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Abstract

In this paper we initiate the study of composition operators on the noncommutative Hardy space Hl%all’
which is the Hilbert space of all free holomorphic functions of the form

o0
FX1 X)) =) Y aeXa, Y laal <1,

k=0 |a|=k weF}

where the convergence is in the operator norm topology for all (X1, ..., X;) in the noncommutative oper-
atorial ball [B(H)"]; and B(H) is the algebra of all bounded linear operators on a Hilbert space H. When
the symbol ¢ is a free holomorphic self-map of [ B(H)"];, we show that the composition operator

Cofi=fop, fEH}%a]l,

is bounded on H&a“. Several classical results about composition operators (boundedness, norm estimates,
spectral properties, compactness, similarity) have free analogues in our noncommutative multivariable set-
ting. The most prominent feature of this paper is the interaction between the noncommutative analytic
function theory in the unit ball of B(H)", the operator algebras generated by the left creation operators on
the full Fock space with n generators, and the classical complex function theory in the unit ball of C". In
a more general setting, we establish basic properties concerning the composition operators acting on Fock
spaces associated with noncommutative varieties Vp, (H) € [B(H)"]; generated by sets Py of noncom-
mutative polynomials in # indeterminates such that p(0) =0, p € Py. In particular, when Pg consists of the
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commutators X; X j — X ; X; fori, j =1,...,n, we show that many of our results have commutative coun-
terparts for composition operators on the symmetric Fock space and, consequently, on spaces of analytic
functions in the unit ball of C”".
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0. Introduction

An important consequence of Littlewood’s subordination principle [12,6] is the boundedness
of the composition operator C, on the Hardy space H 2(D), when ¢ : D — D is an analytic
self-map of the open unit disc D := {z € C: |z| < 1} and Cy, f := f o ¢. This result was the
starting point of the modern theory of composition operators on spaces of analytic functions,
which has been developed since the 1960’s through the fundamental work of Ryff [42], Nord-
gren [18,19], Schwartz [46], Shapiro [44], Cowen [2] and many others (see [45,3,1], and the
references therein). They answered basic questions about composition operators such as bound-
edness, compactness, spectra, cyclicity, revealing a beautiful interaction between operator theory
and complex function theory. In the multivariable setting, when ¢ is a holomorphic self-map of
the open unit ball

B, :={z=(z1,...,20) €C": |lzll2 < 1},

the composition operator C,, is no longer a bounded operator on the Hardy space H 2(B,). How-
ever, significant work was done concerning the spectra of automorphism-induced composition
operators and compact composition operators on H 2(B,) by MacCluer [13-15] and others (see
[3] and its references). The study of composition operators on the Hardy space H>(B,,) is close
connected to the several variable function theory in the unit ball of C" [41]. There is an exten-
sive literature on composition operators on other spaces of analytic functions in several variables
(see [3]).

For the interested reader, we mention two very nice books on composition operators: Shapiro’s
monograph [45], which is an excellent account of composition operators on H>(D) and the
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monograph [3] by Cowen and MacCluer, which is a comprehensive treatment of composition
operators on spaces of analytic functions in one or several variables.

It is our hope that the present paper will open a new chapter in the theory of composition
operators. The goal is to initiate the study of composition operators on the noncommutative
Hardy space Hﬁa“ (which will be introduced shortly) and, more generally, on subspaces of the
full Fock space with n generators associated to noncommutative varieties. The most prominent
feature of this paper is the interplay between the noncommutative analytic function theory in
the unit ball of B(H)", the operator algebras generated by the left creation operators Sy, ..., Sy
on the full Fock space with n generators: the Cuntz—Toeplitz algebra C*(Sy, ..., S,) [4], the
noncommutative disk algebra 4, and the analytic Toeplitz algebra F,>° [26-29], as well as the
classical function theory in the unit ball of C” [41]. To present our results we need some notation
and preliminaries on free holomorphic functions.

Initiated in [33], the theory of free holomorphic (resp. pluriharmonic) functions on the unit
ball of B(H)", where B(H) is the algebra of all bounded linear operators on a Hilbert space
'H, has been developed very recently (see [34—39]) in the attempt to provide a framework for the
study of arbitrary n-tuples of operators on a Hilbert space. Several classical results from complex
analysis and hyperbolic geometry have free analogues in this noncommutative multivariable set-
ting. Related to our work, we mention the papers [8,16,17], and [48], where several aspects of the
theory of noncommutative analytic functions are considered in various settings. We recall that
the algebra Hpap of free holomorphic functions on the open operatorial n-ball of radius one is
defined as the set of all power series ), p+ do Zo With radius of convergence > 1, i.e., {da}ycpt
are complex numbers with lim Supk—>oo(Z|a|=k lag %)% < 1, where [t is the free semigroup
with n generators g1, ..., g, and the identity go. The length of « € ;" is defined by || := 0 if
a=goand |a| :=kifa=g; ---gi,whereiy,...,ire{l,...,n} . If (X1,..., X;) € BC(H)", we
denote Xy := X;, --- X;, and X, := I. A free holomorphic function on the open ball

[BH)"], = {(X1,.... X») € BAH": | X1 X)+ -+ X, X2[ /2 < 1),

is the representation of an element f € Hpan on the Hilbert space H, that is, the mapping

[BH)"], 2 (X1, X)) > f(X1, . X)) =) Y auXe € B(H),
k=0 |a|=k

where the convergence is in the operator norm topology. Due to the fact that a free holomorphic
function is uniquely determined by its representation on an infinite dimensional Hilbert space,
throughout this paper, we identify a free holomorphic function with its representation on a sepa-
rable infinite dimensional Hilbert space.

A free holomorphic function f on [B(H)"]; is bounded if || f||co := sup || f (X)|| < oo, where
the supremum is taken over all X € [B(H)"]; and H is an infinite dimensional Hilbert space. Let
Hl‘,’:“ be the set of all bounded free holomorphic functions and let Apgp be the set of all elements
f € Hyy, such that the mapping

[B(H)"], > (X1.....X») — f(X1.....X,) € B(H)

has a continuous extension to the closed unit ball [B(H)"];. We showed in [33] that Hl‘f;“ and
Apan are Banach algebras under pointwise multiplication and the norm | - ||, Which can be
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identified, via the noncommutative Poisson transform [30], with the noncommutative analytic
Toeplitz algebra F° and the noncommutative disc algebra .4,,, respectively.

If f:[B(H)"]ly = B(H) and ¢ : [B(H)"]1 — [B(H)"]; are free holomorphic functions then
f o ¢ is a free holomorphic function on [B(H)"]; (see [38]), defined by

(fo@Xi....X)=Y_ > apua(X1.....Xp). (X1.....Xy) € [B(H)"],.

k=0 |o|=k

where the convergence is in the operator norm topology. The noncommutative Hardy space Hl%all
is the Hilbert space of all free holomorphic functions on [B(H)"]; of the form

00
f(le--an):ZZaaXou Z |aa|2<1,
k=0 |a|=k acl;"

with the inner product (f, &) := Y320 Y|y =t daba, Where g = Y7207, s ba X is another
free holomorphic function in Hlfa“. The main question that we answer in this paper is whether
fope Hlfa“ forany f € Hlfa“ and whether the corresponding composition operator is bounded.
This will be the starting point in our attempt to develop a theory of compositions operators on
noncommutative Hardy spaces. We are interested in extracting properties of the composition
operator C,, (boundedness, spectral properties, compactness) from the operatorial or dynamical
properties of the model boundary function @ := SOT-lim, | ¢(r Sy, ..., rSy) € F° @ C" or the
scalar representation of ¢, i.e., the holomorphic function B, > A — ¢(1) € B,,.

In Section 1, we characterize the free holomorphic self-maps of [B(H)"]; in terms of the
model boundary functions with respect to the left creation operators on the full Fock space
F2(H,). This will be used, together with the natural identification of Hﬁau with F2(H,), to
provide a noncommutative Littlewood subordination theorem for the Hardy space Hﬁau. More
precisely, we show that if ¢ is a free holomorphic self-map of the ball [B(H)"]; such that
9(0)=0and f € H, then fog € HZyand | f ol < £,

Section 2 contains the core material on boundedness of compositions operators on the non-
commutative Hardy space Hl?all and estimates for their norms. An important role in our investiga-
tion will be played by the characterization of Hlfa“ in terms of pluriharmonic majorants [34] and
the Herglotz—Riesz type representation for positive free pluriharmonic functions [37]. The key
result of this section asserts that if ¢ is a free holomorphic automorphism of the noncommutative
ball [B(H)"]: (see [38]), then

<1 — el

1+ ||<p(0>||>”2
1+ O] 171

172
<IC, fII <
) A< INCy [l <l—||(p(0)||

forany f € Hl%all‘ Moreover, these inequalities are best possible and we have a formula for the
norm of Cy,. Combining this result with the noncommutative Littlewood subordination theorem
from the previous section, we obtain the main result which asserts that, for any free holomorphic
self-map ¢ of [B(H)"]1, the composition Cy, f := f o ¢ is a bounded operator on Hﬁau and

1 1+||¢<0)||)1/2
el <)
A= ez SIl (1—||<p(0>||
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This leads to an extension of Cowen’s [2] one-variable spectral radius formula for composition
operators to our noncommutative multivariable setting. More precisely, we obtain

r(Cy) = lim (1™ @) ™",

where ¢!kl is the k-iterate of ¢. Another consequence of the above-mentioned result is that Cy
is similar to a contraction if and only if there is & € B, such that ¢ (&) = &. This will also show
that similarity of composition operators on Hﬁa“ to contractions is equivalent to power (resp.
polynomial) boundedness. This is interesting in light of Pisier’s [22] famous example of a poly-
nomially bounded operator which is not similar to a contraction, and Paulsen’s [20] result that
every completely polynomially bounded operator is similar to a contraction. For more informa-
tion on similarity problems we refer the reader to [21] and [23].

In Section 3, extending the classical result obtained by Wolff [50,51] and MacCluer’s version
for B,, (see [13]), we provide a noncommutative analogue of Wolff’s theorem for free holomor-
phic self-maps of [B(H)"];. We show that if ¢ : [B(H)"]; — [B(H)"]; is a free holomorphic
function such that its scalar representation has no fixed points in B, then there is a unique point
¢ € 0B, (the Denjoy—Wollff point of ¢) such that each noncommutative ellipsoid E.(¢) (see Sec-
tion 3 for the definition) is mapped into itself by every iterate of the symbol ¢. We also show
that the spectral radius of a composition operator on H&an is 1 when the symbol is elliptic or
parabolic, which extends some of Cowen’s results [2] from the single variable case.

