
JOURNAL OF COMBINATORIAL THEORY, Series A 50, 235-258 (1989) 

On the Generalized Iterates 
of Yeh’s Combinatorial H-Species 

GILBERT LABELLE 

Dkpartement de Math&matiques et d’lnformatique, Universit6 du Quebec ri MontrPal, 
C. P. 8888, Succ. ‘A,” Montreal, QuPbec, Canada H3C3P8 

Communicated by Gian-Carlo Rota 

Received June 9. 1987 

Let f=f(x) =x+ a2x2 + ... E W[ [xl] be a “normalized” power series over a 
(commutative) field I4 of characteristic zero. The operator A,: W[[x]] + W[[x]], 
defined by A,g= gof- g, has been used in (G. Labelle, European J. Combin. 1 
(1980), 113-138) to obtain formulas for the inverse f(-‘) and the generalized 
iterates f<‘), I E #, of the series J: A. Joyal (in Lect. Notes in Math. Vol. 1234, 
pp. 126159, Springer-Verlag, New York/Berlin, 1986) was the first to realize that 
A, can be lifted to the combinatorial level. He made use of this fact to obtain a 
formula for a virtual species F<-‘) which is the inverse (under substitution) of any 
given normalized species F= X+ . . . Using the same operator, we show that the 
concept of K-species in the sense of Y.-N. Yeh (ibid.) (where 06 is now only a 
binomial half-ring) is a good context for the definition of the generalized iterates 
F(‘), t E K, of any normalized species (or K-species). We present a new approach to 
Yeh’s extension of substitution to K-species. We also introduce the notions of 
“infinitesimal generator, ” “directional derivatives,” and “Lie bracket” of K-species, 
which turn out to be R-species, where R denotes the “rational closure” of 06. These 
concepts give, in return, a better insight into substitution itself. For example, Go F 
can be written in the form Go F= (exp D,,,)G for a suitably chosen derivation D,. 
More generally, G 0 F<‘) = (exp tD@)G. Two normalized K-species commute under 
substitution if and only if the Lie bracket of their infinitesimal generators is zero. 
Explicitly computed examples are also given. 0 1989 Academic PESS. h. 

1. INTRODUCTION 

We first recall some basic facts. Let F be any combinatorial species in the 
sense of A. Joyal [Jl ] (see also [L4]). For each n E N we can extract a 
subspecies F,, of F by collecting all those F-structures having an “under- 
lying set” of cardinality n. If F= F,,, we say that F is concentrated on the 
cardinality n. In the general situation, we obviously have a countable 
decomposition 

F=F,,+F,+F*+ ... +F,+ -... (1.1) 
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Further, it is well known [L3, L5, Y] that each F, can, in turn, be split 
(up to isomorphism) in a unique way into a finite sum of the form 

(1.2) 

where Jdk denotes a complete set of representatives of all the moleculpr 
species (i.e., irreducible under addition, and #O) that are concentrated on 
the cardinality n; the equivalence relation being that of isomorphism of 
species. Each coefficient fM in (1.2) is called the multiplicity of M in F. 

Moreover, Y.-N. Yeh has shown [Y] that each molecular species 
ME &, can itself be factorized (up to isomorphism) in a unique way into a 
finite product 

M= n p(M), YAW) E N A;a YA(W < a, (1.3) 
AEa 

where ac.,H=UnaO &, denotes the (countable) set of those molecular 
species that are atomic species (i.e., also irreducible under product and 
#l). Each yA(M) in (1.3) is called the exponent of A in M. 

As it is implicit in Eqs. (1.1 )-( 1.3) above, the equality sign “ =” is used to 
denote isomorphic species. This is a standard convention in the theory of 
species and it will be used throughout the present paper (except when some 
explicit isomorphisms are needed). Thus every species F has molecular and 
atomic decompositions 

F= c f,M= c fM n A”Ac”) 
MEA ME”& AEa 

(1.4) 

and the collection of all (isomorphism classes of) species forms a half-ring 
that is isomorphic to the half-ring f+J [ [a]] of all formal power series, with 
non-negative integral coefficients, in the set a of “atomic” variables. 

Complete tables of the finite sets a, and J& have been made for small 
values of n (see [L3, L5] for 0 <n < 5). Their construction is based on the 
fact that a species M, concentrated on cardinality n, is molecular iff the 
symmetric group 6, acts transitively on the set of all M-structures built on 
[n] = { 1, 2, . . . . n}. Of course, infinite families of molecular or atomic 
species can also be easily exhibited. For example: let X, E, S, C, and L 
respectively denote the species of singletons, sets, permutations, circular 
permutations, and linear orders; then, for n > 1, the species E, and C, are all 
atomic, L, = X are all molecular but only L, = X is atomic, while S, is not 
molecular for n > 2. Note, moreover, that the species E0 = S,, = L, = 1 of 
the empty set is molecular (and should not be confused with 0, the empty 
species). 
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There is much more than just a half-ring structure on IV [ [a]] because 
many other operators (including substitution 0, Cartesian product x, and 
derivation ‘) have been combinatorially added to it [Jl]. For example, 
it can be checked that E, 0 X2 is atomic, that C3 x C3 = 2C3, LL = 
(Xn)’ = nX’- ‘, C; = L,- 1, Ek = E,- i and that the species T of all rooted 
trees has an atomic decomposition whose first few terms are given by 

T=X+X2+X3+XE2+2X4+X2Ez+XE3+3X5 

f3X3E2+X2E3+X.(E20X2)+XE4+ . . . . (1.5) 

Obviously, the combinatorial notion of molecular (or atomic) decom- 
position (1.4) can be “algebraically” extended by allowing the coefficients 
fM to belong to an arbitrary half-ring 06; this gives rise to the half-ring 
K[[a]]. Using “linearity,” the operations of Cartesian product x and of 
derivation ’ can then easily be extended to K[[a]]. 

