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1. INTRODUCTION

Throughout this paper, the word ‘‘ring’’ will mean commutative noethe-
rian ring with 1.

Let R be a Gorenstein local ring. M. Auslander introduced the no-
Ž .tion of a d-invariant d M for a finitely generated R-module M. It is de-R

fined as the smallest integer m such that there exists an epimorphism
X [ R m ª M with X a maximal Cohen]Macaulay module which has no

w xnon-zero free summand. In studying the d-invariant, Ding 10]13 studied
Ž .the notion of index. The index of R, denoted by index R , is defined as the

Ž n. Ž .smallest positive integer such that d Rrm ) 0. He compared index RR
Ž .with the generalized Loewy length ll ll R of R, which is defined as the

minimum of the Loewy lengths of Rrx R for all systems of parameters x of
Ž . Ž .R, and he conjectured and proved for some special cases that index R s

Ž . Ž .ll ll R in general see Definition 2.7 and Remark 3.1 .
In this paper, we first remark that the generalized Loewy length is not

stable even under a finite etale extension, but stable under completion´
Ž .Section 3 . We need at least to assume that the residue field of R is
infinite to study Ding’s conjecture.

Next, we prove that the minimal Cohen]Macaulay approximation, which
is indispensable when we study d-invariants, of a finitely generated module
M over a Cohen]Macaulay local ring R is preserved by an extension by
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a Gorenstein local homomorphism R ª S under the assumption
RŽ . Ž . Ž .Tor S, M s 0 i ) 0 Proposition 4.3 . If R is Gorenstein moreover,i

Ž .then the higher delta invariants are also preserved Corollary 4.6 .
This unifies two known important cases: the flat case and the case

RS s RrxR with x both R-regular and M-regular. We note that many of
the notions and the results on flat morphisms have been generalized to the

w xsituation of finite flat dimension 4, 5, 3 .
Ž . Ž .Let R, m and S, n be Gorenstein local rings, and w : R ª S be

Ža local homomorphism of finite flat dimension i.e., the flat dimension
.of S as an R-module is finite . Recently, the second author proved the

following.

w Ž .xTHEOREM 1.1 17, 3.7 . Let w : R ª S be as abo¨e. Then we ha¨e

index R F index S .Ž . Ž .
ŽThis can be seen as a sort of flat descent generalized to the finite flat

.dimension context . A good property ‘‘index F n’’ of S is inherited by R
Ž .for any n. In Section 5, assuming S is R-flat, we prove index S F

Ž . Ž . Ž .index R ? ll ll F F [ SrmS , which can be seen as a counterpart of the
theorem above. This is our main theorem.

Furthermore, this inequality shows that if the closed fiber F is a regular
Ž . Ž .local ring, we have index R s index S as might be expected.

We cannot expect that the fiber ring F s SrmS has a small index even
if S has a small index. This can be seen by the following example:

ww t xx ww xxR s k x ; k x s S, where t is an arbitrary positive integer. How-
Ž . Ž .ever, if S is artinian, then we have an inequality: ll ll R q ll ll F y 1 F

Ž . Ž . Ž .ll ll S F ll ll R ? ll ll F . This will be proved in Section 6 for artinian rings
which are not necessarily Gorenstein.

2. PRELIMINARIES

Ž .Unless otherwise specified, we assume that R, m , k is a
ˆCohen]Macaulay local ring with the canonical module K . By R we meanR

the completion of R with respect to the maximal ideal m. For an
ˆ ˆR-module M, M denotes R m M. For a proper ideal I of R, we denoteR

i iq1 Ž .the associated graded module [ I MrI M by Gr M. Let S, n be aIiG 0
local ring, and w : R ª S a homomorphism. We say that w is local when
Ž .w m ; n.

PROPOSITION 2.1. Let R be a Cohen]Macaulay local ring, X a maximal
Ž .Cohen]Macaulay R-module, and Y resp. Z a finitely generated R-module of

Ž . Ž . i Ž .finite injectï e resp. projectï e dimension. Then we ha¨e a Ext X, Y s 0R
Ž . RŽ .for i ) 0; b Tor Z, X s 0 for i ) 0.i



HASHIMOTO AND SHIDA152

Ž . w x Ž .Proof. Part a is noted in 18 . Part b is a slight generalization of
w Ž .x w x16, 2.6 , and follows easily from 8 .