In Section 4, we obtain a formula for the adjoint of a composition operator on lea“. It is shown
that if ¢ = (@1, ..., @) is a free holomorphic self-map of the noncommutative ball [B(H)"],
then

Cof =Y (f ¢alea,

acFy}

where f and ¢, ..., @, are seen as elements of the Fock space F2(H,). As a consequence we
prove that Cy, is normal if and only if

o(X1, ..., Xn)=[X1... X,]A

for some normal scalar matrix A € M, «, with ||A|| < 1. This leads to characterizations of
self-adjoint or unitary composition operators on Hlfa“. A nice connection between Fredholm
composition operators on Hga“ and the automorphisms of the open unit ball B, is also presented.

In Section 5, we study compact composition operators on the noncommutative Hardy space
H&an. Using some of Shapiro’s arguments from the single variable case (see [44]) in our setting
as well as some results from Section 4, we obtain a formula for the essential norm of the compo-
sition operator C, on Hlfall' In particular, this implies that Cy, is a compact operator if and only
if

lim sup Z |(f,<pa>|2=0.

k
T feH IS 12<] jo >k

Moreover, we show that if Cy, is a compact operator on Hlfa“, then the scalar representation of ¢
is a holomorphic self-map of B,, which
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(i) cannot have finite angular derivative at any point of dB,,, and
(i1) has exactly one fixed point in the open ball B,,.

As a consequence, we deduce that every compact composition operator on H&a“ is similar to
a contraction. In the end of this section, we prove that the set of compact composition operators
on Hga“ is arcwise connected in the set of all composition operators with respect to the operator
norm topology.

In Section 6, we consider a noncommutative multivariable extension of Schroder equation
[43] which is used to obtain results concerning the spectrum of composition operators on Hlfa“
(see Theorem 6.4). Combining these results with those from Section 5, we determine the spectra
of compact composition operators on Hlfa“. More precisely, if ¢ is a free holomorphic self-map
of the noncommutative ball [B(H)"]; and C,, is a compact composition operator on Hlfa“, then
the scalar representation of ¢ has a unique fix point £ € B, and the spectrum o (Cy) consists
of 0, 1, and all possible products of the eigenvalues of the matrix

[<wi’ ej)]nxn’

where y = (Y1, ..., ¥) := P 0o o D¢ and P is the involutive free holomorphic automorphism
of [B(H)"]; associated with &, the functions vy, ..., ¥, are seen as elements of the Fock space
F 2(Hn), and the Hilbert space H, has ey, es, ..., e, as orthonormal basis.

In Section 7, we consider composition operators on Fock spaces associated to noncommuta-
tive varieties in unit ball [B(H)"];. Given a set Py of noncommutative polynomials in »n indeter-
minates such that p(0) =0, p € Py, we define a noncommutative variety Vp,(H) € [B(H)" ]
by setting

Vp,(H) :={(X1..... Xp) € [BCH)"],: p(X1....,X,) =0 forall p e Po}.

According to [32], there is a universal model (By, ..., B,) associated with the noncommutative
variety Vp, (H), where B; = Prrp, SilNp, and Np, is a subspace of the full Fock space F 2(Hy).
Let F°(Vp,) be the w*-closed algebra generated by By, ..., B, and the identity. Using the
results from Section 2 and the noncommutative commutant lifting theorem [24] (see [47] for the
classical case n = 1), we show that given any }Z € FX(Vp,) ® C" with ||$|| < 1, one can define
a composition operator Cy; : Np, = Np,, which turns out to be bounded. Many results from the
previous sections have analogues in this more general setting. In particular, if P, := {X; X; —
X;X;:i,j=1,...,n}, then N'pc coincides with the symmetric Fock space. As a consequence,
many of our results have commutative counterparts for composition operators on the symmetric
Fock space and on spaces of analytic functions in the unit ball of C".

1. Noncommutative Littlewood subordination principle

In this section, we characterize the free holomorphic self-maps of the unit ball [B(H)"]; in
terms of the model boundary functions with respect to the left creation operators on the full Fock
space F2(H,). This will be used to provide a noncommutative Littlewood subordination theorem
for the Hardy space Hﬁa“.
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Let H, be an n-dimensional complex Hilbert space with orthonormal basis eg, e, ..., e,
where n € {1, 2, ...}. We consider the full Fock space of H, defined by

F2(Hy):=Cl e P B>,
k>1

where H,‘lg’k is the (Hilbert) tensor product of k copies of H,. We denote e, :=¢;, @ --- Q@ ¢;, if
a=gj &g, whereiy,..., iy €{1,...,n}, and ey, := 1. Note that {eD(}Ole]F;r is an orthonormal

basis for F2(H,,). Define the left (resp. right) creation operators S; (resp. R;),i =1, ..., n, acting
on F2(H,) by setting

Sip:=ei®¢, ¢eFX(Hy),

(resp. Ri¢ := ¢ ® ¢;). Note that §;R; = R;S; for i, j € {1,...,n}. The noncommutative disc
algebra A, (resp. R,) is the norm closed algebra generated by the left (resp. right) creation
operators and the identity. The noncommutative analytic Toeplitz algebra F,>° (resp. R;°) is the
weakly closed version of A4, (resp. R,). These algebras were introduced in [26] in connection
with a noncommutative version of the classical von Neumann inequality [49].

Let C*(Sy, ..., S,) be the Cuntz—Toeplitz C*-algebra generated by the left creation operators
(see [4]). The noncommutative Poisson transform at X := (X1, ..., X;;) € [B(H)"]{ is the unital
completely contractive linear map Py : C*(S1, ..., S;) = B(H) defined by

Px[f]:= lim K}y (f ® [)Krx.  f€CT (81, S,

where the limit exists in the operator norm topology of B(H). Here, K,x : H — F 2(Hn) QH,
0 < r < 1, is the noncommutative Poisson kernel defined by

o
K, xh ::Z Z ea®r|°‘|A,XX§h, heH,
k=0 |a|=k
where A, x := (I — r2X1X’1k — = ernX;f)l/z. We recall that

Px[SaSi]=Xo X}, o BeF,.

When X := (Xy, ..., X,) is a pure row contraction, i.e. SOT-limy_, oo Z|a|=k Xy X} =0, then
we have

Px[f1=K3(f®Ix)Kx, feC*(Si,...,5) or feFyX.

Under an appropriate modification of the Poisson kernel (e, becomes ez where & = g;, - - - g, is
the reverse of & = g;, -+ - g;, € F;"), similar results hold for C*(Ry, ..., R,) of RS°. For simplic-
ity, we use the same notation for the noncommutative Poisson transform. We refer to [30,31,35]
for more on noncommutative Poisson transforms on C*-algebras generated by isometries.
According to [33] and [37], the noncommutative Hardy space Hl‘)’;’“ (see the introduction) can
be identified with the noncommutative analytic Toeplitz algebra F,>°. More precisely, a bounded
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free holomorphic function ¥ on [B(H)"]; is uniquely determined by its (model) boundary func-
tion Y (S1, ..., Sp) € F° defined by

V=981, ...,S8):=SOT-lim ¥ (rSi, ...,rSy).
r—1

Moreover, v is the noncommutative Poisson transform of 1/~f(S1, LSy atX i =(Xq,..., Xy €
[B(H)"]1,i.e.,

V(X1 .., Xn) =Px[¥(S1,..., S0)]-

Similar results hold for bounded free holomorphic functions on the noncommutative ball
[B(H)"]; with operator-valued coefficients. There are also versions of these results when the
boundary function is taken with respect to the right creation operators Ry, ..., R,.

Throughout this paper, we deal with free holomorphic self-maps of the unit ball [B(H)"];.
The following results gives us, in particular, a characterization of these maps in terms of the
model boundary functions with respect to the left creation operators on the full Fock space
F2(H,). For simplicity, [X1, ..., X,] denotes either the n-tuple (X1, ..., X,;) € B(H)" or the
operator row matrix [X ... X,] acting from ", the direct sum of n copies of a Hilbert space
H, to H.

Theorem 1.1. Let ¢ : [B(H)"]1 — [B(H)™]| be a free holomorphic function. Then the following
statements hold.

(i) Either o([B(H)"11) C [B(H)™]1 or there exists { € B, such that ¢(X) = ¢ for all X €
[B(H)"]1.
(11) ¢ is constant if and only if || (0) || = [|¢ ]l co-
@iii) If ¢ is non-constant and ¢, (X) := ¢(rX), X € [B(H)"11, then the map [0, 1) 517 — ||¢r]l oo
is strictly increasing.
(iv) If @ is the boundary function of ¢ with respectto Sy, . .., Sy, then o([B(H)"11) C [B(H)™];
if and only if either ¢ = ¢ I for some { € B, or ¢ is non-constant with ||@|| < 1.

Proof. If |¢|lcc < 1, then (i) holds. Assume that ||¢|lcc = 1. In this case, if ||@(0)]] < 1
then, according to the maximum principle for free holomorphic functions (see Proposition 5.2
from [38]), we have [|¢(X)|| < 1 for all X € [B(H)"];. It remains to consider the case when
le@)] =1.Set ¢ =[¢1,.--,¢m] :==¢(0) € 0B, and let U € M,,x,, be a unitary matrix such
that [¢1,...,¢n]U =& :=1[1,0,...,0] € 9B,,. Let py(X) := [X1,..., X;,»]JU and note that
g =9y oe:[B(H)']} = [B(H)"]| is a free holomorphic function with g(0) = &;. Set-
ting ¢ = (g1,.-.,8m), we deduce that g; are free holomorphic functions with g;(0) = 1 and
gi(0)=0ifi =2,...,m. Applying Theorem 5.1 from [38] to g1, we deduce that g;(X) =1 for
all X € [B(H)"];. Hence g» = --- = g, = 0. This implies that ¢(X) = ¢ for all X € [B(H)"]1,
and completes the proof of item (i). Since the direct implication in item (ii) is obvious, we as-
sume that |@(0)|| = ||¢llco and ||¢]lco = 1. The rest of the proof of (ii) is contained in the proof
of item (i).

To prove item (iii), assume that ¢ is non-constant. Due to part (ii), we must have ||@(0)| <
l¢lloo- Using again Proposition 5.2 from [38], we have ||¢(X)| < ||l¢]loo for all X € [B(H)"];.
Let 0 <ry < rp < 1. Werecall that, if r € [0, 1), then the boundary function @, is in A, ® M1 xm,
where A, is the noncommutative disc algebra and ||y |lco = ||@r || = lr(S1, ..., 7Sy)|l. Using
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the noncommutative von Neumann inequality (see [26]) and applying the above-mentioned result
to ¢, and (X1, ..., Xp) = (%Sl, ol %Sn), we obtain

r ri
§0r2 _Sl""v_Sn
n r
which shows that (iii) holds.