However, the problem of finding an analogous “coherent” extension of 
the operation of substitution 0 is far from being trivial. It has been solved in 
a satisfactory manner only for special KS. A. Joyal [J2] solved it in the 
important case when H = Z and, independently, Y. N. Yeh [Y] solved it in 
the more general situation when K is an arbitrary binomial half-ring; that 
is, a (commutative) half-ring K contained in a Q-algebra L and such that 

VtEH,VnEN, 
t 

0 n 
=t(t-l)(t-2)...(t-n+l)/n!~!K. (1.6) 

For example, N, Z, Q, @, Q[i] and N + QE (where a2 = 0) are all binomial 
half-rings while [F, (for prime p) and Z[i] are not. 

From now on, I6 will always denote a binomial half-ring and the 
following terminology will be used: an element FE W[ [O!]] is a K-species 
(in the sense of Yeh), a Z-species is also called a virtual species and, of 
course, a N-species is, simply, a species. The order and degree of any 
FE W[ [a]] are the following elements of N u {co }, respectively defined 
by 

ord(F)=min{nEN\F,,#O), deg(F)=max{neN(F,#O). (1.7) 

Of course, 0 < ord(F) < deg(F) < 00 if Ff 0, while co = ord(0) > deg(0) = 0. 
When F = 0 or deg(F) < co, we say that F is a polynomial K-species; in par- 
ticular, and ME &, is monomial and satisfies ord(M) = deg(M) = n < CO. 

In Section 2 we use a direct combinatorial argument to obtain an 
alternate definition of Yeh’s substitution G 0 F of K-species. Then, taking 
ideas from [Ll, 533, we use the “delta” operator 

A,: WCWl + KCCall, where GwA.G=GoF-G, (1.8) 
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to define the concept of generalized iterates F<‘), t E 06, of any “normalized” 
F=X+ . . . E K[[Kj]; that is, a one-parameter semigroup F<O, t E K, of 
H-species, satisfying F<‘> = X, F(’ > = F, and 

F<S+‘> =F<“>,,F<‘> for every s, t E 116. (1.9) 

In Section 3 a more detailed analysis of these generalized iterates leads 
us, in a very natural manner, to other new notions among which we find: 

- the infinitesimal generator gen(F) of F, which turns out to be a 
R-species, where R denotes the rational closure of K, 

- the Q-species 2 of pseudo-singletons, which is another kind of 
“logarithm” of the species E of sets, 

- the directional derivative DHG E K[[a]] of the K-species G in the 
“direction” of the K-species H and 

- the Lie bracket [Q, r] of K-species @ and r’. 

Apart from their intrinsic interest, these notions give, in return, better 
insights into the concept of a K-species (even in the case of a N-species) 
and into substitution itself. For example, they imply that any normalized 
K-species F can be written in the form F= exp(D,)X for a suitably chosen 
R-species @ and that two normalized K-species F, G commute under 0 if 
and only if the Lie bracket of their infinitesimal generators vanishes. 

2. SUBSTITUTION AND GENERALIZED ITERATION 

Before introducing the “generalized iterates” of a K-species, a 
preliminary combinatorial analysis of Yeh’s substitution will be very useful. 
In fact, we shall give an alternate definition of Yeh’s substitution which 
turns out to be a direct consequence of a new formula (see Theorem 2.3 
below) for the ordinary substitution of species (i.e., N-species). 

Let F=C ME M f,M be a species. Then each coefficient fM is a natural 
integer that can be interpreted as a set off,,,, “colours.” If we write, as in 
classical set theory, fM = (0, 1, . . . . f,,,, - 1 }, then each such colour ke fM 
can in turn be interpreted as a natural integer satisfying 0 <k <f,,,, - 1. 

Now, any finite set S can itself be thought of as being a species: a 
S-structure being simply an element s E S whose “underlying set” is, by 
convention, always the empty set 0. In particular, each fM can be inter- 
preted as a species of colours (on the empty set). Using the standard 
definition of product, we see that a &V-structure is a M-structure that is 
“coloured” by an element s E S. 

With these conventions, an arbitrary f,M-structure can be thought of 
as a coloured M-structure, whose colour is an element k E fM. Thus, taking 
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the whole sum, a F-structure cp can be canonically represented as a 
F-coloured molecular structure (that is, q is a M-structure, for some M, that 
is coloured with colour k, for some kEfM). Moreover, two F-structures cp, 
$ are of the same isomorphism type (i.e., are transformable into one 
another using a suitable bijection between their respective underlying sets) 
iff they are both of the same colour and belong to the same molecular 
species. 

It is not difficult to see that the subspecies H of F (notation: H 4 F) are 
precisely those species that are of the form 

H= 1 S,M, where S, c fM (2.1) 
ME.* 

for every ME JI;c. Collecting these preliminary remarks we can state: 

LEMMA 2.1. Let F=CMEA fMM and P=CME4 pwM be arbitrary. 
Then the (possibly infinite) number of distinct subspecies H of F which are 
isomorphic to P is given by the “generalized binomial coefficient” 

(2.2) 

Proof. Subspecies H of F are characterized by (2.1). Now H is 
isomorphic to P iff card S, = p,,,, for each ME JZ. Hence the result. 1 

Note that (F) # 0 iff pM d fM for every ME 4, and that (F) < cc if P is a 
polynomial species (i.e., pM # 0 only for a finite number of ME A). 

Let now F, G, and H be species such that H is polynomial and H 4 F. 
We can extract a subspecies G l H of G 0 F, using the following 

DEFINITION 2.2. A given G-assembly y of F-structures (i.e., a G 0 F-struc- 
ture) is H-saturated if and only if the set of types of its members coincides 
with the set of types of H-structures. The species of all H-saturated 
GO F-structures is denoted by G l H. The operation l is called saturated 
substitution. 

