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The second-order singular elliptic differential operator 

T,u := t c D,(a,$D+) + qu 
I 1 

with D, := 2, + b, 

is considered on Corn(G) CLB(G; k) where 

G:={xIx~R~,O<l<[xl<m< co,n>2}. 

(The general one-dimensional Sturm-Liouville operator is dealt with on an 
arbitrary interval (I, m) of the real line.) Conditions in addition to the usual 
ones are imposed on the coefficients which make TO bounded from below (but 
still allow strong negative singularities of q at aG) so that it possesses a 
Friedrichs extension Tp with domain 

D(Tp) = {u ) u E D(TO*), there exists a sequence {u,} C Corn(G) such 

that~~uj-u~~-,Oand(T0(u,-uu,~),u,-u~*)+Oasj,j’+~}. (1) 

Unifying and at the same time simplifying and generalizing ideas to be found 
in the work of Friedrichs [2, 31 and Kate [19] for the special case a,t = S,, , 
b, = 0, k = 1 it is shown that (1) can be characterized by 

D(TF) = 
I 
u j u E H;&G) nL’(G; k), 

SC 
ast(D,u)(Dtu) dx < to, T,u ELYG; k) . 

I 
(2) 

G 

If J dt/t”-la(t) (a(t) smallest eigenvalue of (a&) converges at 1 or m the boundary 
condition 

lif;l (‘,nf 
s 

I u(r<)12dw, = 0 

m- IfI- 

(to be imposed on the “distinguished” representatives of the equivalence 
classes u E HiO,(G)) has to be added to (2). 
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CHARACTERIZATION OF THE FRIEDRICHS EXTENSION 231 

Equation (2) is derived without recourse to the theory of sesquilinear forms 
in Hilbert space so that the condition q:‘% EL*(G) (q+ positive part of q), 
which has to be assumed from the start when forms are considered (as Friedrichs 
and Kato do), can entirely be dispensed with. It is shown that it is a consequence 
of the other conditions to be imposed on u. 

1. NOTATIONS AND GENERAL ASSUMPTIONS 

In this paper we consider the differential expression 

Du := k [s$1D,(u8tDta) + qul where D, := 3, + b,, 

on an annular domain 

U-1) 

G=S(Z,m):={xIx~R”,O~Z<Ixj<rn~co}, (n b 2) 

as well as the general one-dimensional Sturm-Liouville differential 
expression 

Du := ;{-(pu')' + p} U.2) 

on an arbitrary interval (E, m) (- 00 < I < m < co) of the real line. 
(So we shall always tacitly assume I > -co if n = 1 and I > 0 if 
n > 2.) Our general assumptions for the coefficients of (1.1) are: 

a,,(*), b,(e), q(a) real, K(s) > 0 a.e. on G; (1.i) 

ast E C’(G), b, E C’YG), 4 E Q,,loc(G), (I.ii) 

k and k locally essentially bounded; 

the matrix (a&x)) is symmetric and positive (I.iii) 
definite for every x E G. 

Q,,loc(G) := 1 f 1 for every compact subset K C G there exists a number 

C,(f) such that 
f K~{y,,u-s,<l)l x --Y 14-- Ifbw 4YG C,(f) 

for all x E K , 
I 

01 > 0 being a fixed number, denotes as usual the Stummel class. 
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a+( *) and a-(.) be th e 1 argest and smallest eigenvalue of (a&*)), 
respectively. Then we define for r E (I, m) 

a(r) := fnini& u-(x), A(r) := fj;fz u’(x). 

The expression (1.2) will be studied under the even weaker condi- 
tions 

p(e) > 0 a.e. on (I, m), 1 a& m); 
P 

(1I.i) 

K(s) > 0 a.e. on (Z, m), k and i locally essentially bounded; (II.ii) 

q E&,(Z, m) real. (II.iii) 

Three assumptions in addition to (I) and one in addition to (II) will 
be stated in Section 4. 

BY 
T,u = Du for all u E Corn(G) 

a symmetric operator T,, on C,,“(G) CL2(G; K) can be associated with 
(l.l), and it is well known (Ikebe-Kato [S], Jiirgens [6]) that its 
adjoint can be characterized by 

T,*u = Du 

for allu E D(T,*) = {v 1 w E H&,(G) nL2(G;k), Du EL~(G; A)). (l-3) 

H,2,,(G) is the set of all functions locally belonging to H,,2(G) which 
is the completion of C,“(G) in the norm 

II * II2 := (,& II a,% - 11: + El II 88 * 11: + II * lliy2 

(11 * /I,, is the norm of L2(G) := L2(G; 1)). &l(G) and H&,(G) are 
similarly defined. 