Now we prove (iv). If o([B(H)"11) € [B(H)™]1, then [|@]| = [l@lloo < 1 and the result fol-
lows. Conversely, assume that ||@|| < 1 and @ is not of the form ¢ I for some ¢ € B,,. Then ¢ is
not a constant and due to (ii) we have ||¢(0)|| < ||¢]lco. Using now item (iii), we deduce that the
map [0, 1) > r — ||¢, |l is strictly increasing. If X := (X, ..., X,,) € [B(H)"]1, then there is
r € [0, 1) such that | X || < r. Consequently, due to the noncommutative von Neumann inequality,
we have

l@r lloo = ”‘Prl(Sh cee Sn)” = ‘ < ||§0r2(S]’-~~’ Sn)” = [|¢r, loos

leXi, ... X[ < oSt ....rS)| = llgrllo < 1.

The proof is complete. O

Note that if f € Hpay, then f € Hﬁa“ if and only SUP,-¢(0,1) | f@S1,...,rSp) 1| < oco. More-
over, in this case, we have

Ifla=tm|f@Sy,....rS)1| = sup | frSi,....rS)1].
r—1 ref0,1)

If £ =720 |ujmk @ Xo and g =Y 220 D",y ba X, are in Hy, then

(f8) = H(f(rSi o rSOL (S P SO oy

:< Z Ay €y, Z baea> .
F2(Hy,)

acFy acFy

Consequently, the noncommutative Hardy space Hl%au can be identified with the full Fock space
F?(H,), via the unitary operator I/ : Hﬁan — F?(H,) defined by the mapping

oo oo
HEn3) > auXa> Y > agea € F2(Hy).

k=0 |o|=k k=0 |o|=k

This identification will be used throughout the paper whenever necessary. We recall from [38]
that if f : [B(H)"]; — B(H) and ¢ : [B(H)"]y — [B(H)"]; are free holomorphic functions
then f o ¢ is a free holomorphic function on [B(H)"]; defined by

o0

(fo@Xi .o, X)) =Y > aupa(X1..... Xp), (X1.....Xy) € [B(H)"],.

k=0 |a|=k

where the convergence is in the operator norm topology.
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We can prove now the following noncommutative Littlewood subordination theorem for the
Hardy space H, ba“, which will play an important role in this paper.

Theorem 1.2. Let @ be a free holomorphic self-map of the ball [B(H)"]1 such that ¢(0) =0,
and let f € H, ball Then fog e Hl%all and || f ol < fll2.

Proof. Let ¢ := (¢1,...,¢,) be a free holomorphic self-map of the ball [B(#)"]; such that
©(0) =0, and let ¢ = (@1, ..., %) € F° ® C" be the model boundary function with respect to
the left creation operators S, ..., S,. Thus @; := SOT-lim, | ¢; (rSy,...,rSy) fori =1,...,n
Let P, be the set of all polynomials in F2(H,,) and define Cy:Pu—F 2(H,) by setting

Ca( Z aaea> = Z ag Py (l).

la|<m la|<m

If g := Z|a|<m ay Xy 1s a polynomial in ball’ then p :=Uq = Zlalgm agey is a polynomial
in FZ(H,). Note that p = p(0) + S (87 p), where p(0) = Pcp = ap := ag,. Hence, we
deduce that

n
Cgp=a0+ ) GiCs(Sip)-
i=1

Since ¢(0) = 0, the vector Z?:l (}}C;(Sl?kp) is orthogonal to the constants in FZ(HH). Conse-
quently, using the fact that [@], ..., @,] is a row contraction, we have

2

n
> @iCH(Sip)

i=1

n 2
P cs(sip)
i=1

ICzpI13 = laol* +

< lagl* +

Note that, foreachi =1, ..., n, we have
Cy(Stp) = (Sip (0)+Z<p, #(S387p).
j=1

Hence, using again that ¢ (0) = 0 and that [¢1, ..., @,] is a row contraction, we deduce that

{5

2 2

n

B(sp)©)

i=1

n 2
P cs(srp)
i=1
2

n
> @iCH(S3S7p)

j=1

> laal + H @D ¢ Sﬂp

Ia\ 1 1Bl1=2

n
<Y laglP+) ]

Ja|=1 i=1
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Similarly, for any k € {1, ..., m + 1}, we obtain
2 2
| @ catsin)) < Tl +| D cstsin)
|Bl=k—1 la|=k—1 |Bl=k

Using these relations and the fact that S yp=0for |y| >m+ 1, we obtain

ICpI3< D laal*=pl3.

|la|<m
Since UC U~ p = Cyp, we deduce that

ICyqll2 < ligll2  for any polynomial g € Hﬁau. (1.1)

Now, we prove that f o isin Hball forany f € H, ball and ||fo<p||2 I fll2.Let f(X1,...,Xn) =

Y reo ZI a|=k Ca Xo be a free holomorphic function in H, bau Then f o ¢ is a free holomorphlc
function on [B(H)"];, defined by

(Fo@)Xi,.... X)) =Y Y cau(X1,.... Xn), (X1..... Xp) €[BH)"],.

k=0 |at|=k

where the convergence is in the operator norm topology. In particular, we have

o0
(fo@St....rS)1=" " capu(rSi..... TS, (1.2)
k=0 |a|=k
where the convergence is in F%(H,). On the other hand, setting pp,,(X1,...,Xp) =

" cq Xy, we have p,, — f in H, 2 as m — oo. Therefore, {pm} is a Cauchy se-
k=0 Z|a| k ball
quence in Hball Due to relation (1.1), we have

| pm o — proolla <Ilpm — prll2, m,keN.

Hence, {p;, o ¢} is a Cauchy sequence in Hlfa“ and, consequently, there is g € Hga“ such that
Pmo@—> gin Hlfa“. Hence, for each r € [0, 1), we have

mlgnoo(pm o)TSt,...,rS)1=g@S,....,rSp1.
Combining this relation with (1.2), we get
grSt,....rS)l=(fop)TS1,...,rSp)1, rel0,1).
Since f o ¢ and g are free holomorphic functions, we deduce that fop =g € H ball- NOW, since

pmo@—> fogin H&a“, relation (1.1) implies || f o @|l2 < || fl2 for any f € Hba“. The proof is
complete. O
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If in addition to the hypothesis of Theorem 1.2, we assume that ¢ is inner, i.e. the boundary
function ¢ is an isometry, then we can prove the following result.

Theorem 1.3. Let ¢ be an inner free holomorphic self-map of the ball [B(H)"] such that
©(0) = 0. Then the composition operator Cy is an isometry on H&a“.

Proof. Let ¢ := [¢], ..., ®,] be the boundary function of ¢ with respect to the left creation
opeartors. Note that due to the fact that ¢(0) = 0, we have (1, g, 1) =0 for any « € F; with
la| > 1. On the other hand, since [@1, ..., @,] is an isometry, we have ¢;¢; = 8;jIp2y,, for
i,je({l,...,n}. Consequently,

(" (Pﬂ>[-1€a“ = <$Oll7 aﬁ”

(py1,1) ifa=By,

=11 if o = B,
(1,9,1) ifp=ay
1 ifa=8,
10 ifa#B.
This shows that {q},cp+ is an orthonormal set in Hﬁa“. If f=Y72, Zlalzk ce Xy 18 in Hlfan,
then setting pp, (X1,...,X,) =Y jp Z|a\:k cq Xy, we have p,, — f in Hlfa“, as m — o0.
Note that

lpmool3 =<Z > caa Y > Cﬁ(ﬁﬂ> =" leal? =llpmll3- (1.3)

k=0 |o|=k k=0 |B|=k k=0 |or|=k

Consequently, { p,, o ¢} is a Cauchy sequence in Hlfa“ and thereis g € Hﬁa“ such that p,, 00 — g
in Hl%all' Hence, we deduce that

grSy,....rSy)1 =mli_)moo(pm o)(rSt,....,rS)l=(fop)rS1,...,rSp1, rel0,1).

Since f o ¢ and g are free holomorphic functions, the identity theorem for free holomorphic
functions implies f o ¢ = g. Therefore, relation (1.3) implies that Cy, is an isometry and the
proof is complete. O

2. Composition operators on the noncommutative Hardy space Hlfa“

This section contains the core material on the boundedness of compositions operators on the
noncommutative Hardy space Hlfa“ and the estimates of their norms. We also characterize the
similarity of composition operators on Ht%au to contractions.

Let 6 be an analytic function on the open disc I. It is well known that the map ¢ : D — R™
defined by ¢(X) := |6(1)|* is subharmonic. A classical result on harmonic majorants (see Sec-
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tion 2.6 in [6]) states that 6 is in the Hardy space H 2(D) if and only if ¢ has a harmonic majorant.
Moreover, the least harmonic majorant of ¢ is given by the Herglotz—Riesz [9,40] formula

2T .
1 ll_i_)\’ .
m):g/ o) Par. neD.
0

In [34], we obtained free analogues of these results. Since these results play an important role in
our investigation we shall recall them.

We say that a map & : [B(H)"]1 — B(H) is a self-adjoint free pluriharmonic function on
[B(H)"]; if h=0Rf = %(f* + f) for some free holomorphic function f on [B(H)"];. An
arbitrary free pluriharmonic function is a linear combination of self-adjoint free pluriharmonic
functions. A pluriharmonic curve in C*(S1, ..., S,) isamap ¢ : [0, 1) —> A, + A, satisfying
the Poisson mean value property, i.e.,

(0(7’)=P§S[(p(t)] forO<r<t<1,

where S := (S1,...,S,) and Px[u] is the noncommutative Poisson transform of u# at X. Ac-
cording to [37], there exists a one-to-one correspondence u > ¢ between the set of all free
pluriharmonic functions on the noncommutative ball [ B(H)"];, and the set of all pluriharmonic
curves ¢ : [0, 1) — A* + A, 'l Moreover, we have

u(X)=Piy[e(r)] forX e[B(H)"] andre(0,1),

and ¢(r) = u(rSy,...,rS,) if r € [0, 1). We say that a map ¥ : [0, 1) = A, + A,I'l is self-
adjoint if ¥ (r) = ¥ (r)* for r € [0, 1). We call ¥ a sub-pluriharmonic curve provided that for
each y € (0, 1) and each self-adjoint pluriharmonic curve ¢ : [0, y] — A, + A, I if Yv(y) <
o(y), then ¥ (r) < ¢(r) forany r € [0, y]. We proved that a self-adjoint map g : [0, 1) —
Ax+ A, Il is a sub-pluriharmonic curve in C*(Sy, ..., S,) if and only if

g(r) <P§S[g(y)] forO<r<y<1.

We obtained a characterization for the class of all sub-pluriharmonic curves that admit free
pluriharmonic majorants, and proved the existence of the least pluriharmonic majorant. We men-
tion that all these results can be written for sub-pluriharmonic curves in C*(Ry, ..., R,), where
Ry, ..., R, are the right creation operators on the full Fock space.