Note. By (2.1), using colourings, an equivalent definition of H- 
saturation can be stated as follows: The assembly y is H-saturated iff for 
each ME A, S, coincides with the set of all those colours that are used (at 
least once) to “paint” the M-structures that appear in the assembly y. 

We are now in a position to state a representation theorem, concerning 
the substitution of species, which will turn out to be the key tool in our 
approach to Yeh’s extension of substitution. 
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THEOREM 2.3. Let G and F be two species such that F0 = 0. Then 

(2.3) 

where B = N [a] denotes the set of all polynomial N-species. 

Proof: The condition F,, = 0 is standard and necessary in order to have 
a finite number of Go F-structures on any finite set [Jl]. Now, write 
F=C ME A f,,,,M with f,,, E IV and consider an arbitrary Go F-structure y. 
For each ME A’ let S, E fM be the set of all those colours that are used 
(at least once) to “paint” the M-structures that appear in the assembly y. 
Of course, H = CM •E M S,M is a polynomial subspecies of F and y is a 
G l H-structure (by Definition 2.2). Hence, we can write the decomposition 

GoF= c G-H, (2.4) 
HEX 

where Z = {H 4 FI H is a polynomial species}. We then conclude by an 
application of Lemma 2.1, since each species G l H is isomorphic to G l P 
if P=CMEM p,,,M~9), where p,=card S,. 1 

In analogy with classical analysis, G 0 F is often written as G(F). The 
species X of all singletons is the neutral element under substitution. This 
means that we always have G(X) = G 0 X= G = X0 G = X(G). The impor- 
tance of representation formula (2.3) lies in the fact that it immediately 
leads to explicit polynomial expressions for the coefficients of the molecular 
decomposition of G 0 F in terms of those of F and G: 

COROLLARY 2.4. Let F= CMMEd fMM and G = ENSA g,N be any 
species such that F0 =O. Then Go F=CREA h,R, where each coefficient h, 
can be written as a finite sum of the form 

h,= c CN,F,R k-N 
NE~K,PE~ 

(2.5) 

in which the c~,~, R E kJ are independent of F and G and are defined by 

N  l p= c c,,.,.R (2.6) 
RE”U 

which is also a finite sum. 

Proof: For every NE A? and every P E 9, the species N l P is of finite 
degree. Its molecular decomposition is thus finite and can be written in the 
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form (2.6) thereby defining the constants c~,~,~E N. Formula (2.5) for h, 
follows from right distributivity of l over +: 

= 1 (;) c gd’*P 
PG.9 NE& 

= 1 (;) 1 gN c CN.P,RR 
PC59 N.Z”U RE”+? 

= 
1 ( 1 c,.,,,g,(;)) R. 

REA/ NEAX,PE~ 
(2.7) 

Now, write P=CwEMppw M. Then the linitude of sum (2.5) follows from 
the fact that F, = 0 and c~,~, R # 0 implies 

degR>,degNb 1 PM and deg RZ 1 pw deg M, (2.8) 
ME”42 MEM 

as is easily verified from the definition of N l P. 1 

Note that the linitude of sum (2.5) shows that each h, is an element of 
the polynomial half-ring 

N b)- t3,,,.,, A (2.9) 

when each (2) and g, is considered as a formal variable. This fact (first 
noticed by Yeh [Y], using a different approach) implies that each f,,, and 
g, can take values in an arbitrary binomial half-ring K and the resulting h, 
will also belong to K, for every REJZ. Substitution can thus be extended 
to K[[a]] as follows: 

THEOREM 2.5. Let H be a binomial half-ring and G, FE K[ [a]] be 
H-species such that F0 = 0. Then the operation 0 defined by 

G*P= 1 g,N*P (2.10) 
NE”& 

extends the usual substitution between species and coincides with Yeh’s 
extension. 

Proof. This is almost immediate: In Yeh’s approach, each hR (where 
RE A) can also be written as a polynomial belonging to the ring (2.9). 
This polynomial must coincide with polynomial (2.5), since they both take 
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the same value when the variables f,,, and g, take arbitrary non-negative 
integral values (in the case of N-species). 1 

Of course, the usual identities relating 0, +, ‘, x , ’ (e.g., chain rule, 
Leibniz rule, etc.) remain valid in K[[a]], since the coefficients of their 
molecular decompositions also involve polynomial expressions (similar to 
those used in the above proof). Note also that saturated substitution can be 
expressed in terms of substitution as follows: For P E 9 and G E K [ [a]], 

G* P= c (-1)“-“’ 
QeP 

(2.11) 

where If’-Ql =IEMErU IP.+,- qwI. This can be seen by adapting the 
standard technique [R] of (binomial) Mobius inversion to (2.10) with 
F=QE.C? 

The various infinite families of species (or K-species) appearing in sums 
(l.l), (1.4), (1.5), (2.1), (2.3), (2.4), (2.7), and (2.10) are all “summable,” by 
construction. These are special instances of 

DEFINITION 2.6. Let n be an arbitrary set. A family (F’)nEn of 
H-species is summable iff for each finite cardinal n E N, the set 

A,= {kAlF;#O} (2.12) 

is finite. The sum F = Clp,, Fa of the family (F’)d,,, is the K-species given 
by 

(2.13) 

Other important instances of summable families involve the iterates of 
the following “delta operators.” 