In view of the weak assumptions (II) the “minimal” operator LO’ 
for (1.2) has to be defined by means of the restriction of the “maximal” 
operator L, 

Lu = Du 

for all u E D(L) = (v / v EL~(Z, m; k),pd E Al(Z, m), DvEL~(Z, m; k)}, (1.4) 

to functions with individual compact support, 

L,'u = Du 
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for all u E D(L,‘) = { w 1 w E D(L), o = 0 for I < x < Z1(w) and m,(w) < x < m} 
(Naimark [13, p. 172f.l). In (1.4) we used as an abbreviation 

Al(Z, m) := {w 1 w  locally absolutely continuous on (1, m)}. 

Note that pv’ EL:,,,@, m) [because of pa’ E A1(E, m)] and (1I.i) imply 
v E &(I, m). An important relation is (Naimark [13, pp. 177, 1791) 

L’” =L 0 * U-5) 

The following additional notations should be noted. Any function 
p(s) with the properties (1I.i) generates by 

U-6) 

a function defined on (I, m). y E {I, m} is arbitrary (by this notation 
we imply that y = Z or y = m is allowed provided (1.6) is convergent). 
As an abbreviation for the spherical means of a complex-valued 
function u(s) we use 

p)&) := (I,,, 1 I u(r5)l” dcq (y := I x I, x E WY 4) 

where da, denotes the surface element of the n-dimensional unit 
sphere. If n = 1 we shall understand that ~~(1 x I) is replaced by 
1 u(x)1 (x denoting a point of the interval (I, m) on the real line then). 

2. INTRODUCTION 

Let X be a Hilbert space with scalar product (s, *) and norm 11 * 11, 
A a symmetric operator defined on D(A) C X. In 1933, Friedrichs, 
developing the theory of sesquilinear forms in Hilbert space, showed 
that if A is bounded from below, it can be extended in a “natural 
way” to a self-adjoint operator AF having the same lower bound as A 
[2, Part I, Satz 7, 91. Somewhat later, Freudenthal [l] proved by a 
simple argument, avoiding the use of forms, that the domain of 
definition of A, can be characterized by 

D(Ap) = {u 1 u E Z&4*), there exists a sequence {ZQ} C D(A) such that 

11 u, - u 11 + 0 and (A(uj - Us,), u, - u,,) -+ 0 as j,i’ + co}. (2.1) 

Moreover, he showed that in general there exist other self-adjoint 
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extensions of A sharing with AF the property of having the same 
lower bound as A (for special cases in which this property does 
determine AF uniquely, see Poulsen [14]; for two properties distin- 
guishing AF from all other possible self-adjoint extensions, consult 
Kato [9, Theorems 2.10 and 2.11, p. 326; Problem 2.22, p. 3311; for 
a physical interpretation, cf. Rellich [15, p. 344 and 961). 

Taking for A the differential operators T, or L,’ defined in Section 1 
(and imposing appropriate conditions in addition to (I) and (II) in 
order to secure their semiboundedness), one would, of course, like 
to know more about the functions belonging to (2.1). Friedrichs 
himself gave an explicit characterization of (2.1) for operators of the 
special form 

Du := -A,u + qu (2.2) 

in Part II of his paper [2] and two years later [3] for the general 
Sturm-Liouville operator (1.2). Setting 

%(‘I := l/2(1 4(‘)1 i a(*)), 

his result for the latter case can be stated as follows (LF be the 
Friedrichs extension of L,‘) : 

D(L,) = {u 1 u E D(L); p%‘, q:/2u aT2(1, m)}. (2.3) 

(&‘“u EL~(Z, m) is a simple consequence of Lemma 1 below.) If (1.6) 
(with n = 1) converges for y = 1 or y = m, the condition 

u(x) -+ 0 for x-+ I+ or x-m- (2.4) 

must be added in the right-hand side of (2.3). (The requirement 

P 1/2u’ E L2, meaning finiteness of the kinetic energy, is of course quite 
natural from the physical point of view; in the regular case, where 
all functions u E D(L) trivially have the properties P~/~u’, q:/“u E La, it 
is (2.4) alone that characterizes D(L,).) Friedrichs’ results for (2.2) 
(n = 1 and n > 3)-b u under considerably weaker conditions on q- t 
can also be found in Kato’s book [9, Theorem 4.2, p. 346; Theo- 
rem 4.6, p. 3491. 