In [34], we showed that, for any free holomorphic function ® on the noncommutative ball
[B(H)"], the mapping

¢:[0,1) > C*(Ry,..., Ry, o(r)=ORy,...,rR)*O(Ry,...,rR,),

is a sub-pluriharmonic curve in the Cuntz—Toeplitz algebra generated by the right creation op-
erators Ryq, ..., R,. We proved that a free holomorphic function ® is in the noncommutative
Hardy space Hﬁa“ if and only if ¢ has a pluriharmonic majorant. In this case, the least plurihar-
monic majorant ¥ for ¢ is given by ¥ (r) :=NW @Ry, ...rR,), r € [0, 1), where W is the free
holomorphic function having the Herglotz—Riesz type representation
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n n -1
WX, Xn) = (g ®id)[<I+ZRf®Xi> (1-2Rf®xi> }
i=1

i=1

for (X1,...,X,) € [B(H)"]1, where g : R}, + R, — C is a positive linear map uniquely deter-
mined by the function .

Now, we need to recall from [38] some basic facts concerning the free holomorphic automor-
phisms of the noncommutative ball [B(H)"];. A map ¢ : [B(H)"11 — [B(H)"]; is called free
biholomorphic if ¢ is free homolorphic, one-to-one and onto, and has free holomorphic inverse.
The automorphism group of [B(H)"];, denoted by Aut([B(H)"]1), consists of all free biholo-
morphic functions of [B(H)"];. It is clear that Aut([B(H)™"]) is a group with respect to the
composition of free holomorphic functions. We used the theory of noncommutative characteris-
tic functions for row contractions [25] to find all the involutive free holomorphic automorphisms
of [B(H)"]1, which turned out to be of the form

QA(Xla "‘1XI1) =_@)\.(X1’ "'aXﬂ)’ (XI’”"XI'I) € [B(H)n]]s

for some A =[Aq, ..., A,] € B, where ©®, is the characteristic function of the row contraction A,
acting as an operator from C” to C. We recall that the characteristic function of the row contrac-
tion A is the boundary function (with respect to Ry, ..., R;)

@, := SOT- lim ©; (R, ..., rRy)
r—1

of the free holomorphic function ®;, : [B(H)"]; — [B(H)"]; given by

-1
n
OL(X1s s Xn) 1= —h+ Ay <1H - ZL&-) [X10 ooy Xnl e

i=1

for (X1, ..., Xn) € [B(H)"]1, where Ay = (1 — [[A]13)!/%I¢ and Az» = (I — A*A)1/2. For sim-
plicity, we used the notation A :=[A1Ig, . .., A, Ig] for the row contraction acting from G M o G,
where G is a Hilbert space.

In [38], we proved thatif A :== (A1, ..., X,) € B,\{0} and y := m, then @, := —®, is a free
holomorphic function on [B(H)"],, which has the following properties:

(1) @,(0) =A and @, (1) =0;
(i1) the identities

Iy — P (X) oY) = Ay (I — XA%) (1 = X¥*) (1 = 2x*) ' A,
Inggon — Bu(X)* D (Y) = Mg (I — X*2) T (1 = X*Y) (I = 2*Y) ' A, (21)

hold for all X and Y in [B(H)"],;
(iii) @, is an involution, i.e., @, (P, (X)) = X forany X € [B(H)"],;
(iv) @, is a free holomorphic automorphism of the noncommutative unit ball [B(H)"]1;
(v) @, is a homeomorphism of [B(H)"]; onto [B(H)"]| ;
(vi) @, is inner, i.e., the boundary function @, is an isometry.
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Moreover, we determined all the free holomorphic automorphisms of the noncommutative ball
[B(H)"]; by showing that if @ € Aut([B(H)"]1) and X := @ (0), then there is a unitary operator
U on C" such that
® =@, 0Py,
where
Oy (X1, ... Xp) :=[X1,.... X, U, (X1,...,X,) € [B(H)"],.

We have now all the ingredients to prove the key result of this section.

Theorem 2.1. If ¢ is a free holomorphic automorphism of the noncommutative ball [B(H)"],
then Cy f € H2,y for all f € HZ,,, and

(1 — lle @)l

1+ ||¢(0)||>‘/2
1+ 9O)] 171

172
<|IC <
) 1< 1Cy Il (1_||(p(0)”

forall f € H&a“. Moreover, these inequalities are best possible and

1 0 1/2
1l = ( + llg( >||> '

L —[le0)|]
Proof. Let ¢ := (g1, ..., ¢,) be an inner free holomorphic self-map of the noncommutative ball
[B(H)"]1. Then the boundary function with respect to the right creation operators Ry, ..., R,
ie.,

@:=(@1,...,¢n), where g; :=SOT- liﬁm1 ©i(rRy,...,rRy),
r

is an isometry. Consequently, (Zl.*(ﬁj = 5ij1F2(Hn) fori, je{l,...,n}. Recall that Ry, ..., R, are
isometries with orthogonal ranges, so R} R; = 8;jIp2p,) fori, j € {1, ...,n}. Consequently, we
have

R, %fﬁ:ay, @y %fﬂ:ay,

R;Rﬁ: I lfa:ﬁ, and a&kaﬂ: I 1f0[=,3,
* 3 J— ~% I J—

R} ifa=py, ¢, ifa=py.

Fix a noncommutative polynomial p(Xy,..., X,) = Z|a|<m agr'®'X,. Note that, using the

above-mentioned relations and applying the noncommutative Poisson transform (with respect
to Ry, ..., Ry) at [@1, ..., @], we obtain

P[al ,,,,, an][p(rRls'-*1ar)*p(rR13---3ar)]:p(rah~--1r$n)*p(ralv-~~’ran) (22)
for any r € [0, 1). Since p € Hga“, Theorem 2.3 from [34] shows that the map

[0, Dar— prRy,...,rR)*p(rRy,....,rR,) €C*(Ry,..., R))
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has a pluriharmonic majorant. In this case, the least pluriharmonic majorant is given by

[0,)>r+> RW(rRy,...rRy) € C*(Ry,..., Ry),

where W is the free holomorphic function on [B(H)"]; having the Herglotz—Riesz type repre-
sentation

n n -1
W(xl,...,xn)z(Mp®id)[<1+21€7®x,~>(1—ZRi*@X,-) } (2.3)
i=1

i=1

for (X1,..., X,) € [B(H)"]1, where 1), : R + R, — C is the completely positive linear map
uniquely determined by the equation

,up(Rg) = lini<p(rR1, s PR SEP(rRy, ..., TRy, 1) (2.4)
r—
for € F;, where @ is the reverse of & € F\, i.e., & = gj, -+~ g;, if @ = gi, -~ g, € F,. There-

fore, we have
prRy, ..., rR) p(rRy,....,7Ry) <RAWFRy,...,rRy)

for any r € [0, 1). Hence, using relation (2.2) and the fact that the noncommutative Poisson
transform is a completely positive map, we deduce that

pUrQL, ... r@) pr@n, ... r@n) KRW (@1, ..., 7%n)

for any r € [0, 1). The latter relation implies

P, .. .,r&n)le <[ReW(Ergy,....r¢) 1, 1) = RW (rg1(0), ..., r¢,(0)).

On the other hand, according to the Harnak type theorem for positive free pluriharmonic func-
tions (see [36]), we have

1+ rlle)]

Re W(V(p] (O), e §0n(0)) < SRW(O)W

Combining the latter two inequalities and taking » — 1, we deduce that

1+l

2= p@r, ..., o1 <RW O :
Ipoels=p@....501]| O 0l

(2.5)
Using the Herglotz—Riesz representation (2.3) and relation (2.4), we obtain

W) =pp() = lim | prR1.....rR)L|* = 13-
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Hence, and using relation (2.5), we have

L+ o]\ 2
Ipogll2<lpl2 (— (2.6)
1=l
for any noncommutative polynomial pE Hl?all Let f(X1,...,Xn) =Y 1o Z|a\ —xCaXq bea

free holomorphic function in H, b n- Then f o isafree holomorphlc function on [B(H)"]; and

o0
(Fo@)rSt,....rSOT=Y Y " capu(rSi,....,rS)I1, Q2.7)
k=0 |a|=k
where the convergence isin F2(H,). Setting p,, (X1,..., Xp) = kazo ka\ —i Ca X o, We have

pm — f in H, ba“ as m — oo. Therefore, {p,,} is a Cauchy sequence in Hb - Due to relation
(2.6), we have

L+l

1/2
lpm — prll2, m,keN.
1—||<p(0)ll> "

||pmo<p—pkocollz<<

Consequently, { p,, o ¢} is a Cauchy sequence in Hlfa“ and thereis g € H ban Such that p, op — g

in Hhall as m — o0o. Hence, and using relation (2.7), we deduce that

grSy,...,rS)l= lim (prLo)(rSy,...,rS)1I=(fop)rSt,...,rS)1, rel0,1).
m— 00

Since f o ¢ and g are free holomorphic functions, the identity theorem for free holomorphic
functions implies f o ¢ = g. Using that fact that p,, o9 — f o@ in Hl%all and relation (2.6), we
obtain

1 0 1/2
1f o gl < (%) £l f € Hi 28)

Since any free holomorphic automorphism of [ B(#)"]; is inner, i.e., its boundary function with
respect to Ry, ..., R, is an isometry, the result above implies the right-hand inequality of the
theorem.

Now, we prove the left-hand inequality. For each u := (1, ..., u,) € B,, we define the vec-
tOr 2y 7= D 40 D ||k Ha€as Where pg i= fuy -+ ju;, if & = gi, -~ gi, € FY andiy,...,ip €
{1,...,n}, and pg, = 1. Note that z,, € F>(H,) and Z,,(X) := D k=0 X ja|=k B Xg is in Hl,
Since C,, is a bounded operator on Hball’ we have

(C22)X)=>">" buXa. Xe[BH)"],.

k=0 |a|=k

for some coefficients b, € C with ), cF |be|? < 00. Since the monomials {Xg} weF; form an
orthonormal basis for Hﬁa“, foreach o € IF,T, we have
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by = (C;Zu’ XO!) = <Zw Cso(Xa))
= (24, a(S1s ..., S1)
={(@a(S1, .. S)*zu, 1),

Since S¥z, = i1;z,, one can see that ¢y (S1, ..., S;)*2, = @a(1t)z,. Consequently, we deduce
that by = ¢4 (1), @ € F;", and

CoZu=Y_Y tai)Xa=Zpqy, 1:=(1, ... 1) €By. (2.9)
k=0 |a|=k

A straightforward computation shows that

172
Ics2u =egio = (=)
L=l

Now, we assume that ¢ = @, € Aut([B(H)"];1). Then, using relation (2.1), we deduce that

ICo, Il = | C ||>”C3>AZ“”=( L= I )‘/2:<w)1/2
p D), 1Z.| 1 —||D5()? [T

for any u € B,,. Taking © — — H%I and using the fact that @, (0) = A, we obtain

1+ |I¢A(0)|I)1/2

Co,ll >
ICol (1—”@(0)”

Combining this inequality with relation (2.8), we obtain

1+ 10,01\ /2
) _(1+12:0)) ’ 2.10
1Ca, |l <1 — ||¢>A(O)||) ( |

which also shows that the right-hand inequality in the theorem is sharp.