Let M be a finitely generated R-module. A sequence of finitely gener-
ated R-modules

f g
0 ª Y ª X ª M ª 0 2.2Ž .

is called a Cohen]Macaulay approximation if X is a maximal
Cohen]Macaulay R-module, Y is of finite injective dimension, and the

Ž .sequence is exact. The Cohen]Macaulay approximation 2.2 is said to be
minimal when X and Y have no non-zero direct summand in common
through f. It is said to be right minimal when g is right minimal, that is,
for any non-isomorphic map w : X ª X, we have g (w / g.

The next lemma and its corollary seem to be well known, but we state
Ž . w xthem with proofs. The complete case which is essential is found in 19 .

LEMMA 2.3. Let

f g
A [ 0 ª Y ª X ª M ª 0

be a sequence of finitely generated R-modules. Then, the following conditions
are equï alent.

Ž .rmin A is a right minimal Cohen]Macaulay approximation of M.
Ž .min A is a minimal Cohen]Macaulay approximation of M.
$ ˆ ˆŽ .rmin A is a right minimal Cohen]Macaulay approximation of M.
$ ˆ ˆŽ .min A is a minimal Cohen]Macaulay approximation of M.

$
Proof. It is easy to see that A is a Cohen]Macaulay approximation if

and only if A is a Cohen]Macaulay approximation. Thus, the problem is
the minimality.
Ž . Ž .rmin « min . Assume that X s X [ X and 0 / X ; Im f. We0 1 0

Ž .define w : X ª X by w x q x s x for x g X and x g X . Then, we0 1 1 0 0 1 1
have g (w s g, and w is not isomorphic.$
Ž . Ž .min « min . See Proposition 4.3 below.$ $ ˆ ˆŽ . Ž .min « rmin . We may assume R s R and A s A. Assume that

Ž .w g End X is not an isomorphism, and g (w s g. We have X / 0, andR
hence M / 0 by minimality of A. We set L to be the sub-R-algebra of

Ž .End X generated by R and w. Note that L is commutative, and isR
module finite over R. As w preserves the kernel of g, we may and shall
regard Y and M as L-modules so that f and g are L-linear. Note that
w g L acts as an identity map on M. By Nakayama’s lemma, w is not

Ž .contained in the radical of L, since w M s M and M / 0. As w is not a
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Ž .unit in L since w is not an isomorphism on X , we have that L is not
local. It follows that L has a non-trivial idempotent, say e / 0, 1, since R
is henselian. With replacing e with 1 y e if necessary, we may assume that

Ž .the image of e in Lr 1 y w L, which is local, is a unit. As e acts as an
Ž .automorphism on M, it is easy to see that X [ Im 1 y e s Ker e is a0

non-zero direct summand of X which is contained in Im f.$
Ž . Ž . Ž .rmin « rmin . Assume that w g End X is non-isomorphic andR

that g (w s g. Then, w is non-isomorphic and g (w s g.ˆ ˆ ˆ ˆ

COROLLARY 2.4. Let M be a finitely generated R-module. Then, there
exists a minimal Cohen]Macaulay approximation of M, uniquely up to
isomorphism.

w xProof. A Cohen]Macaulay approximation of M exists, see 1 . Re-
moving non-zero common direct summands through f if any, we obtain
a minimal one from this. The uniqueness of the right minimal
Cohen]Macaulay approximation is shown by a standard comparison argu-

w xment in 1 .

For an R-module M, we define the f-rank of M, denoted by f-rank M,R
� < i 4to be the number max i R is a direct summand of M .

DEFINITION 2.5. Let R be a Cohen]Macaulay local ring with K , andR
let 0 ª Y ª X ª M ª 0 be the minimal Cohen]Macaulay approximation

Ž .of M over R. We define the d-in¨ariant of M, denoted by d M , asR
f-rank X. And we define the index of a Gorenstein local ring R, denotedR

Ž . � < Ž n. 4by index R , as the integer min n d Rrm / 0 . For a nonnegativeR
n Ž .integer n, the d-invariant of the nth syzygy V M of M is denoted byR

nŽ .d M , and we call it the nth d-in¨ariant of M.R

w x Ž .PROPOSITION 2.6 10 . Let R be a Gorenstein local ring and M / 0 g
Ž .mod R . Then

Ž . Ž . Ž .Ž . Ž .a If pd M is finite, then d M s m M ) 0 , where m M is theR R
minimal number of generators of M.