Our object in this paper is to give an explicit characterization of 
Friedrichs extension of operators of the general form (1.1) and at the 
same time to simplify his proof in [3] avoiding the theory of sesquilinear 
forms completely. It will be seen that the condition d,/“u gL2(G), 
which has to be assumed from the start when forms are considered 
(as Friedrichs and Kato do), can entirely be dispensed with. It is 
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shown that it is a consequence of the other conditions to be imposed 
on u. 

Eventually we refer to Rellich’s work on the subject [15]. He treated 
the one-dimensional case and showed that D&L,) consists essentially 
of those functions behaving like the “principal solution” (for this 
terminology see, e.g., Hartman [4, pp. 355,402]) of the corresponding 
nonoscillatory differential equation Du = Au [15, p. 355l.l Moreover, 
he showed LF > E for every self-adjoint extension E of L,’ which is 
bounded from below [15, $61 (cf. Kato [9, Problem 2.22, p. 3311 cited 
above). 

For a class of semibounded operators similar to those considered 
here the question whether there exists a unique self-adjoint extension 
is attacked in [7, 81. 

Remark 1. The lack of the notion of a generalized derivative 
encumbered Part II of Friedrichs’ paper [2] considerably. Friedrichs 
could rigorously deal only with the cases n = 2,3 assuming 4 E Cl(G) 
[2, pp. 686, 688, and his correction p. 7771 and, of course, n = 1. 

We shall assume Q E Qa,,,,(G) subsequently in order to apply (1.3). 
Kato, on the other hand, uses a slightly weaker condition on q; that is, 
the local boundedness of 

I lu--rl<l I x -Y l2-n--K I !dY)l4J 

(K > 0 fixed) but has to assume d,/“u E L2( G) in return. 

3. SOME INEQUALITIES OF HARDY’S TYPE 

In this section we state some generalizations of an inequality due 
to Hardy we shall need to derive Theorems 1 and 2 of Section 4. For 
a proof see [7, 81 w  h ere a short history of these inequalities and their 
connexion with Friedrichs’ work is also given. 

LEMMA 1. Besides (1I.i) assume 24 E Cl(S(Z, m)), p1/2Vu EL2(S(Z, m)). 

(a) If&(.) -=z 00 and lim inf,,,- am = 0, then 

(3.1) 

1 Rellich showed that Lo’ is bounded from below if and only if Du = Au is non- 
oscillatory for some real h. 
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and for arbitrary R, E [Z, m) 

holds. The constant l/4 is the best possible. 

(b) If h,(s) = co, then 

’ %L2(r) - = 0 
2~ /q,(r) 

for any y E {I, m), 

and for arbitrary R, E (y, m) we have 

I I 44l” 
S(R1m)Al x I)[1 x I”-%(I x IN” dx < co* 

LEMMA 2. Besides (1I.i) and (I.ii) (or (II.ii)) assllme h,(s) = 00. 
Then for given arbitrary numbers Y, , R, with I < y < R, < rl < m 
there exists a number Cl > 0 such that 

for all u E Cl(S(Z, m)) n L2(S(l, m); k) with p1J2Vu EL~(S(Z, m)). (Of 
course, the choice y = 1 is only permitted if h,( -) < ox) 

Remark 2. It is clear that the distinction h,(s) < 00, h,(s) = co 
leads to results analogous to Lemmas 1 and 2. 

Remark 3. Both lemmas remain valid if the assumption 
u E P(S(Z, m)) is relaxed to u E H&,(S(Z, m)). According to a theorem 
of Sobolev [16, p. 69f.l every equivalence class u E H:,,(S(Z, m)) 
possesses a “distinguished” representative (this terminology is due 
to Hiirmander [Acta Math. 94 (1954), 1951) for which the restriction 
to the (n - l)-dimensional sphere ,I$ := (X 1 1 x 1 = r} can be defined 
as a square integrable function. In the extensive literature devoted to 
this particular problem (cf., e.g., Lions-Magenes [ll, pp. 44f., 1141 
or Miranda [12, p. 46f.l and the references given there) this restriction 
is called “trace of u” and denoted by yu. Following the example of 
Sobolev [16] and LadyBenskaya-Ural’ceva [lo] we have dispensed 
with a particular notation. The condition lim ix&+,- cp~(r) = 0 has 
to be interpreted as a requirement on these “distinguished” repre- 
sentatives. Since Gauss’ theorem holds for them (see, e.g., [lo, 
p. 41f.]), the proof of Lemma 1 given in [7, 81 can be adopted without 
any change. In order to prove Lemma 2, use has to be made of a 
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theorem of Kondragev [16, p. 841 on the “L2-continuity” of these 
“distinguished” representatives (for details see [I). We note that 
u E Cl(Z, m) can be replaced by u E #(I, m) in the one-dimensional 
case. 