Now, we assume that ¢ € Aut([B(H)"]1) with ¢(0) = A. Then, due to [38], we have ¢ =
@, o @y, where U € B(C") is a unitary operator. Since @y is inner and @y (0) = 0, Theo-
rem 1.3 shows that Cg¢,, is an isometry. Consequently, using relation (2.10) and the fact that
Cy = Cg, Co,, we deduce that

1 0 1/2
||C¢||=< +||¢<>||) '
1=l

Taking into account that @, o @, = id, we deduce that

14 1|®5.0)]\ />
—+ | x()ll) ICo, f1

< Co, Il Co, <s\iTioon
1/ <ICa, NICa, fI <1—||d>,\(0)||
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for any f € H, ball Now, we assume that ¢ € Aut([B(H)"]1) with ¢(0) = L. As above, ¢ =
@) 0Py and Cy = Ce, Co, . Since Cg,, is an isometry, the latter inequality implies

B 1/2
||c¢f||=||c@c¢,,f||>(w> 1£1.
EPO]

which shows that the left-hand inequality of the theorem holds. To prove that this inequality is
sharp, let gx € H,y with [[gkllo =1 and [|Co, || = limg—, ¢ | Co, gkl Set fi := Co, g and note
that the inequality (rrg=gi) /I fill < 1ICa fil is equivalent to | Co gill < (EgGH" /2,
which is sharp due to (2.10), and proves our assertion. The proof is complete. O

Theorem 2.2. If ¢ is an inner free holomorphic self-map of the noncommutative ball [B(H)"]1,
then Cy f € Hﬁa“ forall f € Hl%all’ and

1= ||<p(0>||)”2 - (1 + ||<o<0>||>”2
_wern e < —
(1 Tipon) MISIGIIS ) VI

forany f € H, bau Moreover, these inequalities are best possible and

14 ||<p<0>||>”2
Coll= ————— .
ISl <1 — O]

Proof. First, we consider the case when ¢ is an inner free holomorphic self-map of the noncom-
mutative ball [B(H)"]; with ¢(0) = 0. Then Theorem 1.3 shows that the composition operator
C, is an isometry on H&a“ and, therefore, the theorem holds.

Now, we consider the case when X := ¢(0) # 0. Since ¢ is a free holomorphic self-map
of the noncommutative ball [B(H)"];, we must have ||1|2 < 1. Let &, be the corresponding
involutive free holomorphic automorphism of [B(H)"]; and let ¥ := @, o ¢. Since @, is inner
and the composition of inner free holomorphic functions is inner (see Theorem 1.2 from [39]),
we deduce that ¥ is also inner. Since ¥ (0) = 0, the first part of the proof implies

ICy FI=IIfl. f€Hy

Consequently, using Theorem 2.1 and the fact that @, o @, =id, we get

1+ 12,0\ "2
1— ||¢A<0>||) 17

AR OIS
_<m> 7l @2.11)

1Co fll=1CuCo, fll =ICa, fIl < <

for any f € H, ba“ Similarly, one can show that

1 —[[®,(0)]] 172 (1—||</7(0)||)1/2
C =|C > —— —
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for any f € Hlfa“. Therefore, the inequalities in the theorem hold. Now, we show that they are
sharp. According to Theorem 2.1, we can find f; € Hl%a“ with || fx|l2 = 1 such that

14 ||‘1>A(0)||>1/2

li il = [ ——2——
kggOIIC@AkaI (1_”%(0)”

Hence, using relation (2.11) and the fact that @, (0) = ¢(0), we obtain

1- ||<o(0>||)”2

Jim (1€, fill = lim || Ca, fil <1+||go<0>||

which shows that the right-hand inequality in the theorem is sharp. Similarly, one can show that
the left-hand inequality is also sharp. The proof is complete. O

Now, we can prove the main result of this section.

Theorem 2.3. If ¢ is a free holomorphic self-map of the ball [B(H)"]1, then the composition
operator Cy f := f o ¢ is bounded on Hl%a“. Moreover,

1 =A% \'? 1 o)\ />
212<SUP< 1Al 2) <||C(p||<< +||<p()||> .
A= lle@H2 =g, \1— oM IO

Proof. If ¢(0) = 0, then the right-hand inequality follows from the noncommutative Littlewood
subordination principle of Theorem 1.2. Now, we consider the case when A := ¢(0) #£ 0. Since
IMll2 < 1, let @, be the corresponding involutive free holomorphic automorphism of [ B(H)"];
and let ¥ := @, o . Since ¥ is a free holomorphic self-map of the ball [ B(H)"]; with ¥ (0) =0,
Theorem 1.2 implies ||Cy || < 1. Using Theorem 2.1 and the fact that @, o @, = id, we deduce
that

14 ||go(0)||)”2_

IColl = ICy Ca, || < IICw || Cap, | <(
Y g ’ 1—[lp0)]

On the other hand, as in the proof of Theorem 2.1, we have

Icoll = Cy) = o2l _< S >1/2
el = -

(M 1—llowl?

for any € B,,. Hence, we deduce the left-hand inequality. The proof is complete. O

Under the identification of the noncommutative Hardy space Hga“ with the full Fock space
F%(H,), via the unitary operator I/ : Hlfa“ — F2%(H,) defined by

Hp 3 F > f = lim F(rSy,....rSl e F?>(H,),

the composition operator C, : Hﬁall — Hﬁa“ associated with ¢, a free holomorphic self-map of

[B(H)"11, can be identified with the composition operator C : F>(H,) — F?(H,) defined by
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) 00
Cy agey | ;= lim a, rSi,...,rS;)1 2.12
¢ ZZ aCa r%lzz aPa (rS1 n) ( )
k=0 |a|=k k=0 |a|=k

for any Y 72, Zm:k ageq € F2(H,). Indeed, note that Cs= L{C(pi/{’l )
A consequence of Theorem 2.3 is the following result.

Corollary 2.4. If ¢ is a free holomorphic self-map of the ball [B(H)"11, then the composition
operator Cg : F%(H,) — F*(H,) satisfies the equation

Ca(i > am) = i > aa (@),

k=0 |a|=k k=0 |a|=k
where the convergence of the series is in F2(H,) and @ :=SOT-lim, .1 @(rSy,...,rSy) is the
boundary function of ¢ with respect to the left creation operators Sy, ..., S,.

Proof. Let ¢ := (&), ..., @) be the boundary of @ and let f = 7o > lo|=k 9aXa be in Ht%all'

Due to Theorem 2.3 and the identification of Hlfa“ with F2(H,), we have
Z Ao (’Za 1

12 1/2
‘g(L‘P(O)”) ( » |aa|2) (2.13)
1 —llpO)|l
p<la|<m P=

forany p, m € N, p < m. Consequently, since f € HZ,,. the sequence {} /- D)=k GaPa Ly

is Cauchy in F 2(H,) and therefore convergent to an element in F 2(H,). Hence, and using rela-
tion (2.13), we deduce that

o0
Z Z Ao Pal

k=0 |a|=k

1+ o))"
<(l—nqa(mn) ok

Similarly, one can show that Y 72 szk agPa(rSi,...,rSy)1isin F2(H,) and

I OIS
<(1—||go<0>||> 171

o0
Z Z Ay Pa (ST, ..., rSy)1

k=0 |a|=k

for each r € [0, 1). Consequently, taking into account that @ := SOT-lim,_.; ¢(rS1, ..., rS,),
a simple approximation argument shows that

o0 [o,0]
}erllz > aaurSis .. rSOT=D" Y aul

k=0 |o|=k k=0 |o|=k
in F2(H,), which together with relation (2.12) completes the proof. O

In this paper, we will use either one of the representations Cy, or Cy for the composition
operator with symbol ¢.
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Corollary 2.5. Let ¢ = (¢1, ..., ¢n) be a free holomorphic self-map of the noncommutative ball
[B(H)"11 and let Cy, be the composition operator on Hl%au. Then the following statements hold.

@ lCell = 1.
(ii) Cy is a contraction if and only if ¢(0) = 0.

(iii) Cy is an isometry if and only if {¢y}aeF, is an orthonormal set in Hl%all‘

Proof. Since C,1 =1, we have || C,|| > 1. To prove part (ii), note that if || Cy || = 1, then accord-
ing to Theorem 2.3, we have

A= ez SICl=1

which implies ¢(0) = 0. Conversely, if ¢(0) = 0, the same theorem implies ||Cy|| = 1. Now,
assume that Cy, is an isometry. Then

8, =(Cy(Xa), Co(Xp)) = (@u, 9p), a.BEF;.

Conversely, assume that {¢q }¢cF, 1S an orthonormal set in Hlfall' Then, for any

f:ZZaaXa

k=0 |at|=k
in the Hardy space H&a“, we have
o 2 o0
ICo fIP= (D" aagu| =Y > laal*=1£I%
k=0 |ar|=k k=0 |at|=k

The proof is complete. O

Halmos’ famous similarity problem [7] asked whether any polynomially bounded operator is
similar to a contraction. This long standing problem was answered by Pisier [22] in a remarkable
paper where he shows that there are polynomially bounded operator which are not similar to
contractions. In what follows we show that, for compositions operators on Hlfa“, similarity to
contractions is equivalent polynomial boundedness.

Theorem 2.6. Let ¢ be a free holomorphic self-map of the noncommutative ball [B(H)"]| and
let Cy be the composition operator on Hl%all' Then the following statements are equivalent:

(i) Cy is similar to a contraction;
(ii) Cy is polynomially bounded,
(iii) Cy is power bounded,
(iv) thereis & € B, such that p(§) =§.

Proof. The fact that an operator similar to a contraction is power bounded and polynomially
bounded is a consequence of the well-known von-Neumann inequality [49]. We prove that
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(iii) = (iv). Assume that C, is power bounded, i.e., there is a constant M > 0 such that
||C(’;|| < M for any k € N. Note that the scalar representation of ¢, i.e. B, 5 A — ¢(A) € B,,
is a holomorphic self-map of B,. Suppose there is no & € B, such that ¢(§) = &. Then,
due to MacCluer’s result [13], there is y € 0B, called the Denjoy—Wolff point of the map
B, > A+ @(A) € B, such that the sequence of iterates ¢l := ¢ o --- 0 ¢ converges to y uni-
formly on any compact subset of B,,. In particular, we have [|¢¥1(0)|| = 1 as k — 0o. On the
other hand, Theorem 2.3 implies

1
(1= [l [H!/2°

| CZZ | =ICumll >

Consequently, ||C(’;|| — 00 as k — oo, which contradicts the fact that C, is a power bounded
operator. Therefore, item (iv) holds. Finally, to prove that (iv) = (i), assume that there is £ € B,
such that ¢(§) =&. Set ¥ := ®¢ o ¢ o @, where D¢ is the involutive free holomorphic auto-
morphism of [B(H)"]; associated with &. Note that ¥ is a bounded free holomorphic function
on [B(H)"]; and ¥ (0) = 0. Due to Theorem 1.2, we have ||Cy || < 1. On the other hand, since
Pz o0Ps=idand Cy =C ;; Cy Cq)g, the result follows. The proof is complete. O

Corollary 2.7. Let ¢ be a free holomorphic self-map of the noncommutative ball [B(H)" 11 and
let Cy be the composition operator on Hﬁa“. If there is & € B, such that ¢(§) = &, then the
spectral radius of Cy is 1.