Ž . Ž . Ž .b If M ª N ª 0 is exact, then d M G d N .R R

Next we define the generalized Loewy length.

DEFINITION 2.7. Let M be an R-module of finite length. The Loewy
Ž .length of M, denoted by ll ll M , is the smallest integer n such thatR

m nM s 0. We define the generalized Loewy length of R, which is also
Ž . Ž Ž ..denoted by ll ll R , as the minimum of all integers ll ll Rr x , where x isR

a system of parameters of R.
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3. REMARKS ON GENERALIZED LOEWY LENGTH

Ž . Ž .Remark 3.1. Ding proved that index R F ll ll R for any Gorenstein
w x Ž . Ž .local ring R 11 . He conjectured that index R s ll ll R for the arbitrary

Gorenstein local ring R. He claimed that the conjecture is true when the
w xassociated graded ring Gr R of R is a Cohen]Macaulay ring 12 . He alsom

claimed that the conjecture is true when R is gradable and depth Gr R Gm
w xdim R y 1 13 . These are certainly true when Rrm is infinite.

If we drop the condition on the residue field, there is a counterexample
to the conjecture.

EXAMPLE 3.2. Let k s F , and K s F , where F is the q-element2 4 q
ww xx Ž . Ž .field. When we set S s k x, y , f s xy x q y g S, and R s Sr f , then

we have

4 s ll ll R ) ll ll K m R s index K m R s index R s 3.Ž . Ž . Ž . Ž .k k

Proof. As the rings in consideration are hypersurfaces, we have
w x Ž .that indices equal to multiplicities 10 , and we have index K m R sk

Ž .index R s 3. Let v g K _ k, and set z s x y v y. Then, we have
ŽŽ . Ž .. Ž .ll ll K m R r z s 3. Hence, we have ll ll K m R s 3. As we havek k
Ž Ž 2 .. Ž .ll ll Rr x y y s 4, we have ll ll R F 4.

Ž .It remains to show that ll ll R ) 3. Assume the contrary. Then, there
3 Ž .exists some R-regular element z g m such that m ; z , where m s

Ž . � < i4x, y R. We set r s max i z g m . It is easy to see that r F 2.
2 4If r s 2, then zR is annihilated by m , where R s Rrm . Hence, we

have

2 3 3 43 s l Rrm G l Rz G l m R s l m rm s 3.Ž . Ž .Ž . Ž .R R R R

3 3This shows zR s m R, and hence z g m . This contradicts r s 2.
Consider the case r s 1. Take any preimage z g S of z. Letting an

Ž .appropriate element in GL k act on S, we may assume that z s x y2
Ž . ŽŽ . .2 Ž .g x, y with g g x, y S without loss of generality. As Rr z is a

Ž Ž ..hypersurface, it suffices to show that l Rr z G 4 to lead to a contradic-R
Ž .tion. When we set R9 s Sr z , then R9 is a discrete valuation ring, and

Ž . Ž . Ž .Rr z s R9r f , where f s xy x q y is the image of f in R9. On the
Ž . Ž .other hand, we have y g x, y R9, x q y g x, y R9, and x s g g

2 4ŽŽ . . ŽŽ . . Ž Ž ..x, y R9 . Hence, we have f g x, y R9 and we have l R9r f G 4.

As we have seen, the generalized Loewy length is not stable under a
finite etale extension. However, it is stable under completion.´
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ˆŽ . Ž .LEMMA 3.3. We ha¨e ll ll R s ll ll R .

Ž .Proof. If x is a system of parameters of R such that ll ll R s
ˆ ˆ ˆŽ . Ž . Ž . Ž . Ž .ll ll Rrx R , then we have ll ll R F ll ll Rrx R s ll ll Rrx R s ll ll R .ˆR R R

ˆŽ . Ž .So it suffices to show ll ll R F ll ll R .
ˆ ˆŽ . Ž .Let n s ll ll R , and take a system of parameters x , x , . . . , x ; Rˆ ˆ ˆ1 2 d

n ˆ Ž .such that m R ; x , x , . . . , x , where d s dim R. Then for each xˆ ˆ ˆ ˆ1 2 d i
Ž .i s 1, 2, . . . , d , we can choose an element x g R such that x y x gˆi i i

nq1 ˆ n n ˆŽ .m R. We claim that m ; x , x , . . . , x . In fact since m R ;1 2 d
ˆ nq1 ˆŽ . Ž .x , x , . . . , x ; x , x , . . . , x R q m R, we haveˆ ˆ ˆ1 2 d 1 2 d

n ˆ ˆ nq i ˆ ˆm R ; x , x , . . . , x R q m R s x , x , . . . , x R .Ž . Ž .F ž /1 2 d 1 2 d
i)0

Hence, we have

n n ˆ ˆm s m R l R ; x , x , . . . , x R l R s x , x , . . . , xŽ . Ž .1 2 d 1 2 d

as desired.