4. AN EXPLICIT CHARACTERIZATION OF 
THE FRIEDRICHS EXTENSION 

According to the behavior of (1.6) at the endpoints we choose 
constants y,, , y1 E (1, m> in the following way: 

Case a: kg(*) < 03, k,(s) < 00 : 70 = z, y1 = m; 

Case b: h,(s) < co, h,,,(m) = co : ‘y. = 1, yl E [1, m) arbitrary; 

Case c: h,(e) = co, h,(e) < co : y. E (Z, m] arbitrary, y1 = m; 

Case d: h,(w) = 00, h,,,(e) = co : yo, yl E (I, m) arbitrary. 

Writing 

.F := 
i 
24 1 u E H~oo(S(Z, m)) n L2(S(Z, m); k), 

Jsw Lx 
%t(~)(~*u(~))(~tuo) dx < 00, Du EL2(S(Z, m); k)l 

we associate an operator T, 

Tu = Lh for all u E D(T), 

with (1.1) where D(T) re p resents one of the following four subspaces 
of JqS(Z, m); k) according to the distinction just made: 

{u 1 u E F, liz&m au(r) = 152 vu(r) = O}; (4.la) 

{u ( u E LT, Iizli+“f q~&) = 01; (4.lb) 

(u 1 u ELF, lim infq,(r) = 01; *-VR- (4.lc) 

9-. (4.ld) 

Remark 4. Because of (3.1) 

l**f p)&) = 0 implies $71+fp,(~) = 0. 
Wt- PI- 

Thus D( 2’) is a linear space. 
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Remark 5. If k(e) E C”(S(Z, )) m we can define K(Y) : = minlrl=t k(x) 
for Y E (I, m). If JI K(Y) F-I dr = co (r K(Y) m-l dr = co) then 
II EP(S(Z, m); k) implies lim infl,l, cpu(y) = 0 (Iim inf,,- cpU(r) = 0). 

We now complete our list of conditions on the coefficients of (1.1) 
with three further assumptions: 

(a) There exists a constant C such that A(1 x I) < C * a(/ x I) (I.iv) 
for all x E S(l, m); 

(b) There exist constants M > 0, Ri , and j& (z’ = 0, 1) such that (1.~) 

I>[1 x ~‘h,(l x IN” 
for I < / x I < R,, , 

l)il x k-%,(I x III” 

for R. < I x I < 4, 
for R, & I x I < m, 

[if Yo f z h f 4 ‘yo and R, (yl and RI) have to be 
arranged so that ‘y. > R, (yl < RI)]; 

(c) $-+z a,&~) b,(x) b,(x) is bounded for E < j x ] < R, &vi) 

and R, < I x I < m. 

Remark 6. Since 

as well as 

c %tm4(D,u) G (1 + 4 c %&4@4 + (1 + l/4 c %tu% I u I2 
hold for every E E (0, I), it is a consequence of assumption (I.vi) that 
for every u E L2(S(Z, m); 12) the conditions 

and 

are equivalent. 
In order to deal with the one-dimensional Sturm-Liouville operator 

we introduce 

2 := (24 1 u E D(L),p112u’ eL2(Z, m)} 
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instead of F. Then we associate an operator H with (1.2) in that 
subspace D(H) of L2(Z, m; k) which originates from (4.1) if F is 
replaced by ti and ~~(1 x I) by 1 u(x)!. To our assumptions (II.i)- 
(II.iii) we add as a fourth condition (1.~) restricted to n = 1 (with 
the obvious alterations of a( ( x I) and hyi(l x I) to p(x) and h,,i(x), 
respectively). 

We can now state our first two main results. 

THEOREM 1. Suppose (I.i)-(I.vi) hold with pi > -l/4 (i = 0, 1). 
Then T,, is bounded from below, and its Friedrichs extension TF coincides 
with T. 