Proof. According to the proof of Theorem 2.6, Cy, is similar to a composition operator Cy with
¥ (0) = 0. Since ¥¥1(0) = 0, Theorem 1.2 implies ||Cy || = 1 for any k € N. Consequently, we
have

r(CW) = r(C‘I/) == kli)n(;lo ”Cq/[k] ||1/k = 1

The proof is complete. 0O

Corollary 2.8. Let ¢ be an inner free holomorphic self-map of the noncommutative ball
[B(H)"11 and let Cy, be the composition operator on Hl%all' Then the following statements hold.

(1) Cy is an isometry if and only if ¢(0) = 0.
(i1) Cy is similar to an isometry if and only if there is § € B,, such that p(§) =§&.

Proof. Assume that Cy, is an isometry. Due to Theorem 2.2, we have

e ”_<1+||<p(0>||)”2
U =eon)

Consequently, ¢(0) = 0. The converse follows also from Theorem 2.2. Therefore, item (i) holds.
The direct implication in item (ii) follows from Theorem 2.6. To prove the converse, assume that
there is £ € B, such that ¢(§) =& and set ¥ := ®P¢ o ¢ o D¢, where D¢ is the involutive free
holomorphic automorphism of [ B(H)"]; associated with &.
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According to [39], the composition of inner free holomorphic functions on [B(H)"]; is in-
ner. Consequently, ¥ is an inner free holomorphic function and ¥ (0) = 0. Due to part (i), the
composition operator Cy is an isometry. Since Cy = C ;; CyC @ the result follows. O

The following result is an extension to our noncommutative multivariable setting of
Cowen’s [2] one-variable spectral radius formula for composition operators.

Theorem 2.9. Let ¢ be a free holomorphic self-map of the noncommutative ball [B(H)"]| and
let Cy be the composition operator on Hga“. Then the spectral radius of C,, satisfies the relation

r(Cy) = khféo(l - ||¢[k](0) ||)_1/2k~

Moreover,

. 1— e \"?
C = hm _—
rCy Mo<1 PRI
if the latter limit exists.

Proof. Note that Theorem 2.3 implies

( 1 )1/2k<”Ck||1/k<(1+||<o“‘](0)||)“2"<< 2 >1/2k
1 — [lplk1(0) |2 Sl = — e RGO '

Taking kK — 0o, we obtain the first formula for the spectral radius of C,. To prove the second
formula, note that

(€ = lim (1~ [0

k—1 1/2k
—im (] I )|
k=oo\ g 1= g7 1)

p=0
N e O e
koo\ 1 — [lpH11(0)]

if the latter limit exists. The proof is complete. O
3. Noncommutative Wolff theorem for free holomorphic self-maps of [ B(H)"];

In this section, we use Julia type lemma for free holomorphic functions [39] and the ideas
from the classical result obtained by Wolff [50,51] and MacCluer’s extension to B, (see [13]),
to provide a noncommutative analogue of Wolff’s theorem for free holomorphic self-maps of
[B(H)"]1. We also show that the spectral radius of a composition operator on Hﬁa“ is 1 when
the symbol is elliptic or parabolic, which extends some of Cowen’s results [2] from the single
variable case.



930 G. Popescu / Journal of Functional Analysis 260 (2011) 906-958

Julia’s lemma [10] says that if f : D — D is an analytic function and there is a sequence
{z&} € D with zx — 1, f(zx) — 1, and such that % is bounded, then f maps each disc in
D tangent to dID at 1 into a disc of the same kind. Wolff [50,51] used this result to show that if f
has no fixed points in D, then there is a unique point £ € dID such that any closed disc in D which
is tangent to D at £ is mapped into itself by every iterate of f,i.e., flll = f, fkt1l.= flklo £,
k € N. The Denjoy—Wolff theorem [50,5] asserts that, under the above-mentioned conditions,
the sequence of iterates of f converges uniformly on compact subsets of D to the constant map
g(z) =&, z € D. The point & is called the Denjoy—Wolff point of f. This result was extended to
the unit ball of C"* by MacCluer [13].

If A, B € B(K) are selfadjoint operators, we say that A < B if B — A is positive and invertible,
i.e., there exists a constant y > 0 such that (B — A)h, h) > y||h||*> for any h € K. Note that
T € B(K) is a strict contraction (||T|| < 1) if and only if TT* < I. For 0 <c¢ <1 and & =
(1,0,...,0), we define the noncommutative ellipsoid

E (&) = {(Xl, ..., Xn) € B(H)":

Xi—A-olllX;—-0-0)1 X2 X3 *
(X1 (1 —aNX; -~ A =ol] 22+M+ann<1}

c2

with center at (1 — ¢)&; and containing £ in its boundary. If £ € B,, we define the noncommuta-
tive ellipsoid E.(§) centered at (1 — ¢)& and containing & in its boundary in a similar manner.

In [39], we obtained a Julia type lemma for free holomorphic functions. Let F : [B(H)"]; —
[B(H)™]; be a free holomorphic function and F = (Fy,..., Fy,). Let {zx} be a sequence of
points in B,, such that limg_, » zx = (1,0, ...,0) € 9B, limg_, o F(zx) = (1,0,...,0) € 9B,,,
and

1= |IF @)l

3 =L <o
k—oo 1 — |zl

Then L > 0 and
(I—Fi(X)*)(I = FOOFX)*) (I = F(X)) <L(I—X3) (1 = XX*) ' (1 = X))
forany X = (X1, ..., X,) € [B(H)"]1. Moreover, if 0 < ¢ < 1, then

Lc

F(Ec(§D) CEy (€1, where y = 1= —.

In what follows we provide a noncommutative analogue of Wolff’s theorem for free holomor-
phic self-maps of [B(H)"];.

Theorem 3.1. Let ¢ : [B(H)" 11 — [B(H)"]1 be a free holomorphic function such that its scalar
representation has no fixed points in B,. Then there is a unique point ¢ € dB, such that each
noncommutative ellipsoid E.(¢), ¢ € (0, 1), is mapped into itself by every iterate of .

Proof. Let r; € (0,1) be a convergent sequence to 1. Define the map ¥y : [B(H)" =
[B(H)"]_ by ¥y := rre(X), X € [B(H)”]rk, and note that v is a free holomorphic func-
tion in [B(H)”]r’k Consequently, its scalar representation xj : [(C"] — [C"]~, defined by

rg?



G. Popescu / Journal of Functional Analysis 260 (2011) 906-958 931

xk V) =y (L), A € [C"] r.» 1s holomorphic in [(C"]r_k . According to Brouwer fixed point theorem

there exists A, € [(C”]r_k such that y (Ax) = Ax. Hence, (X)) = %k Passing to a subsequence and
taking into account that the scalar representation of ¢ has no fixed point in B,,, we may assume
that Ay — ¢ € aB,,. This implies that ¢(A¢) — ¢ and

1— L l?
L= lpao? 1=l
1 — Al 1 — [[All?
Consequently, we may assume that
1— o0 ?
loGI? _ ;|

koo 1 — [|Ag]?

Without loss of generality, we may also assume that ¢ = &; := (1,0,...,0) € 9B,,. Using the
above-mentioned Julia type lemma for free holomorphic functions, we deduce that L > 0 and

Lc

_. 3.1
1+Lc—c G-D

¢(Ec(£1)) CE, (1), where y :=
Note that X € E. (&) if and only if
(U =X)(1 = X7) < 7—(1 = Xx*).
—c

Since L < 1, it is easy to see that y < ¢, which implies E,, (§1) € E.(§1). Combining this with
relation (3.1), we obtain ¢ (E.(£1)) € E. (&) for any c € (0, 1), which proves the first part of the
theorem.

To prove the uniqueness, assume that there two distinct points ¢, ¢’ € 0B, such that
@(Ec(2)) CE:(¢) and @(E(¢")) € Ec(¢') for any ¢ € (0, 1). Let E‘E(;) be the scalar repre-
sentation of the noncommutative ellipsoid E.(¢) and let ¢C be the scalar representation of ¢.
Choose c, ¢’ € (0, 1) such that E;C(g ) and Ef:, (¢’) are tangent to each other at some point § € B,,.

Note that (p(c(é ) € Eg(; )n EE:, (¢’) = {&}, which contradicts the hypothesis. The proof is com-
plete. O

The point ¢ of Theorem 3.1 is called the Denjoy—Wolff point of ¢. We remark that Theo-
rem 3.1 shows that

1— 2
O<liminfLZ)2|| =a<l1
=¢ 11—zl

The number « is called the dilatation coefficient of ¢. When n = 1, « is the angular derivative of
@atg.

Combining Theorem 3.1 with Julia type lemma for free holomorphic functions [39], we obtain
the following result.
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Theorem 3.2. Let ¢ : [B(H)"]1 — [B(H)"11 be a free holomorphic function with Denjoy—Wolff
point ¢ € B, and dilatation coefficient «. Then, for any X € [B(H)"]1,

[1 = 2o ][ = p(XO0(X)*] 7 [1 = p(X)¢*] Sa(1 — ¢ X*) (1 = XX*) (I — X£¥).

Let ¢ : [B(H)"]1 — [B(H)"]; be a free holomorphic self-map. Following the classical case,
¢ will be called:

() elliptic if ¢ fixes a point in B,;;
(i) parabolic if ¢ has no fixed points in B, and dilatation coefficient o« = 1;
(iii) hyperbolic if ¢ has no fixed points in B,, and dilatation coefficient o < 1.

In the single variable case, when ¢ : D — D, Cowen [2] proved that the spectral radius of the
composition operator Cy, on H 2(D) is 1 if ¢ is elliptic or parabolic, and ﬁ if ¢ is hyperbolic.
We can extend his result to composition operators on Hlfa“ when the symbol ¢ is elliptic or
parabolic.

Theorem 3.3. Let ¢ be a free holomorphic self-map of the noncommutative ball [B(H)"11. If ¢
is elliptic or parabolic, then the spectral radius of the composition operator Cy, on Hga“ is 1.