4. A GORENSTEIN HOMOMORPHISM AND MINIMAL
COHEN]MACAULAY APPROXIMATIONS

Let w : R ª S be a flat local homomorphism of Gorenstein local rings.
Ž .If 0 ª Y ª X ª M ª 0 is a minimal Cohen]Macaulay approximation

over R, then so is 0 ª S m Y ª S m X ª S m M ª 0. In particular, theR R R
Ž .higher d-invariants are preserved by this base extension. In this section,
we generalize this to the context of morphisms of finite flat dimension
Ž .Proposition 4.3, Corollary 4.6 . The case S s RrxR with x both R- and

w Ž . Ž .x w Ž . Ž .xM-regular 2, 5.1 ; 20, 1.8 , as well as the flat case 20, 1.5 , 1.7 , has
been well known.

ŽFirst, we introduce the notion of a Gorenstein local homomorphism see
w x. Ž . Ž .4 . Let w : R, m ª S, n be a local homomorphism. We say that w is a

ŽGorenstein local homomorphism if w is of finite flat dimension i.e.,
. i iqs ifd S - ` , and m s m for some s and arbitrary i G 0, where m sR R S R

i Ž .dim Ext k, R is the ith Bass number. Next, we define a Cohen factor-k R
w xization which was introduced in 6 .

Ž . Ž .DEFINITION 4.1. Let w : R, m ª S, n be a local homomorphism of
local rings. We say w is factorizable if it can be decomposed as w s st
with t : R ª T flat and TrmT a regular local ring, s : T ª S surjective,
and T a complete local ring; often we shall refer to such a situation by
saying that w s st is a Cohen factorization.
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It is known that if S is a complete local ring, then there exists a Cohen
Ž w Ž .x.factorization see 6, 1.1 . Let w : R ª S be a local homomorphism, and

w s st its Cohen factorization. Then, w is of finite flat dimension if and
w Ž .xonly if so is s 6, 3.3 . Note also that, if w is module finite, then we have

fd S - ` m Tor R S, Rrm s 0 for i 4 0 m pd S - `.Ž .R i R

w Ž . Ž .xBy 4, 4.2 , 4.6 , w is Gorenstein if and only if so is s .

LEMMA 4.2. Let w : R ª S be a local homomorphism of Cohen]Macaulay
local rings. We assume that fd S - `. Let X be a maximal Cohen]MacaulayR

RŽ .R-module. Then we ha¨e Tor S, X s 0 for i ) 0. We also ha¨e S m X isi R
a maximal Cohen]Macaulay S-module.

Proof. We may assume that S is complete. If S is R-flat, then the
assertion is obvious. Consider the general case. Take a Cohen factorization
w s st . As the lemma is true for t , we may replace w by s , and we may

RŽ . Ž .assume that w is surjective. Now, the vanishing Tor S, X s i ) 0 isi
Ž . w Ž .xProposition 2.1 b . As for the last assertion, the same proof in 17, 3.1

works.

PROPOSITION 4.3. Let w : R ª S be a Gorenstein local homomorphism of
Cohen]Macaulay local rings, and M a finitely generated R-module. Further-

RŽ .more, we assume that R has the canonical module K , and Tor S, M s 0R i
f

for all i ) 0. If 0 ª Y ª X ª M ª 0 is the minimal Cohen]Macaulay
approximation of M o¨er R, then the sequence

Sm fR 6

0 ª S m Y S m X ª S m M ª 0 4.4Ž .R R R

is the minimal Cohen]Macaulay approximation of S m M o¨er S.R

Remark 4.5. When w is surjective and S s RrI, then, for r G 0, we
RŽ . Ž . Ž .have Tor S, M s 0 i ) r if and only if depth I, M G pd S y ri R R