THEOREM 2. Suppose (II.i)-(II.iii) and (I.v), restricted to n = 1, 
hold with 18, > -l/4 (i = 0, 1). Then L,’ is bounded from below, and 
its Friedrichs extension LF coincides with H, 

The constant - l/4 occurring in both theorems is sharp. 
The idea underlying our proof of these theorems is very simple. 

In Lemma 3 we prove the symmetry of T which implies T C T*. 
Then we show TF C T for & > - l/4 (Lemma 4). Hence because of 
TF = TF * TF = T. In the same way, LF = H can be inferred. 

5. PROOF OF THEOREMS 1 AND 2 

LEMMA 3. If the assumptions (I.i)-(I.vi) are satkjed, T is symmetric. 
It is bounded from below if & > -l/4 (i = 0, 1) (& > -l/4 ;f the 
b,(m) are absent). The constant - l/4 is sharp. 

Proof. Symmetry. Because of T, C T T is densely defined. It 
suffices to show that (Tu, u) is real for every u E D(T). Assume 
E < r < R < m and u E D(T). Then by Gauss’ theorem (every equiva- 
lence class u E Ht&S(Z, m)) h as a “distinguished” representative for 
which the restrictions of both u and 8,~ to S, := {x 1 1 x 1 = Y) can be 
defined as square integrable functions and with which Gauss’ theorem 
can be applied; if n = 2, 3, u E Hf,,,(S(Z, m)) possesses representatives 
which are even continuous [16, p. 69f.l) 

+s q I u la dx, 
Sb.R) 

(5.1) 
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where we have put (dS := r-+-l dw,) 

f(y) := i I,.,, C a,p,(D+)zidS and vI := -$- . 

Writing q = q+ - q- we obtain, from assumption (I.v), 

q-(x) ’ a( 1 x I)[ 1 !!&z&)]’ 

for all 1 x 1 > R, . Since it is clear from Remark 6 that 

I Skd 4 x I) I WY dx < CO, 

Lemma 1 yields the existence of 

(5.2) 

exists in a generalized sense, i.e., it exists either in the ordinary sense 
or it is +co. From (5.1) it follows therefore that 

also exists in a generalized sense. Arguing by contradiction we 
assume fm > 0. Then there are constants R, > R, and K > 0 such 
that 

s R If @)I 
s 

R 1 

R, r+‘a(r) h,,(r) dy ’ K 
4,,(R) 

R, rn-la(y)kl(y) 
dr = fK log It,@,) - (5.4) 

for all R E (R, , m). The plus sign is valid in case b or d, the minus 
sign in case a or c. In any case the right-hand side of (5.4) tends to 
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+coifR+m- so that the integral on the left-hand side diverges as 
R -+ m-. On the other hand, 

G c jS(R 
8. 

R) c ~~@~~)(W dx j,, 
!a. 

R) u(l x I)[1 x'l:zl; (I x I)]" dx, 
Yl 

(5.5) 
using (I.iv). Since both integrals on the right-hand side of (5.5) 
converge as R + m- the same must be true for the integral on the 
left which is the desired contradiction. Hence (5.3) exists in the 
ordinary sense and is zero. Thus (5.2) also exists in the ordinary 
sense. As the same argument holds for r + E+, we obtain from (5.1) 

for every u E D(T). 

Semiboundedness. Suppose Is, > -l/4 so that 4 : = j$ + l/4 > 0 
(i = 0, 1). Fixing B E (0, min(c, , cl, 1)) arbitrary we obtain for every 
UED(T) 

+I , s(70 71) Q I u I2 dx + (1 - 4 I,,, 
1. 
m) 41 x I) I Vu I2 QTX 

- U/~ - 1) s,, m) C a&s& I u I2 a!.~ + 1, m) ~7 I u I2 dx- (5.6) 
1. 1. 

If h,(s) < co (h,(*) < 00) we put r0 = R, (rl = RI), if Jr,(*) = co 
(h,(m) = co) we choose Y, E (I, Ro) (I~ E (R, , m)) arbitrary. According 
to Lemma 1, 2 there exist constants C, > 0 (i = 0, 1) and according 
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to (1.~) and (I.vi) there exist constants M, > 0 (i = 0, 1) and A?! > 0 
such that 

where K(E) := (1 - c)[C, + C, + (M,, + i&)/c] + i@. If no b,(s) 
are present, the semiboundedness of T follows even for & > -l/4. 
Then those terms of (5.7) containing an E do not occur. The fact 
that the constant -l/4 is the best possible is a consequence of 
Lemma 1. B 

LEMMA 4. Suppose the assumptions (I.i)-(I.vi) hold with pi > -l/4 
(i = 0, 1). Then TF C T. 