DEFINITION 2.7. Let F be a K-species such that F,,=O. The delta 
operator associated to F is the linear operator 

A~:K[[~]]+K[[~]]:GHA~G=G~F-G. (2.14) 

Such operators have been used in [Ll] to study the generalized iterates 
of formal power series and also in [J3] to obtain an explicit virtual species 
F<-‘>EZ[[LE]] that is the inverse, under 0, of any species of the form 
F=X+ . . . E fV[ [a]]. In the present context, they will now be used to 
define and study the generalized iterates F<‘> E K[[GL]], t E K, of any 
FE lK[[CZ]] of the form F=X+ . . . . Such F’s are called normalized 
K-species and are characterized by the “normalization conditions” F, = 0 
and F, =X. For example, the above N-species (1.5) of rooted trees is 
normalized. 
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LEMMA 2.8. Let F= X + . . . be any normalized K-species and (ak)k 2 0 be 
any sequence of elements of K. Then for any GE W[ [a]], the sequence 
(ak&%,o of K-species is summable (here, Ak,G is recursively defined by 
AO,G=G andAk,+‘G=AFAgG, k=O, 1, . ..). 

Proof: Consider first the particular situation when G, F are N-species 
and a,+ E N. To establish summability in this case, it is sufficient to show 
that 

ord Ak,G>,k+ 1, k = 1, 2, 3, . . . . (2.15) 

This has been done by A. Joyal who also gave an explicit combinatorial 
description of the species Ak,G, k = 0, 1,2, . . . in terms of “strictly increasing 
chains of equivalence relations” (see [J3], pp. 143, 144 for more details). In 
the general situation when G, Fare K-species and ak E K, inequalities (2.15) 
are still valid. This can be seen as follows. Fix k > 1 and consider the 
decomposition 

a,Ak,G=a, c 8,M, eME kc (2.16) 
ME”& 

Because of Corollary 2.4, each fl,,,, is a polynomial belonging to the ring 
(2.9). Now, fix ME M such that ord M < k, then (since (2.15) is valid for 
N-species) the polynomial 6, takes the value 0 whenever the “variables” 
fN, g,, with NE 4, take values in N. Hence 8, is identically 0. 1 

Note. In the case of species, (2.15) is a direct consequence of the slightly 
more general statement 

HE~CCWl,kEN ord H>k=ord A,H>k+ 1, (2.17) 

which can be seen “geometrically” as follows: Write F= X+ F+ where 
ord F+ 2 2 and suppose that ord H > k. Then we have 

A,H=Ho(X+F+)-H=H(X+Y)-H(X)I,:=.+, (2.18) 

where Y is a new sort of points. Now, using the standard graphical conven- 
tions concerning species, a [ H(X + Y) - H(X)]-structure can be described 
as in Fig. 1, where at least one Y-point appears among at least k X- or 
Y-points. Hence, because of (2.18), a A,H-structure is an H-assembly of 

FIG. 1. [H(X+ Y)-H(X)]-structure, where X: 0 and Y: 0 (at least one 0). 

582a/SO/Z-6 
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X-points or F+-structures that contains at least one F+-structure (see 
Fig. 2). So that ord A,H 2 k + 1, since every F+-structure contains at least 
two points. 

We are now in a position to introduce the generalized iterates FCr) of 
any normalized H-species F. 

THEOREM 2.9. Let H be a binomial half-ring, F = X + . .. E W[ [a] be a 
normalized K-species and JY+ = &!\ { 1 }. Then there exists a unique Jfamily 
of K-species 

F(‘)= c f,,,(t)M, tEK, 
ME-H+ 

where the coefficients fM(t) are polynomials in t and are such that 

nENaFc”)=FoFo . . . OF (n th iterate of F) 

and 

s t E K + Fcs+‘> = F<“> o F<‘>. 

(2.19) 

(2.20) 

(2.21) 

Moreover, deg fM( t) < deg M for every ME JI+ and, for any G E W[ [a]], 
the K-species G 0 F<‘> may be computed by the formula 

(2.22) 

Proof: Unicity of the polynomials f,,,(t): Let (PM(t) be any other such 
family of polynomials. Then, because of (2.20), each polynomial d,(t) = 
fM( t) - (p,,J t) must satisfy 6,(n) = 0 for every n E N. Hence, 6,(t) must be 
identically zero. Existence of the polynomials fM(t): Define F<‘> by the 
formula 

F<‘> = 

F’ 

(2.23) 

FIG. 2. d,H-structure, where x and y are. as in Fig. 1 (at least one P-structure). 
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By Lemma 2.8, this gives a M-species for every t E K, since the family 
(i) dR,X, k E N, is summable. Moreover, 

since (Ak,X), = 0 if k 2 n. Hence, for every A4 E A+ with n = deg A4, each 
coefficient fM(t) of the molecular decomposition of F('> is a linear com- 
bination (with integral coefficients) of the binomial coefficients (k) with 
k < n. That is, f&t) is a polynomial in t satisfying deg fM( t) < deg M. It is 
easy to check, by induction on n, that (2.20) holds. Finally, (2.21) is a 
consequence of the classical “Vandermonde formula” 

(2.25) 

which is valid in any binomial half-ring. The more general formula (2.22) 
follows by a similar argument. 1 

Of course, when K=Z, t= -1, and F=X+ -.. EN[[~Z]] then we 
have (;)=(-l)k and 

F<-'>=X-A,X+A;X-A;X+ ... (2.26) 

coincides with the virtual species, given by Joyal [J3], which is the inverse 
of F under the operation of substitution. 

EXAMPLE. The reader may check that for the species T of all rooted 
trees, given by (1.5) above, we have, up to degree 5: 

A.X=X2+X3+XE2+2X4+X2E,+XE,+3X5+3X3E2 
+X2E3+X’(E*oX2)+XE4+ ... 