Ž w x.depth sensitivity of perfect ideals, see 9 . In particular, the Tor-indepen-
RŽ . Ž .dence assumption Tor S, M s 0 i ) 0 above is equivalent toi

Ž .depth I, M s pd S. Generalizing this to the imperfect case, the secondR R
author proved the following, which we only state the result here: Let R be

Ž .a not necessarily Cohen]Macaulay ring, I an ideal of R of finite
projective dimension, and S s RrI. If M is a finitely generated R-module
with MrIM / 0, then we have

< R <sup i Tor S, M / 0 ssup pd S ydepth M pgsupp MrIM .Ž . Ž .� 4 � 4i R p R pp p

COROLLARY 4.6. In the proposition, assume moreo¨er that R is Goren-
stein. Then we ha¨e

f-rank S m X s f-rank X . 4.7Ž . Ž .S R R

nŽ . nŽ .In particular, we ha¨e d S m M s d M .S R R
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Ž . w Ž .xProof. The equality 4.7 follows from the proposition and 17, 3.1 . As
RŽ . Ž . nŽ .we have Tor S, M s 0 i ) 0 by assumption, we have V S m M (i S R

n n nŽ . Ž . Ž .S m V M , and we have d S m M s d M .R R S R R

Proof of Proposition 4.3. Since it is sufficient to prove that
Ŝm fR 6ˆ ˆ ˆ0 ª S m Y S m X ª S m M ª 0R R R

ˆis the minimal Cohen]Macaulay approximation of S m M, we may as-R
sume that S is complete.

We proceed in several steps.
RŽ .Step 0. Note that Tor S, K s 0 for i ) 0 by Lemma 4.2. Wei R

w Ž .xhave that S m K ( K , since w is Gorenstein 4, 5.1 .R R S
RŽ .Step 1. Since Tor S, M s 0 for i ) 0 by assumption andi

RŽ . RŽ .Tor S, X s 0 by Lemma 4.2, we have Tor S, Y s 0 for i ) 0.i i

Step 2. We show that S m Y is of finite injective dimension over S.R
First note that a module Y is of finite injective dimension if and only if
there exists an exact sequence

w w w wn ny1 1 0
0 ª I ª I ª ??? ª I ª Y ª 0 4.8Ž .n ny1 0

Ž .such that I is a finite direct sum of K j s 0, 1, . . . , n .j R
Ž .As the modules in 4.8 are Tor-independent of S by Step 0 and Step 1,

the sequence
Sm w Sm wR n R ny16 6

0 ª S m I S m I ???R n R ny1

Sm w Xm wR 1 R 06 6 6

S m I S m Y 0R 0 R

is exact.
Here S m I is a finite direct sum of K by Step 0. Thus, we concludeR j S

that S m Y is of finite injective dimension as an S-module.R

Step 3. We know from Step 2 that S m Y is of finite injectiveR
dimension. Since S m X is a maximal Cohen]Macaulay S-module byR

Ž . RŽ .Lemma 4.2, and 4.4 is an exact sequence by Tor S, M s 0, we have1
Ž .that 4.4 is a Cohen]Macaulay approximation of S m M over S.R

Step 4. Next, we show that the canonical homomorphism

S m Hom K , Y ª Hom S m K , S m Y 4.9Ž . Ž . Ž .R R R S R R R

Ž . Ž .given by a m f ¬ a ? S m f for a g S and f g Hom K , Y is surjec-R R R
tive. As this is obvious when S is R-flat, we may assume that w is

Ž .surjective consider the Cohen-factorization of w so that S s RrI for a
proper ideal I of R of finite projective dimension. Note that

0 ª I m Y ª Y ª S m Y ª 0 4.10Ž .R R
RŽ . RŽ . R Ž .is exact since Tor S, Y s 0, and that Tor I, Y ( Tor S, Y s 0 for1 i iq1

i ) 0.
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Let F be a finite free resolution of I. Then, as we have that F m Y ªR
I m Y is quasi-isomorphic and that each term of F m Y is of finite injec-R R
tive dimension, we have that the injective dimension of I m Y is finite.R