Proof. Since T,, C T T,, is bounded from below if & > -l/4. 
Therefore T, possesses a Friedrichs extension TF the domain of 
which is given by (2.1). I n view of (1.3) we only need to show 

(5.8) 

for every u E D( TF) (and in the corresponding cases 

for the “distinguished” representative of the equivalence class u) to 
establish the relation TF C T. For every u E D( T,) there exists a 
sequence (z+} C Com(S(Z, m)) such that 

// Uj - u II + O, ( To(uj - Uj*), Uj - Uj,) * 0 as j, i’ -+ 00. 
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With E fixed as in the proof of Lemma 3 (5.7) yields (ai := 
(1 - q4 + Pi > 0) 

(To(Uj - Uj'), Uj - 213') 

3 BoGI J I uj - w I2 
S(i.+o) 41 x IN x I”-%,(I x l)l” dx 

+ 44 1 I u5 - %’ I2 
S(rl*m) a( 1 x I)[1 x ,~-1,1(, x I)]” dx - K(E) I’ % - % 1’2* (5.9) 

Thus both integrals on the right-hand side of (5.9) tend to zero for 
j, j’ --f CO. From 

+J 1 Uj - Uj’ 1’ K dx 

we conclude 

Because of 

- 
f , s(l m) 4- I uj - V I2 dx 

> s * s(l m) a(1 x I) I v(u, - v>12 dx - j-,, m) q- I ~5 - ‘Q’ I2 dx 
this implies 



244 KALF 

Hence there exist elements Ez, (s = l,..., n) with u’&& E L2(S(Z, m)) 
such that 

s ( s(z m) a(1 x I> I vu5 - u” I2 dx -+ 0 as j-co 

w=&G ,*-*, z&J). As a simple consequence of assumption (I.iv) we 

(5.10) 

For every v E Com(S(Z, m)) 

I Skm) 
uja8cdx = - 

I S(2.d 
(asuj)Cdx (S = l,..., n) 

holds. Therefore in the limit j -+ co 

I ua*Bdx = - i z&c dx, 
.s(a.m) .s(z.m) 

i.e., z2, = 8,~ a.e. Relation (5.8) we wished to prove now follows from 
(5.10) and Remark 6. 

Suppose h,(a) < co. Applying 

(this formula can be obtained by differentiation of vU2(r) and subse- 
quent integration) to ui - u5* E Com(S(Z, m)) we find if we let r’ tend 
to 1-t 

j,,,_, I uj(d) - wWl” dw, < Mr) j,, 7) 4 x I) I WQ - VI” dx. (5.11) 

This leads to 

!9? s _ ,c, 1 I WY2 dw, = 0 (5.12) 

for the element 22(rt) towards which {z+} converges in the mean on 
thesphereS,:={xIIxj=r).M oreover, (5.11) shows that on every 
compact subset K C S(Z, m) { u r} converges to zi in the norm of L2(K; K). 
Hence zi = u a.e. on s, , and (5.12) also holds for the “distinguished” 
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representative of the equivalence class u E D(Z’,). This means 
WF) c D(T). I 

The modifications of the proof of Lemma 3 necessary to show 
that H is symmetric and for & > -l/4 bounded from below are 
straightforward. (Because of L,’ C H, H is densely defined since L,’ 
is [13, p. 1801.) Similarly the proof of Lemma 4 needs only to be 
changed slightly to establish LF C H for & > -l/4. It follows from 
(2.1) and (1.5) that it is sufficient to show P~/~u’ E L2(Z, m) for every 
u E II (and p ossibly lim inf 1 u(x)\ = 0 as x -+ Z+ or x -+ m-). 
In order to conclude that u’ coincides a.e. with its generalized deriva- 
tive one has to know u E A1(Z, m) but this is trivial on account of 
u E D(L,) C D(L). Instead of (5.11) we have 

1 z+(x) - Uj+c)l” < h,(x) jr p(t) j z+‘(t) - u:,.(t)12 at (5.13) 

in the one-dimensional case. The relation lim,,,, 1 u(x)1 = 0 for the 
limit function u( *) is now a direct consequence of (5.13). 

