate
cancer [10—14]. Although the precise mechanism through
which inflammation induces cancer is not clear, inflammation
has been shown to contribute to the development of 15% of
all cancers. Interestingly, hyperplastic changes that are
closely associated with chronic inflammation have been
identified in the prostate [59]. The terms postatrophic hyper-
plasia and proliferative inflammatory atrophy have been
used to describe these morphologic changes [60]. Over-
expression of Cox-2 has been observed in these lesions
[61,62]. It has also been shown that prostate cancer is
frequently accompanied by chronic inflammation [63] and
that biochemical relapse following radical prostatectomy is
more frequent in patients with high-grade inflammation [64].
These observations suggest that chronic inflammation and
associated Cox-2 overexpression may be early events in the
pathogenesis of “inflammation-related” prostate cancer and
may be associated with a more aggressive phenotype.
Identification of signaling pathways associated with chromic
inflammation may lead to preventive strategies for the suc-
cessful management of not only inflammation but also pro-
gression of prostate cancer. Activation of CREB in prostate
epithelial cells may induce Cox-2 transcription, leading to

Neoplasia e Vol. 9, No. 11, 2007
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Figure 6. CREB DNA binding activity in normal prostate and human prostate
tumors. Briefly, the extracts prepared from normal and tumor tissues were
incubated with a CREB consensus oligonucleotide that was immobilized in a
96-well plate. A primary antibody specific for an epitope on the bound and
active forms of CREB is then added, followed by subsequent incubation with
secondary antibody and developing solution. Following this incubation with the
developing solution, CREB activity was measured colorimetrically at 450 nm.

inflammation that supports tumor growth through inhibition
of apoptosis and increased angiogenesis. The results pre-
sented in this article show that reducing the levels and
activity of CREB by Nexrutine may restore the sensitivity of
prostate cells to apoptotic stimuli through downregulation of
Cox-2. Reduction of CREB activity may be one targeted ap-
proach toward the management and/or prevention of pros-
tate cancer. As discussed above, epidemiological studies
have already shown that people who regularly take NSAIDs
have a lower risk of developing cancer than people who do
not take them. However, long-term use of NSAIDs has also
been shown to be associated with gastrointestinal or cardio-
vascular side effects. The use of Nexrutine may reduce such
risks because of its nontoxic nature. Furthermore, being
a complex mixture, Nexrutine may target multiple targets,
including CREB, NFkB, Cox-2, and cyclin D1, that play a
critical role in the carcinogenesis process. The development
of compounds, or a combination of compounds, targeting
multiple targets has been proposed as an ideal approach
for successful cancer management [65]. We have identified
CREB-mediated activation of Cox-2 as a signaling pathway
in prostate cancer that can be blocked with a nontoxic cost-
effective dietary supplement such as Nexrutine, demon-
strating a potential for the development of Nexrutine for
prostate cancer management.
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