AZ,X=2X3+7X4+3X2E2+23XS+ 12X3E2 

+3X2E,+X.(E20X2)+XE;+ ... 
A$X=6X4+43X5+ 12X3E2f . . . and A4,X=24X5+ .+.. (2.27) 

This can be done by noting that the species E, of all sets of cardinality n 
satisfies the combinatorial equation 

E,o(A+B)= c (EpA).(EjoB), (2.28) 
i+j=n 

where A and B are arbitrary species (or K-species), with &= B,,=O. 
Hence 
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T<r’=X+(;)X2+[(;)+2(;)]X3+(;)X~z 

+[2(:)+7(:)+6(:)]x’ 

+[(;)+3(;)]X24+(;)% 

+[3(;)+23(;)+43(;)+24(:)]X’ 

+[3(;)+12(;)+12(;)]X3h+[(;)+J(;)]X2E3 

+K:>+Ul X.(E20X2)+(;) XE,+(;) XE;+ . . . . (2.29) 

It is well known [Jl, L2, L43 that the species T is characterized by the 
combinatorial functional equation T= X. (E 0 T), where E denotes the 
species of all finite sets. Hence, the virtual species T<-‘) must satisfy the 
equation X = T< -I) . E and can be decomposed as 

T<-‘>=X/E=X/(l+X+E,+E,+E,+ . ..) 

=X-X2+X3-XE,-X4+2X2E2-XE3+X5 

- 3X3E2 + 2X2E3 - XE, + XE; + . . . (2.30) 

It is easy to check that this last formula coincides with (2.29) when t = - 1. 
Going down to the level of the underlying generating series, formulas 

(2.29) and (2.30) “collapse” to two formal power series in x 

~~r%,=.+2(~)x2,2!+[9(;)+12(;)]x3,3! 

+[64(;)+204(;)+144(;)]~~,4! 

+[625(~)+3630(~)+5ggO(;)+2880(~)]x5,5!+ . . . 

(2.31) 

T<-‘>(x) =x - 2x2/2! + 3x3/3! - 4x4/4! + 5x5/5! + . . = xe-” (2.32) 
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in accordance with the usual theory (see [Ll], for example) of the 
generalized iterates of normalized power series. 

3. INFINITESIMAL GENERATORS AND DIRECTIONAL DERIVATIVES 

The one-parameter semigroup (F<‘)), E K of generalized iterates 
introduced in Theorem 2.9 above can be interpreted as a “parametrized 
curve” in the “space” lK[[a]]. For obvious reasons, it is natural to 
inquire about the family ((d/dt) F<‘>),, K of all its “tangent vectors.” Here, 
d/dt denotes the operator of formal derivation with respect to t defined, for 
k>O, by 

(Wt) ; 0 =(1/k!) 1 t(t-l)...(t--i+l)(t-ii-l)...(t-k+l). 
OSi<k 

(3.1) 

But there is an obstruction to this, namely: while (i) E H for any t E K, we 
do not necessarily have (d/dt)(;) E K. For example, if K = N, k = 2, then 
(d/dt)(;) = t - 4 # N, for any t E N. This motivates the following definition: 

DEFINITION 3.1. Let K be a binomial half-ring. The rational closure R 
of H is the smallest Q-algebra containing #. 

Of course, l%J = Q, R is a binomial ring, R = R and 

R= (-j a. (where II is a Q-algebra) (3.2) 
LlK 

= {rI t, + . . . + rn t, 1 n E N, ri E Q, ti E K, for i = 1, . . . . n}. (3.3) 

Moreover, the following inclusions always hold 

(3.4) 
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and preserve each one of the operations +, ., x , 0, ‘. An easy computation 
shows that 

t 

(dldt) k ( )I 

=(-l)k-l/kifkal (=Oifk=O). (3.5) 
z:=o 

DEFINITION 3.2. Let F = X+ . . . E 116 [ [a]] be a normalized K-species. 
The infinitesimal generator gen F of F is the R-species 

gen F= (d/dt) F(‘>(, :=0 

=A,X-~A;X+fA;X-~A4,X+ .*.. (3.6) 

EXAMPLES. For the species X of all singletons, we have gen X= 0. The 
infinitesimal generator of the species L* = X+ X2 + X3 + . . . of all non- 
empty linear orders is the &species gen L* =X2. The infinitesimal 
generator of the species T of all rooted trees is the Q-species 

gen T= A,X- $A&Y+ id&X- +A+X+ ... 

=X2+XE2++X4-+X2E2+XE3--X5+X3E2 

-fX*E,+fX.(E,~X*)+XE,-tXE;+ . . . . (3.7) 

Note that gen L* and gen T are of order 2 and that, in general, 
ord gen Fa 2 for any normalized F. It turns out (see Theorem 3.5 below) 
that F is completely determined by its infinitesimal generator CD = gen F. To 
establish this fact, we need a new notion: the directional derivative of a 
R-species. 

DEFINITION 3.3. Let R be the rational closure of the binomial half-ring 
K and G, HE K[[cZ]] with II?,= 0. The directional derivative of G in the 
direction Z-I is the unique R-species D,G satisfying the condition 

G(X+ tH) = G(X) + tD,G + 0(t’) E K[ [a]], (3.8) 

where O(t’) denotes a R-species in which t2 can be factored out. 

THEOREM 3.4. For any H with H, = 0, the operation 

DH:K[[a]]dK[[a]]:G~D,G 

is a derivation which can be computed by 

D,G= (d/dt) G(X+ tH)I,:zo 

= 1 d,, ,G l P ,  

P E P  

(3.9) 

(3.10) 
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where the coefficients on, r E R are independent of G and are given by 

(3.11) 

Moreover, D, is also linear in H. 

Proof This follows from Definition 3.3 and Theorem 2.3. 1 

Note that making use of the “Leibnitz’ rule,” 

D,(F.G)=(D,F).G+F.(D,G), (3.12) 

the computation of D,,G can be reduced to the computation of “simpler” 
directional derivatives of the form DMA, where M and A run through the 
molecular and the atomic N-species, respectively. 