6. WEAKENING OF THE CONDITION q > --M 

Our condition (1.~) allowed “rather strong” negative singularities 
of the potential at the boundary but required the semiboundedness 
of q in the interior of S(Z, m) or (1, m). Using an idea of Kato [9] we 
relax this condition and prove that certain “weak” negative singulari- 
ties in the interior (in addition to the “strong” ones at the boundary) 
neither destroy the semiboundedness of the operator nor affect the 
relation TF = T or LF = H. The precise conditions to be imposed 
on q are formulated in Lemma 5 for the multidimensional and in 
Lemma 6 for the one-dimensional case. 

LEMMA 5. Assume that p(\ x I) and It(x) (x E S(Z, m)) satisfy (1I.i) 
and (I.ii), respectively. Let q be a real-valued function defined on S(Z, m). 
Suppose, for every K > 0 there exist constants K,(K) (i = 1, 2) such that 
for every x E S(Z, m) 

s S(l.mhMlr-2laf 
I x --Y F-- I n(r)1 dY G JwP(l x I) (6.1) 

and 

s S(z.mhbIt!--2la~ 
I x - y 12-- I dY)I dY G 4464 44 (6.2) 
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hold. Assertion: for every E > 0 there exists a B(E) > 0 such that 

for all u E Cl(S(Z, m)) n L2(S(Z, m); k) with p112Vu EL~(S(Z, m)). 

LEMMA 6. Assume that p(x) and k(x) (x E (1, m)) satisfy (11.1) and 
(II.ii), respectively. Let q be a real-valued function &$ned on (I, m). 
Suppose there exist constants Ki (i = 1,2) such that for every x E (I, m) 

and 

s i dt 6 K,p(x) k(x) 
(2,mh~tlt&.r+11~ Jh-I@) 

hold. Assertion: for every E > 0 there exists a 8(e) > 0 such that 

jr I qC4l I 44" dx < 6 jf~(x) I +)I2 dx + 44 * (u, 4 

for aZZ u E Cl(Z, m) n L2(Z, m; k) with p1J2u’ E L2(Z, m). 

As to the differentiability conditions on U, Remark 3 holds. 
The special case p = k = 1 on S(Z, m) = S(0, co) or (0, co) of 

Lemmas 5 and 6 when (6.1) and (6.2) reduce to a single and (6.3) 
and (6.4) to another single condition on q can be found in Kato’s 
book [9, pp. 346,350]. Th e method given Zoc. cit., p. 351, can imme- 
diately be adopted to prove Lemma 5. Lemma 6 can be proved on 
the lines of Example 1.8, Zoc. cit. p. 192f if one replaces the function g 
to be found there by 

g(y) := [B1”’ 

(x and y appropriately restricted, 71 E N). 
If we add to the q occurring in Theorems 1 and 2 a potential 

satisfying the conditions of Lemmas 5 or 6 we see that (5.6) and (5.7) 
in the proof of Lemma 3 remain essentially unchanged. Since the 
proof of Lemma 4 mainly rests on (5.7) the lemmas of this section 
allow us to derive the following two theorems. 

THEOREM 3. Suppose we have q = ql + q2 in (1.1) and assume 
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that conditions (1.i) to (Ivi) hold with ql . Let q2 E$&,~(S(Z, m)) 
satisfy the conditions of Lemma 5 (with p( 1 x I) replaced by the smallest 
eigenvalue a(/ x I)). Then for /$ > -l/4 (i = 0, 1) T is the Friedrichs 
extension of T, . 

THEOREM 4. Suppose we have q = ql + qz in (1.2). Assume that 
conditions (II.i)-(II.iii) and (I.v), restricted to n = 1, hold with q1 and 
that qz satisjies the conditions of Lemma 6. Then for & > - l/4 (i = 0, 1) 
H is the Friedrichs extension of L,‘. 

In the special case p = K = 1 examples for qz are 

with 0 < a < min(n/Z, 2) if n 2 2 and 

9264 = 1 x TX0 10 (x0 E (I, 4) 

with 0 < u < 1 if n = 1. c may take arbitrary large negative values. 

7. EXAMPLES 

Writing R,” := R” \ (01 = S(0, co) (n > 2) and assuming 

b,(s) E Cl@+“) real (s = I,..., n), q(m) EQ,,&~+~), (7.1) 

Wx) := i (ia, + b&M x 12u(i% + b,(x)) 441 + ~(4 44 
S==l 

(x E R,“, /.L E R1) 

defines an operator on C003(R+12) C L2(R”) which we call T, . For 
P # -(n - 39 our condition (Iv) reads (p := (n - 2 + 2~)~ Is, = 

(n - 2 + 2d2 PI) 

I 

/-j [ x l-(2-24 for 0 < I x I < R, , 
q(x) Z --M for 4, < I x I < R,, (7.2) 

p ) x I-(2-24 for R, < ] x j < co. 

