
Discrete Mathematics 20 (1977) 203-206. 
@J North-H<>lli~tld Publishing Company 

I 
NOTE 

ONE COUNTEREXAMPLE FOR TWO CONJECTURES 
ON THREE COLORING 

L.S. MEL’NIKOV 

lkpurtntent of Cybernetics. Institute of Muthrmatics, Siberian Brunch. Academy of Sciences of the 
USSR, Novoiibirsk 6Wil90. USSR 

Richard STEINBERG 

Depcwtment o/ Combinutorics ortd 0ptrmization. Uniwrsity of Wuterlon. Waterloo. 0nturio Xl. 
Xl. Cowdo 

Receivtxi 16 December 1976 
Revised 8 March 1977 

A graph is said to be uniquely ~-C&W&& if there is precisely one partition of it!%; 

point set into three independent subsets. c)ur graph theoretic terminology is that oF 

Harary 121. 

Following Aksionov, we let ?I be the set of all uniquely 3-colorable planar 

gtaphu. A gr:iph G is called u -critical if G f ?I, and if G - e $S ?‘I for each edge e. 

Aksbnov [I] proposed the following two conjectures: 

Probbn 1. In a uniquely 3-colorable planar graph there are two triangles having 

an e.dge in common. 

Problem 2, If G is u-critical, then y(G) = 2p(G) - 3, where G has p(G) points 

and q(G) lic4es. 

In this note we present a graph which refutes both conjectures. 

Lemma. Ltr G be fhe graph of Fig. 1. Any 3-coloring of G assigns diferent colors to 
\ wrtices ui urtd u:. 

Fig. I. 

Proiof. Suppose that U, and uz can obtain the same color. Then without loss of 

gnerality we color u t and ut by 1, and color x I and +z bg 2 and 3, respectively. Then 

,gs is c&wed .T and x5 is colored 2, hence x4 is colored by 1. However, there is no 

cobr avaifahle fur x6. 
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ProptmMon I. The planar graph G of Fig. 2 is uniquely 3-cokwable although no two 
trim&s of G share an edge. 

Fig. 2. 

Prd. Let c bc a 34mlaring of G. Applying the 
a 

Lemma twice we find that 

c(ul)P c(ut) and c&)# c(us). Thus without loss ot generality we ct ;I let c(ul) t= 1, 
c(ut) = 2, and c&) = 3. Applying the Lemma a third time we find that 
c(u;)# c(u,), hence c(u.,) = 3. Fhe colors of the other vertices are now forced, and 
we obtain the unique 3-coloring chow3 in Fig. 3. 

Fig. 3. 

ttori 2. ?@ graph G of Fig, 2 is U-critkad 
3O=q(G)#fp(G)-3=29). 

From Proposition 1 we need on@ to establish that the remuval of any line 



he co64n6@~@xmnpk fur two Conjcc664Pcs UM thpee cohring 20s 

results in a graph which is not uniquely 3-colorable. Acclr)rding to Theorem 12.16 of 

121” in any n-coloring of a uniquely n-colorable graph the subgraph induced by the 

union of any twI3 color classes is connected. Hence we qeed only consider the 

&letian ,of lines l,ving on cycles cohered in two colors. From Fig. 3 we see rhat there 

is sniy 431~2 such cyde: u~w~w~w~~ For u4w1 or wIw2, we observe that the graph 

G- wt has a 3-c~turing differing frcti that obtained from the J-coloring of G (see 

Fig. 4). Simitarly, for wzwJ. or wlua we observe that the graph G - wl also has a 

3-coloring differing from that obtarned from G (see Fig. 5). 

Fig. 5. 

Rcrmrrk ‘L l&y piecing, together more copies of the graph of Fig. 1, it is not difficult 

toconstruct an infinite family of counterexamples to Aksionov’s two conjectures, 
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Remark 2. The following prclblems concerning planar uniqueIy 3acolorable and 
u-critical graphs seem to be of interest. We let d denote the disfnnce ofrhe triangles 

in a graph, the length of the shortest path joining vertices of different triangles. 
(1) Does there exist an integer )a0 such thalt if a planar graph with any number of 

triangles has d 3 nlP then the graph is not uniquely 3-colorable? It is possible that 
&I = 1. 

(2) Find an exact upper bound for the number of lines q(G) in a u-critical graph 
G with p(G) points. Is it true that if p(G)> 12 then <US 9/4p(G)-6? 
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