THEOREM 3.5. Let G, FE K[[a]], F normalized, and @=gen F. Then 
thefamilies (FC’>)lcK and (GoF<‘)),eK satisfy the differential equations in t, 

(d/dt) l;cf> = D,F<‘> = ~$0 F<‘) (3.13) 

(d/dt)(G~F<‘))=D,(G~F<“)=(D,G)&‘). (3.14) 

Moreover, 

f’<‘> = e’D@X 3 GoF<‘> =efD@G. (3.15) 

Finally, FH gen F defines an injection from the set of all normalized 
K-species into the set of all K-species of order 22. 

Proof We simply use Theorem 2.3, Definition 3.3, and the analogy 
with classical analysis. Let s, t be formal variables taking values in R. Since 
@ = (d/ds) F<“>I, :=o, we can write F(“> in the form F<“) = X + s@ + O(s2). 
To establish (3.14), we need only to compute the following three equivalent 
expressions for G o F<‘+‘> (which are valid in lK[[aJ]): 

G4’(‘+“>=G~F<“+s(d/dt)(GoF<‘))+O(s2), (3.16) 
GoF<‘+~) = (GoF<‘))oF<“) 

=(G~F<‘+(X+s@+ .a. 1 

= G 0 F<‘) + sD,(G 0 F<‘>) + O(s2), (3.17) 
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and 

GoF(‘+S> = (GoF<“‘)oF<‘> 

=(Go(X+s@+ . ..))oF<‘) 

=(G+sD,G+ . ..)oF<‘) 

=G~F”>+s(D,G)~FC’>+O(s2). (3.18) 

Equations (3.13) follow from (3.14) with G=X. Formulas (3.15) are the 
Taylor expansions, in t, of the solutions of the differential equations (3.13) 
and (3.14). The injectivity of FH gen F follows from the sustitution t := 1 
in (3.15) which expresses F (and G 0 F) in terms of @ (and G) as 

F= eD@X, GoF=eD@G. 1 (3.19) 

Remarks. Let @ = gen F then, because of (3.19), each operator A, and 
D, may be expressed in terms of the other, 

A,=eD@-I, D, = ln(Z+ A.), (3.20) 

where I: K[[a]] + R[[a]] denotes the identity operator. There is an 
obvious analogy here with the following classical identities taken from the 
calculus of finite differences, 

where 

A=eD-I, D=ln(l+A), (3.21) 

AC(X) = G(X+ 1) -G(X), DC(X) = (&IX) G(X) = G’(X). (3.22) 

Indeed, take the polynomial F= X+ 1 E R [X] then F<‘> = X+ t E R[X] 
and CD = gen F = 1 E R [Xl. This gives 

A x+l=A:L%[X]--+~[X], D, = D: R[X] + K[cX]. (3.23) 

However, (3.20) is a strict extension of (3.21) and one must take great 
care when making such analogies. For example, the classical identity 

(D,G)(X) = G’(X). H(X) for G, HEK[[X]], H,,=O, (3.24) 

is no longer valid in K[ [a]]. This means that, in general, 

P,G)U-1 Z G’(X). H(X) for G, HEK[[LZ]], H,,=O (3.25) 

even though D,G and G’ . H always have the same underlying generating 
series. 
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The simplest illustration of this phenomenon is obtained by taking 
H = X, the species of all singletons and G = E,, the species of all 2-elements 
sets. From Theorem 3.4, we get the Q-species 

D,G = D,E, = #X2 + E, (3.26) 

which is distinct from 

G’.H=E;.X=X2. (3.27) 

The common underlying generating series for (3.26) and (3.27) is 2x2/2!. 
Apart from (3.10), there are other interesting explicit expressions for the 

directional derivatives D,G (see Theorem 3.8 below). One of these 
expressions makes use of a new Q-species, 2, which is defined as 

DEFINITION 3.6. Let E* = E*(X) be the species of all non-empty (finite) 
sets. The Q-species 2 of pseudo-singletons (of sort X) is the infinite 
summable series 

2= E* - ;(E*)2 + f(E*)3 - 4(E*)4 + . . . (3.28) 

=X+(E,-$E;)+(E,-E,E,+fE;) 

+(E,-+E;-E,E,+E;E,-dE;)+ ... 

+ ~(-l)“1+Y2+“‘-1((~l+~2+ . . . -l)!/vl!v2!...)E;~E;... 
> 
+ . . . . 

(3.29) 

where, for each n E N, the sum is extended in the general term over all the 
vI)s satisfying v, + 2v, + 3v, + . . . = n. 

This species is obtained by substituting E* = E, + E, + E, + . . . for X in 
the classical formal power series 

ln(l+X)=X-+X2+$X3-+X4+ ... EC.P[[X]]SR[[a]]. (3.30) 

Hence, we may write 

X=ln(l +E*)=ln E. (3.31) 

The Q-species (3.30) should not be confused with the “combinatorial” 
logarithm, defined by A. Joyal [J3] and Y.-N. Yeh [Y], which is a 
Z-species /1(X) = Lg( 1 + X) satisfying n 0 E* = X. This distinction being 
made, X may be called the “analytical” logarithm of the species of all sets. 
Its properties are very similar to those of the species X of all singletons. 
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LEMMA 3.7. The generating series of 8 is x. The cycle indicator series ZR 
of .? is given by 

Zg=x,+$x*+$x3+fxq+ . . . . (3.32) 

Let X and Y be two species of singletons. The following equations are valid 

iG-?=8+ P (3.33) 

L?=t$ for every t E R. (3.34) 

The species E of all (finite) sets is the “analytical” exponential of 2, 

E(X) = e’, (3.35) 

where ex is the Q-species defined by the usual formal power series 

ex= 1 (l/k!)PEQ[[CX]]CK[[a]]. (3.36) 

Proof: We establish (3.35) first. It is well known [Cl, p. 291 that the 
formal power series (3.30) and (3.36) satisfy, in Q[ [Xl], 