Near zero (infinity) this condition is, of course, interesting only if 
p < 1 (CL > 1). Besides (7.1) and (7.2), we have to postulate 

1 x J2p i bs2(x) is bounded for small and large ) x 1. 
S=l 
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A. t,~ < -(n - 2)/2. Then we have Case b. For 

P > -[(n - 2 + &4/2]” 

T,, is bounded from below, and its Friedrichs extension TF can be 
characterized by 

B. t.~ > -(n - 2)/2. This is Case c. Since h,(e) < co the boundary 
condition lim inf,,, I, = 0 h as o t b e imposed on u, but because of 
u ELM this condition is automatically fulfilled (Remark 5). For 

B > -C(n - 2 + 34/W, To is again bounded from below, and its 
Friedrichs extension TF can be characterized by 

D(T~) = 1~ [ u E H&(R+“) n L2(R”), 

jRn I x 12p il I D,u I2 dx < co, Du ELI(R 

For n > 3, the Schrodinger operator which has p = 0 falls into this 
category. 
C. /A = -(n - 2)/2. Th is is Case d. Condition (7.2) has to be 
replaced by 

4(x) > f&l I x rn (1% 2,-’ for 0 < 1 x 1 < R, 

-M for R,,<jxlcco 

ho E CR, 3 co) is arbitrary). For & > -l/4, T,, is bounded from 
below, and its Friedrichs extension TF can be characterized by 

D( TF) = {U I u E H&,(R+“) n L2(Rn), 

j-, I x /--(‘L-2) ‘fl 1 D,u I2 dx < co, Du EL~(R”~. 

The two-dimensional Schrodinger operator belongs to this class of 
operators. 
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Remark 7. It is shown in [7, 81 that To is essentially self-adjoint 
if p < 1 and /3 > (1 - p)2 - [(n - 2 + 2p)/212 (the constant 
(1 - p)2 - [(n - 2 + 2p)/212 is sharp). Then, of course, TF = To 
where T,, is the closure of To . 

To give an example for Case a we assume (7.1) and consider 

Du(x) := 5 (2, + b,(x))[l x j- (n - l) e121(ii3s + b,(x)) u(x)] + q(x) u(x) 
S=l 

on IZ’,,~(R+~) CL2(Rn). Conditions (1.~) and (I.vi) read 

q(x) 2 
I 

&(4 1 x In-l sinh2 / x (/2)-l for 0 < I x I < R, , 
--M for 4, < I x I < RI, 
p1 ( x I-W-1) el@l for RI < I x I < co, 

1 x I-+-l) el”l i b:(x) is bounded for small and large I x I. 
s=l 

Since Remark 5 applies, the boundary condition to be imposed at 
infinity is automatically satisfied. For /3, > -l/4 (i = 0, 1) To is 
bounded from below, and its Friedrichs extension TF is given by 

u UEH&(R+~)~L~(R~), lRa I x p-W@l i I D,u I2 dx -c 00, I 
.9=1 

Du E L2(R"), liz,nf j,,,=, I e3l” d% = 01. 

As to the case n = 1, Kato’s Theorem 4.2 [9, p. 3461 is contained in 
our Theorem 4 (p = k = 1 on (0, a); we are in Case b then). Kato 
writes q = q1 + qz + q3; his q1 corresponds to our qi+ : = (/ q1 I + q&2, 
his q3 to our -qi- = (qi - I ql. 1)/2. (Note that we did not assume 
qp2u E P(0, a).) 

The separated Schrbdinger differential expression 

Du(x) := ${-(xW(x))’ + [l(Z + 1) - 6x] u(x)} (0 < x < co) (7.3) 

for the hydrogen atom (I is a nonnegative integer, 6 > 0) provides 
an example for Case c (again h,(e) < co, but Remark 5 applies) so 
that the Friedrichs extension LF of the “minimal” operator L,’ which 
is associated with (7.3) can be characterized by 

D(L,) = {u I u sL2(0, co; x2), U' E Al(0, 00) nL2(0, co; x2), Du eL2(0, OJ;X~)}. 
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