Ž .From the exact sequence 4.10 , we obtain an exact sequence

Hom K , Y ª Hom K , S m Y ª 0 s Ext1 K , I m YŽ . Ž . Ž .R R R R R R R

Ž . Ž .by Proposition 2.1 a . This shows that the map 4.9 is surjective.
Step 5. By an argument similar to Step 4, we also have that the

canonical map

S m Hom X , K ª Hom S m X , S m K 4.11Ž . Ž . Ž .R R R S R R R

is surjective.
Ž .Step 6. Lastly, we prove that the sequence 4.4 is minimal. Assume

Ž .the contrary. Then there exist s g Hom S m X, S m K and t gS R R R
Ž . Ž .Hom S m K , S m Y such that s ( S m f (t is the identity map ofS R R R R

S m K .R R
Ž .By Step 4 and Step 5, we can write s s Ý a S m s and t si i R i

Ž . Ž . Ž .Ý b S m t for some s g Hom X, K , t g Hom K , Y , andj j R j i R R j R R
Ž .a , b g S . A s we have s ( S m f ( t s id, we havei j R

Ž Ž .. Ž .S m Ý Ý a b s ( f (t s 1 in Hom S m K , S m K ( S. ThisR i j i j i j S R R R R
Ž . Ž .shows that, at least for one i, j , we have that s ( f (t g Hom K , Ki j R R R

s R is not contained in the maximal ideal m , because w is local. This
shows that Y and X have the common direct summand K through f ,R
and this is a contradiction.

5. MAIN THEOREM

Our main result in this paper is the following.

Ž . Ž .THEOREM 5.1. Let w : R, m ª S, n be a flat local homomorphism of
Gorenstein local rings, and F s SrmS be the closed fiber. Then we ha¨e

index S F index R ? ll ll F .Ž . Ž . Ž .
Proof. We proceed in two steps.

Step 1. We first prove Theorem 5.1 for d s dim F s 0. Let f s
Ž . Ž . fll ll F and r s index R . By definition of Loewy length, we have n ; mS,

and it follows n f r ; m rS. Since there is an epimorphism Srn f r ª
r r Ž f r . Ž r .Srm S ( S m Rrm , we know that d Srn G d Srm S by Proposi-R S S

Ž r . Ž r .tion 2.6. But Corollary 4.6 shows d Srm S s d Rrm ) 0, and thisS R
Ž . Ž . Ž .shows that index S F index R ? ll ll F .
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Ž .Step 2. Next we prove Theorem 5.1 in general. Let f s ll ll F . Then
we can find a system of parameters x , x , . . . , x g F such that1 2 d

Ž . Ž . Ž .ll ll F s ll ll F , where F s Fr x , x , . . . , x F. We set S s1 2 d
Ž . Ž .Sr x , x , . . . , x S, where x is a preimage of x i s 1, 2, . . . , d , and1 2 d i i

w
define the local homomorphism c : R ª S as the composite R ª S ª S,
where the second arrow is the natural map. Then x , x , . . . , x is an1 2 d

w xS-regular sequence and c is flat by Corollary of Theorem 22.5 in 15 .
Ž . Ž . Ž .By Step 1, we have index S F index R ? ll ll F . Thus we know

Ž . Ž . Ž . Ž . Ž . Ž .that index S F index S F index R ? ll ll F s index R ? ll ll F by
Theorem 1.1.

Ž . Ž .COROLLARY 5.2. Let w : R, m ª S, n be a flat local homomorphism
of Gorenstein local rings and F s SrmS a regular local ring. Then we ha¨e

index R s index S .Ž . Ž .

Proof. This is clear because of Theorems 5.1 and 1.1 and the fact
Ž .ll ll F s 1.

In what follows, k denotes a field.

EXAMPLE 5.3. Let r and f be positive integers, and set

r r fw x w xR s k X r X ; S s k X , Y r X , Y .Ž . Ž .

ww xx Ž f .Then, S is R-flat, and the closed fiber is F s k Y r Y . Then
Ž . Ž . Ž .index R s r, index S s r q f y 1, and ll ll F s f. Therefore, we have
Ž . Ž . Ž .index S F index R ? ll ll F , and equality holds if and only if r s 1 or

f s 1.

Ž .EXAMPLE 5.4. With the same r, f , and R as in 5.3 , we set S s
ww xx Ž r f . ww xx Ž f r .k X, Y r X , X y Y ( k Y r Y . Then, S is flat over R, and we

ww xx Ž f . Ž . Ž .get F s k Y r Y and index S s fr. Therefore, we have index S s
Ž . Ž .index R ? ll ll F .