1 + x= ew +m. (3.37) 

Since the operation 0 has been extended in a compatible way to the whole 
of llX[ [a]], we may, in particular, substitute E* for X in (3.37). This gives 

E= 1 +E*=e’“(‘+E*‘=e2 (3.38) 

as desired. Now taking the generating series of both sides of (3.35) 
gives eX= e . x(X) Hence f(x) = x. Similarly, taking the cycle indicator 
series (see [Jl] or Definition 3.11 below) of (3.35) gives 
exp(x, + 2x2 + ixj + +x4 + ---) = exp(Z2). Hence (3.32) holds. To establish 
(3.33) we must work in the ring of K-species on two sorts of points X, Y 
(see [Y] for the definition of this ring); substituting X+ Y for X in (3.35) 
gives 

exp(X%) = E(X+ Y) = E(X). E(Y) = exp(8) .exp( Y) = exp(y+ Y). 
(3.39) 

Hence (3.33) holds. Iterating (3.33) shows that (3.34) is valid whenever 
t = n E N. Since the coefficients of the molecular decompositions of both 
sides of (3.34) are polynomials in t, taking the same values for t E N, it 
follows that (3.34) holds for every t E R. 1 

Remarks. There is a current intentional “abuse of notation” in the 
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standard literature on the theory of species; namely, E(X) =ex. In fact, 
E(X) is a N-species while e , ’ delined by (3.36), is a Q-species which is not a 
N-species. So that, strictly speaking, 

E(X) # 8. (3.40) 

The correct equation relating the species of sets and the (analytical) 
exponential series is, of course, given by (3.35). It is interesting to note that 
substituting tX for X in (3.35) and using (3.34) yields 

E(M) =exp(;\X)=exp(tJ?) = (exp(&)‘= (E(X))‘. (3.41) 

The equations 

E(tX) = (E(X))’ and G(M) = G(X) x E(tX) (3.42) 

are, in fact, the starting points of Yeh’s extension of substitution [Y]. 
With the aid of the Q-species of pseudo-singletons, the directional 

derivatives D,G may also be computed as follows. 

THEOREM 3.8. Let G, HE R[ [a]] with H, = 0, then 

D,G=G(X+ Y)x(E(X). f)I.:=, (3.43) 

= (G(X+ H) - G(X)) - i(G(X+ 2H) - 2G(X+ H) + G(X)) 

+ f(G(X+ 3H) - 3G(X+ 2H) + 3G(X+ H) - G(X)) + .e. 

+((-l)k-‘/k) C (-1)’ ‘: 
0 

G(X+(k-v)H) + . . . . 
O<vCk 

(3.44) 

Proof Taking (3.41) and (3.42) into account yields, successively, 

G(X+tH)=G(X+tY)l,:=, 

= G(X+ Y) x (E(X)-E(tY))I y:=,, 

= G(X+ Y) x (E(X) .e”)l y := H 

=G(X+ Y)x(E(X).(l +tY+U(t2)))ly:=,, 

=G(X)+tG(X+ Y)x(E(X)~~)(,:=,+U(t2). (3.45) 

Hence (3.43) holds. Formula (3.44) follows immediately by expanding Y as 
in (3.28) and using, for k=O, 1,2, . . . . the identities 

(E*(Y))k=(E(Y)-l)k= c (-1)’ ; 
0 

E((k- v)Y). 1 (3.46) 
OSV=Sk 
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Remarks. An alternate way to obtain (3.44) is to compute the function 
t H G(X+ tH) using the classical (forward) Newton’s expansion from the 
theory of finite-differences. The “more refined” molecular decomposition 
(3.29), when applied to Y, may also be used to compute the molecular 
decomposition of D,G via (3.43), once the molecular decomposition of 
G(X+ Y) is known. Note that (3.44) is always summable. In particular, 
when G and H are molecular, the corresponding sum is finite and of degree 
equal to the product (deg G). (deg H). 

To illustrate Theorem 3.8, one may check that the directional derivative 
D,E of the species E of all sets in the direction of the species C of all 
circular permutations is the following Q-species 

&E=E.(S*-$S*2+fS*3- . ..). (3.47) 

where S* = E*(C) is the species of all nonempty permutations. More 
generally, 

D,E=E& where fi= 80 H. (3.48) 

It is well known in classical analysis that the notion of infinitesimal 
generator provides a better understanding of the notion of substitution of 
power series. For example, it can be shown (see [Ll ] for a proof), that for 
any two normalized formal power series F, GE W[ [Xl], with infinitesimal 
generators @ = gen F, r= gen G: 

GoF=FoG iff lW=@r (3.49) 

GoF=FoG iff 3s,t~K:G<~)=F~‘),s#Oort#O. (3.50) 

As a simple illustration, take for example, F= X/( 1 - 2X), G = X/( 1 - 3X). 
Then gen F= 2X2, gen G = 3X2, and s = 2, t = 3 (K = N, here). 