Proof. The case when g is elliptic was considered in Corollary 2.7. Now, we assume that ¢ is
parabolic and let ¢ € 9B, be the corresponding Denjoy—Wolff point. According to MacCluer
version [13] of Denjoy—Wolff theorem, the iterates of the scalar representation of ¢ converge
uniformly to £ on compact subsets of B,,. In particular, we have ¢*1(0) — ¢ as k — oo. Since

1— %110y

1/2
1_H‘ﬂ[k] o)l ) > 1 Consequently,

the dilatation coefficient of ¢ is 1, we must have liminfi_, oo (
as in the proof of Theorem 2.9, we deduce that

L~ ooy N\ 2
r(Cy) < limsup<M> <1
koo \1— lok+110)]]

Taking into account that Cy,1 = 1, the result follows. O

To calculate the spectral radius of a composition operator on Hl%au when the symbol is hyper-
bolic remains an open problem. Another open problem is to find a Denjoy—Wolff type theorem
(see [5,50]) for free holomorphic self-maps of [B(H)"];.

4. Composition operators and their adjoints

In this section, we obtain a formula for the adjoint of a composition operator on Hlfa“. As
a consequence we characterize the normal composition operators on Hﬁau. We also present a

nice connection between Fredholm composition operators on H&au and the automorphisms of

the open unit ball B,,.
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Proposition 4.1. Let ¢ = (¢1, ..., ¢n) be a free holomorphic self-map of the noncommutative
ball [B(H)"11. Then the adjoint of the composition Cy, on Hl%all satisfies the relation

(C;f)(Xl,...,Xn)Z Z(fa(pa)Xav fEHt%a]r

aclF}

Proof. According to Theorem 2.3, then composition operator C,, is bounded on the Hardy space
2 )
Hy - X f =3020 2 jaj=k CaXq is in Hp,y, then,

Cif=Y_> baXa, Xe[BH)"],,

k=0 |a|=k

for some coefficients b, € C with ), F |be|? < 00. Since the monomials {Xg} el form an
orthonormal basis for Hﬁa“, we have

ba:<C;fv Xa):<fv C(p(Xoc)>:<fv(pa)’ (XE]F:~
The proof is complete. 0O

We remark that under the identification of H&a“ with the Fock space F2(H,,), the operator Cy
is unitarily equivalent to Cy (see Corollary 2.4) and

Cpg= ) (8. GuD)ea. ge F*(Hy).

acl;"

By abuse of notation, we also write C;f = Zaew(f, Ya)eq, Where f,@1,..., @, are seen as
elements in the Fock space F 2(H,,).

Theorem 4.2. Let ¢ be a free holomorphic self-map of the noncommutative ball [B(H)"],. Then
the composition operator Cy, on H&a“ is normal if and only if

(p(Xla 7Xl’l) - [X17 '~7Xl’l]A
for some normal scalar matrix A € M, «,, with ||A| < 1.
Proof. Assume that A = [a;;],xn is a scalar matrix and || A|| < 1. Then it is clear that the relation
(p(Xls ] Xn) = [Xl’ L] X}’l]Av (le sy Xn) € [B(H)n]l’
defines a bounded free holomorphic function ¢ : [B(H)"*]; — [B(H)"];. According to Theo-
rem 2.3, the composition operator C, is bounded on Hﬁa“. Setting ¢ = (1, ..., ¢n), we have
the Fock representation ¢; =} apje, foreach j =1,...,n. Fix p = g;, --- g, € F, and let

a=ej ---¢ej. Note that (eg, ¢, ) =0if || £ |y|, ¥ eF;, and

(eg, @a) =iy jy * iy ji -
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Consequently, using Proposition 4.1, we deduce that

C;é‘ﬁ = Z (eﬂs Poleqg = Z C_ll'l./'l B 'aikjkea'

la|=k a=ej e, i1,...ik€{1,...n}
Now, define
V(X1 Xp) = (X1, Xe]AY, (XL X)) €[ BAR)],

and note that v : [B(H)"]; — [B(H)"]; is a bounded free holomorphic function. Once again.
Theorem 2.3 shows that the composition operator Cy is bounded on Hlfa“. Setting v =
(Y1, ..., ¥n), we have the Fock representation ; = 27:1 ajjej foreachi =1,...,n. Hence, if
B=gi, g, €Fl, wehave

Cylep) =iy - Vi = > aiyjy o Aigjea-

This shows that C, ; = Cy. If we assume that A is a normal matrix, then ¢ o ¢ = v o ¢. Indeed,
for any (X1, ..., X,,) € [B(H)"]1, we have

(@oV)(X1,..., Xp) =[X1..... XalA*A=[X1, ..., Xu]AA* = (Y 0 9) (X1, ..., Xn).
Consequently, we deduce that
CyCyp=CyCy = Cyop = Cyoy = CyCp = C;Cy.

Now we prove the direct implication. Assume that ¢ is a free holomorphic self-map of the
noncommutative ball [B(H)"]; and the composition operator C, is normal. Since C,1 =1,
the vector 1 € F2(H,) is also an eigenvector for C(;. Since, due to Theorem 4.1, C;l =
Zaeﬂf:{(l’ ®a)eq, we deduce that (1, ¢,) =0 for all @ € F;" with |«| > 1. In particular, we
have (1, ¢;) = 0 which implies ¢;(0) =0 for i = 1,...,n. Therefore ¢(0) = 0 and C;l =1.
Consequently, we have

oX1,.... Xn)=[X1,.... Xp]A+ W1, ..., ¥0)

for some matrix A € M;,x, and bounded free holomorphic functions v; = ZI al>2 cg )ea, i =
1, ..., n. Consequently, using again the Fock space representation formula for the adjoint of Cy,
we obtain

C:;(eg,-) = Z (egiv Po)eq

aeF;

which implies that the subspace M := span{ey;: i = 1,...,n} is invariant under Cg. Since
M is finite dimensional, it is also invariant under Cy, and Cy|aq is a normal operator. This
implies that, for each j =1,...,n, Cy(e;) is a linear combination of ey, ..., e, and, conse-
quently, (X1, ..., X,) =[X1,..., X,]A for (X1,..., X,) € [B(H)"];. Since ¢ : [B(H)"]1 —
[B(H)"];, we must have [|A]| < 1. Setting ¥ (X1, ..., X,,) =[X1,..., Xy]A* for (X1,..., X,) €
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[B(H)" 11, the first part of the proof shows that Cy, is a bounded operator on Hlfa“ and C ; =Cy.
Since C, is normal, we have

Cyop = CyCy = CyCl=CiCy=CyCy = Cyoy.

which implies ¥ o p(X) = @ o ¥ (X), X € [B(H)"];. Hence, we deduce that [ X1, ..., X,]A*A =
[X1,..., X,]JAA* for any (Xq,..., X,) € [B(H)"];, which implies A*A = AA*. The proof is
complete. O

Due to Theorem 4.2, characterizations of self-adjoint or unitary composition operators on
H&a“ are now obvious.

Lemma 4.3. Let ¢ be a free holomorphic self-map of the noncommutative ball [ B(H)" 1, and let
Cy be the composition operator on H&a“. If the kernel of C, ;‘ is finite dimensional, then the scalar
representation of ¢ is one-to-one.

Proof. Let () = A\, ..., A)), j=1,...,k, be k distinct points in B, and fix p € {1,...,k}.

Foreach j € {1, ..., k} with j # p, there exists g; € {1, ..., n} such that )‘1(1[;) ;é)»((fj'.). Define the
free holomorphic function ¢, : [B(H)"]1 — B(H) by setting

! )
op(X1, ..., Xp) = H W(X‘Ij_)‘qj ).
Jell.... .k}, j#p i qj

Note that ¢, (AP)) = 1 and ¢, (L)) =0 for any j € {1, ..., k} with j # p.

For each p := (i1, ..., un) € By, we define the vector z,, :== ) ;,_, Z|a\:k HUyeq, Where
Mo i= iy -+ i, if @ =gi;---gi, € FFand iy,....ip €{1,...,n}, and g = 1. Since z,, €
F%(H,) and S¥zu = MiZy, one can see that (S, ..., Sy)*z, = mxu for any noncommuta-
tive polynomial g. Now we prove that the vectors z, ), ..., Z; & are linearly independent. Let
ai,...,ar € Cbesuchthataiz; oy +- - -+ akz,w = 0. Due to the properties of the free holomor-
phic function ¢,, p € {1, ..., k}, we deduce that

Pp(S1. .. S @iz + - Farzw) =a19p(AD) 00 + -+ argp (AR 50
zap(pp()\(l’))zk(p) =apzpm =0.

Hence, we deduce that a; = - - - = a; = 0, which proves our assertion.

Let ¥ : B, — B, be the scalar representation of ¢, i.e., ¥ (1) = ¢(1), A € B,. Assume that
there is £ € B, such that ¢ ~!(£) is an infinite set. Let {A{/)}rery € 1 (£) be a sequence of
distinct points. Due to relation (2.9), we have C:; (zyp) = C:; (2, w) = z¢, which implies z, () —
20 €kerC ;. As shown above, {z, ()} jen i a set of linearly independent vectors. Consequently,
ker Cj, is infinite dimensional, which contradicts the hypothesis. Therefore, for each § € By, the
inverse image 1//‘1(5 ) is a finite set. According to Rudin’s result (Theorem 15.1.6 from [41]),
Y : B, — B, is an open map. Suppose that ¥ is not one-to-one. Let u, v € B, u # v, be such
that ¢ (u) = ¥ (v), and let U, V be open sets in B, with the property that u € U, v € V, and
U NV #@. Since ¢ is an open map, we deduce that ¥ (U) N (V) is a nonempty open set.
Consequently, we can find sequences {)\,(j)}jeN C U and {,U«(j)}jeN C V of distinct points such
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that W(A(-/)) = I/J(M(-i)) for all j € N. As above, we deduce that z, ;) — Z,0) € ker C;’j for j e N.
Using the linear independence of the set {z; ()} jen U {z,,i) } jen, we deduce that ker C; is infinite
dimensional, which contradicts the hypothesis. Therefore, ¥ is a one-to-one map. The proof is
complete. O

Note that, unlike the single variable case, if n > 2, then the composition operator C, is not
one-to-one on Hba“. For example, one can take ¢ = (¢1, ¢1) : [B(H)?*]1 — [B(H)*]; and f =
erex — ezeq, and note that C, f =0.

We remark that if ¢ € Aut([B(H)"]1), then the composition operator C, is invertible on H&a“
and therefore Fredholm. It will be interesting to see if the converse is true. At the moment, we
can prove the following result.

Theorem 4.4. Let ¢ be a free holomorphic self-map of the noncommutative ball [B(H)" 1. If Cy
is a Fredholm operator on Hba“, then the scalar representation of ¢ is a holomorphic automor-
phism of B,,.