We say that a Z-graded k-algebra R s [ R is homogeneous when Rii
is generated by finite degree one elements over R s k. The Hilbert series0

Ž . Ž . i ww xxH t of R is defined by H t [ Ý dim R t g Z t . It is known thatR R iG 0 k i
Ž . Ž .d Ž . w x Ž .Q t [ 1 y t H t g Z t , where d s dim R. The degree of Q t isR R R

Ž . w xdenoted by s R . In 14 , a graded analogue of d-invariants, indices, and
w xgeneralized Loewy lengths are discussed. Herzog 14 proved that for a

Ž . Ž .homogeneous Gorenstein k-algebra R, we have index R s s R q 1 s
Ž . w xll ll R , provided k is infinite. This result is generalized by Ding in 13 .
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EXAMPLE 5.5. Let R and F be Gorenstein homogeneous k-algebras.
Ž .Then, S [ R m F is flat over R with the fiber F, and we have index S sk

Ž . Ž .index R q index F y 1.

Proof. We may extend the base field k if necessary, and may assume
Ž . Ž . Ž .that k is infinite by Corollary 5.2. Obviously, we have H t s H t H t .S R F

The equality follows from this and Herzog’s theorem.

6. LOEWY LENGTHS OF ARTINIAN MODULES

In this section, R is a local ring which is not necessarily
Cohen]Macaulay. Let I ; m be an ideal of R. We set G s Gr R, and letI
M denote the graded maximal ideal of G. As for G-modules, we only

Ž .consider graded ones. The Loewy length ll ll H of an artinian G-moduleG
n Žis the smallest integer n such that M H s 0 if one prefers local rings,

.then he or she might consider G . For an R-module M and m g M, weM
Ž .denote the initial form of m in Gr M by in m .I I

Ž .LEMMA 6.1. Let M be an artinian R-module. Then we ha¨e ll ll Gr MIG
Ž .F ll ll M .R

Ž . Ž .Proof. There exists some x , . . . , x g m such that in x , . . . , in x1 r I 1 I r
Ž .generates M. We set ll ll Gr M s s q 1. Then, there exists some 1 FI

Ž . Ž . Ž .i , . . . , i F r and m g M such that in x ??? in x ? in m / 0. This1 s I i I i I1 s

shows

in x ??? x m s in x ??? in x ? in m / 0,Ž . Ž . Ž . Ž .i i I i I i I1 s 1 s

and hence x ??? x m / 0.i i1 s

LEMMA 6.2. Let M be an artinian R-module. If I s m , then we ha¨e
Ž . Ž .ll ll Gr M s ll ll M .mG R

Proof. Assume that M sGr M s 0. Then we have m sMrm sq1M s 0,m
sand hence m M s 0. From this and Lemma 6.1, the result follows.

Ž . Ž .PROPOSITION 6.3. Let R, m and S, n be local rings, and R ª S a flat
local homomorphism with the artinian closed fiber F s SrmS. For an
artinian R-module M, we ha¨e

ll ll M q ll ll F y 1 F ll ll S m M F ll ll M ? ll ll F .Ž . Ž . Ž . Ž . Ž .RR S R

Proof. We set k s Rrm, R9 s Gr R, M9 s Gr M, and S9 s Gr S.m m m S
The graded maximal ideals of R9 and S9 are denoted by m9 and n9,
respectively. Then, S9 ( F m R9 is flat over R9, and we have an S9-iso-k

Ž . Ž . Ž .morphism Gr S m M ( F m M9. We set f s ll ll F and r s ll ll M .m S R k R
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Then, we have

fqry2 ry1fy1n9 F m M9 > n F m m9 M9 / 0Ž . Ž . Ž .k k

by Lemma 6.2. Hence, we have

ll ll S m M G ll ll Gr S m M ) f q r y 2Ž . Ž .Ž .R m S RS S9

by Lemma 6.1, and the first inequality follows.
As we have

n r f S m M ; m r S m M s 0,Ž . Ž .R R

the second inequality is obvious.

COROLLARY 6.4. Let R ª S be a flat homomorphism of artinian local
rings with the fiber F. Then, we ha¨e

ll ll R q ll ll F y 1 F ll ll S F ll ll R ? ll ll F .Ž . Ž . Ž . Ž . Ž .
Examples can be found in Section 5.
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