Such kinds of results can be lifted (at least partially) to combinatorial 
situations: 

DEFINITION 3.9. Let @ and r be K-species with Q), = r,, = 0. The Lie 
bracket of D, and D, is the operator 

CD@, D,l =D, Dr- DrDe. (3.51) 

The Lie bracket of @ and r is the R-species 

[@,I-]=DJ-D,@. (3.52) 
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THEOREM 3.10. The Lie brackets are related by the equation 

CD@? OrI = DprJ,i-3. (3.53) 

Moreover, for any normalized F, G i K [ [a]], with infinitesimal generators 
@, r~ K[[Ll]], we haoe 

GoF=FoG zff [Q, r-j =o. (3.54) 

Proof We follow the general guidelines taken from classical analysis. 
A straightforward computation shows that 

(X+sr)~(X+t@)=(X+st[@,r]+ +..)o(X+t@)o(X+sr). (3.55) 

This gives, for any WE K[[a]], 

wo [(x+sr)o(x+ t@)] - wo [(x+ t@)o(X+sr)] 

=[stD,,,,W+ . ..]~(X+t@)~(X+sr) 

= st DCe,r, W + higher terms in s, t. (3.56) 

Similarly, 

[w~(X+sr)]~(X+t@)-[W’J(X+t@)]~(X+sr) 

= st(DeDr- D,D,) W+ higher terms in s, t. (3.57) 

Hence (3.53) follows by equating (3.56) and (3.57). 
We now prove (3.54). It is easily seen by induction that G 0 F= Fo G if 

and only if 

Vm,nEN,V WEK[[~]]: W~G~““~F<“>= WoF<“>oG<“>. (3.58) 

Since the coefftcients of the molecular decomposition of Wo G<“> 0 I;(“) 
and of Wo F<“) 0 G<“> are polynomials in m, n we obtain that G 0 F = Fo G 
if and only if 

‘fs, tEK;,VWEK[[a]]: WoG’“)oF”)= WoF<‘)oG<“). (3.59) 

Using Theorem 3.5 we see that (3.59) is equivalent to 

Vs, t E R, V WE K[[Gl]] : (exp tD,)(exp SD,) W= (exp sD,)(exp tD@) W 
(3.60) 

which is equivalent to D,D,= D,D, by equating the coeffiients of st. 1 

Remarks. Of course, (3.49) is a particular case of (3.54). This can be 
seen by taking the power series F, GE W[ [Xl] c W[ [a]] and noting that, 
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in this case, [a, f] = @r’ - l?V. Moreover, (3.50) follows at once from 
(3.49), since 

@I-’ = I-@’ iff 3s,t~~:~f=t~,~#Oort#O. (3.61) 

However, the situation is, once again, strictly richer at the combinatorial 
level: (3.50) is no longer valid in the general context of W-species as the 
following example shows. Take K = Z and 

F=X+X’-2E,, G=X-X2+2E2. (3.62) 

After a few computations, one gets 

GoF=FoG=X-X4+2E;+2E20X2-4E20E2, (3.63) 

F(‘) = X + t( X2 - 2E2) + (X4-2E;-2E20X2+4E20E2)+ ... 

(3.64) 

G<“)=X+s(2E,-X2)+ ; 
0 

(X4-2E;-2E20X2+4E20E2)+ . . . . 

Hence, for this choice of F and G, 
(3.65) 

GoF=FoG but G<“> = F<‘> iff s=t=O. (3.66) 

We shall show below that (3.50) is not valid even at the level of cycle 
indicator series in the sense of [Jl ] (see also [B, D, L5, NR]). These are 
special series that lie between the “combinatorial level” (i.e., molecular and 
atomic series) and the “analytical level” (i.e., generating power series), in 
the terminology of [L2]. They constitute a good context for the 
generalization, to species, of the classical Polya counting theory [C2, D, 
HP, P]. They are defined as follows in the context of H-species. 

DEFINITION 3.11. Let x1, x2, . . . be a countable sequence of indeter- 
minates and let F = &,ME A f ME K[[tZ]]. The cycle indicator series of F M 
is the series ZF=&,MEd f,+,Z, with 

zM=zM(x1,x2, . ..)=~lixM[a.,o, )... ] X~‘X~“‘/16’Cr~! 2%2!*.., 
(3.67) 

where the last sum is extended over all (finite) sequences (a,, r-r2, . ..) of 
integers such that crl + 2a, + . . . + vb, + . . . = deg M and fix M[a,, 02, . ..] 
denotes the number of M-structures, on a fixed set U, which are invariant 
under the action of any given permutation d of U of type cl, c2, . . . . rr,, . . . 
(here eV denotes the number of cycles of (r of length v). 
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The set of all (formal) indicator series constitutes a differential ring 
W{ {xi, x2, . ..}} which is further equipped with the so-called plethystic 
substitution, 

sof=g(f,,f,, -,fk, . ..). fk=f(xkr x2,+, . . . . x,k, ---h (3.68) 

if f,g~~{{xl,x2,...)} with f(0, 0, . ..) = 0. Every identity between 
K-species in this paper leads to a corresponding identity between cycle 
indicator series, simply by applying the operator Z on both sides of the 
identity. 

In particular, the generalized iterates of any normalized f = x1 + .. . E 
q {XI, x2, ... } } are given by 

f<l)=f(‘)(x,,x 2,.-J= c (;)A;x~, 
ka0 

(3.69) 

where A,g = go f - g for every g E W{ {xi, x2, . ..}}. The infinitesimal 
generator cp off is 

q=genf=A/x,-~A~x,+fA~x,-- . ..~K{{x~.x~,...}} (3.70) 

and the directional derivative D, g of g is 

Dvg= 1 (Pk adaxky (Pk = dxk, X2k, -.). (3.71) 
k,O 

Fornormalizedf,gED6{{x,,x,,...}},withcp=genfandy=geng: 

gOf =fOg iff D,y-D,cp=[q,y]=O (3.72) 

but 
gof=fog~bs,tEH:g<‘>=f<‘>, s#Oort#O (3.73) 

as the following example shows: Take F, G as in (3.62), then 

f =ZF=X,-X2, g=z,=x,+x,, gOf=fOg=X,-X‘j, (3.74) 

(3.75) 

(3.76) 

Hence, 

gOf =fOg but g<“>=f<” iff s= t=O. (3.78) 

These counterexamples to (3.50) lead to the problem of investigating the 
additional conditions to be put on normalized F, GE 06 [[a]] in order 
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that (3.50) hold. There is an analogous problem corresponding to the cycle 
indicator series. We leave these open. 
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