Proof. Let ¢ : B, — B, be the scalar representation of ¢, i.e., ¥ (1) := ¢(A), A € B,,. Due to
Lemma 4.3, ¢ is a one-to-one holomorphic map. We need to prove that ¥ is surjective. To this
end, assume that v is not surjective. Then there is a sequence {A**)} ¢ B, and ¢ € B, such that
2% — ¢ as k — oo and ¥ (A®)) — w for some w € B,,.

As we will see in the proof of Theorem 5.4 (see relation (5.2)), sz‘)

— 0 weakly as k — oo.
On the other hand taking into account relation (2.9), we have

C;Z)L(k) = Z Z (] ()\,(k))ea = Z(p()\(k)), k e N.
k=0 |o|=k

Hence, we get

‘ *< 200 )H llz 00
Iz |l lzwll

Since [|z,0) | = llzwll < o0 and ||z, ® || — oo as k — oo, we deduce that |IC;(

Lk
llz, a0 Il
B(FZ(H,,)) such that AC; — I = K for some compact operator K € B(FZ(H,,)). Consequently,

we have

<, (k)
lz, ) ll

)| = Oas

k — oo. Denote fj := Since C,, is a Fredholm operator on H[%a“, there is an operator A €

| ACE fie|” = Il fic + K fil® = 1 ficl® + 1K fiell® + 2R fi, K fi). 4.1)

Since K is a compact operator, || fx|| = 1 and fy — 0 weakly as k — oo, we must have
|K fx|| = 0. Consequently, we have [%{fr, Kfi)| < | flllKfxll = 0 as k — oo. On the other
hand, we have ||Cj;fk|| — 0. Now it is easy to see that relation (4.1) leads to a contradiction.
Therefore, v is surjective. In conclusion v is an automorphism of B,,. O
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ags 2
5. Compact composition operators on H'

In this section we obtain a formula for the essential norm of the composition operators Cy, on
Hl%all' In particular, this implies a characterization of compact composition operators. We show
thatif C,, is a compact operator on Hﬁa", then the scalar representation of ¢ is a holomorphic self-
map of B,, which cannot have finite angular derivative at any point of dB,, and has exactly one
fixed point in the open ball B,,. As a consequence, we deduce that every compact composition
operator on Hgan is similar to a contraction. In the end of this section, we prove that the set
of compact composition operators on Hlfa“ is arcwise connected in the set of all composition
operators.

We recall that the essential norm of a bounded operator 7' € B(H) is defined by

I

e =inf{||T — K||: K € B(H) is compact}.

Theorem 5.1. Let ¢ be a free holomorphic self-map of the noncommutative ball [B(H)"]1. Then
the essential norm of the composition operator Cy, on Hl%a“ satisfies the equality

1/2
. 2
ICqlle= Jim  sup (%\(ﬁ ¢a)| ) :

— 00
feH . I f12<1

Consequently, C, is a compact operator if and only if

. 2
lim sup E !(f,(pa)| =0.
k—o00 2
feHha“v Hf“Zgl || =k

Proof. Let ¢ be a free holomorphic self-map of the noncommutative ball [B(H)"];. Since Cy,
is a bounded composition operator on Hﬁa“ (see Theorem 2.3), one can use standard arguments
(see Proposition 5.1 from [44]) to show that the essential norm of the composition operator Cy,

2 . .
on Hy, satisfies the equality

Cylle = lim [[Cy Prll, (5.1
k— 00

where Py is the orthogonal projection of F 2(H,) onto the closed linear span of all e, with o € ]F,;r
and |a| > k. Indeed, note that the sequence {||Cy, Px|[}72 ; is decreasing and, due to the fact that
I — Py is a finite rank projection, we have ||Cy|l. < ||Cy Pill for any k € N. Hence ||Cyll, <
limy_, oo |Cy Pi||. On the other hand, let K be a compact operator and a := limy_, || K P||.
Assume that a > 0 and let € > 0 with 0 < a — €. Then there is a sequence hy € F2(H,) with
llhk]l <1, such that || Py K*hy|| > a — € for any k > N and some N € N. Since K* is a compact
operator, there is a subsequence k, € N such that K*hy, — v for some v € F 2(Hn). Conse-
quently, taking into account that Py, v — 0, || P¢|| < 1, and

| P K* i, | < 11 Pa, 011+ 11 Pay | |0 — K ¥,

I

m
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we deduce that Py, K*hy, — 0, which is a contradiction. Therefore, limg_, || K Px|| = 0. Note
also that

ICy — Kl = |(Cp — K)Pi| = I1Co Pl — | K.

Now, taking k — oo, we obtain ||Cy, — K|| > limi_ o ||Cy Pk ||, which proves relation (5.1).
According to Proposition 4.1 and the remarks that follow, we have

PCif =Y (f ¢a)eas [€F*(Hy),

lor| 2k

where Py is the orthogonal projection of the full Fock space F 2(H,) onto the closed span of the
vectors {ey: @ € IF,J{, la| >k}, and f, ¢1, ..., @, are seen as elements of the Fock space FZ(Hn).
Hence, we deduce that

172
[PCil = sup (Z|<f,<pa)|2>-

FEHZ AT N o>k

Combining this result with relation (5.1), we obtain the formula for the essential norm of C,.
The last part of the theorem is now obvious. O

Proposition 5.2. Let ¢ := (¢1, ..., ¢n) be a free holomorphic self-map of the noncommutative
ball [B(H)"11 and let Cy, be the composition operator on H&a“. Then the following statements
hold.

(i) If ¢ is inner then C, is not compact.
(ii) If ll¢lloo < 1 then Cy is compact.
(i) If llotlloo + -+ + ll@nlloo < 1, then Cy, is a trace class operator.
av) If lle1 ||C2>O +.-- 4 ||<p,1||g<> < 1, then Cy, is a Hilbert—Schmidt operator.

Proof. To prove item (i), assume first that ¢ is an inner free holomorphic self-map of the non-
commutative ball [B(H)"]; with ¢(0) = 0. As in the proof of Theorem 2.2, {¢q}, cF; is an

orthonormal set in Hﬁau. Consequently, if {aq}joj>k C C is such that 3, -, lag|? = 1, then
g:= Zlﬁl>k ageg is in F2%(H,) and | g|l» = 1. Note also that

S ligwadF= Y laal? =1.

la| =k || =k

Since {(;J(X}ME]F;r is an orthonormal set in Hl%a“, we have Zm;k [{f, <,00,)|2 < | fll2 for any f €
Hlfa“. Now, one can deduce that

1/2
2
sup (Z!mm!) =1.
FEHZ 1A N >k

Due to Theorem 5.1, we deduce that ||Cy |l = 1. Now, we consider the case when & := ¢(0) # 0.
Since the involutive free holomorphic automorphism @; is inner and the composition of inner
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free holomorphic functions is inner (see [39]), we deduce that ¥ := ®¢ o ¢ is an inner free
holomorphic self-map of [B(H)"];. Since ¥ (0) = 0, the first part of the proof shows that Cy is
not compact. Taking into account that Cy = Cy Cq)$, we deduce that Cy, is not compact.

To prove item (ii), let @ := (@], ..., @,) be the boundary function with respect to the left
creation operators Si,..., Sy, and set ||@]| =s < 1. It is easy to see that ||[@y: || = k]| <
(@1, ..., @nlll* =s*, k € N. For any g € F>(H,) and m € N, we have

Cog— Y Y (2 ea)Pull) > > e eam(l)”

k=0 |o|=k k=m+1 |a|=k
<g7€a>
< ) |[@a: lal =]
k=m+1 lo| =k
5 1/2
<> sk<Z|<g,ea>|>
k=m+1 lor|=k
12 5 1/2
<( > s2k> ( > Z|<g,ea>|>
k=m+1 k=m+1 |a|=k

sm

<llglh—-
V1 —s2
Consequently, the operator G, : F>(H,) — F?(H,) defined by
m
Gu(®) =Y Y (8 ea)Pull)
k=0 |a|=k
has finite rank and converges to the composition operator Cy in the operator norm topology.

Therefore, Cy, is a compact operator.
To prove item (iii), note that

o) [ele]
7 ~ ~ ~ nk
> Cgeall= 3 1FM] <303 18l < S (0710 + -+ 17 l) < oc.
ael,y aeF,} k=0 |oo|=k k=0
Consequently, Cy, is a trace class operator. Finally, we prove item (iv). First, note that Cy, is a

Hilbert—Schmidt operator if and only if ), cF; | oa |I% < 00. On the other hand, as above, one ca
show that

o
~ ~ k
D o ICgeal> <Y (111 + -+ 18al1?)" < o,
ote]F,T k=0

which shows that C,, is a Hilbert—Schmidt operator. The proof is complete. O
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Corollary 5.3. If ¢ is an inner free holomorphic self-map of the noncommutative ball [ B(H)"]
such that ¢(0) = 0, then the essential norm of the composition operator Cy, on Hbau is 1.

Theorem 5.4. Let ¢ be a free holomorphic self-map of the noncommutative ball [B(H)"]; and
let Cy be the composition operator on H&a“. Then the following statements hold.

(1) The essential norm of Cy, on Hl%all satisfies the inequality

1l 1 ( L yﬂ
zZ lmsup| ——— .
T =1 U= lle)I2

(it) If Cy is a compact operator on Hba“, then the scalar representation of ¢ cannot have finite
angular derivative at any point of 0B,,.

Proof. For each p:= (i1, ..., un) € By, we define the vector z,, := Y 7= Z|a|=k o€y, Where
Mo = Wiy " i, if o =g - 8i, eFj,’ and iy,...,ip €{l,...,n}, and pg, = 1. Since z, €
F2(Hn) and Si*zﬂ = iz, one can see that ¢(S1, ..., S,)%z, = MZM for any noncommuta-
tive polynomial ¢. Let A() := (A%j), A9y e B, be such that [[A)] — 1 as j — oco. Since
lzpll = —L__ we deduce that

1=l mll?
. 700 ) A
lim <q’ A0 >= lim q( ) _
j=oo\" Nzl i=oo llzzm

where ¢ is seen as a noncommutative polynomial in F2(H,). Consequently, since the unit ball
of F2(H,) is weakly compact and the polynomials are dense in F2(H,,), there is a subsequence
2, Uik)
iz, Gy Il
deduce that

which converges weakly to 0 as jz — oo. Since this is true for any subsequence, we

2
Iy ll

— 0 weaklyas [AY], — 1. (5.2)

If K € B(F?(H,)) is an arbitrary compact operator, then lim; Gy 1K* (Hj ZI; )l =0.On the

other hand, due to relation (2.9), we have

[ -
perT 1—lloU)2)

Using all these facts, we deduce that

ICylle =inf{IT — K ||: K € B(H) is compact}

()
C * A,./
)\J

> limsup
2|1
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= limsup

i)l
IAD =1 ”Z)L(J) [

L= 22 N2
= limsup< . ) ,
12D |1 I— ||‘P()¥(]))||2

which proves item (i).
To prove part (ii), we recall that the Julia—Carathéodory theorem in B, asserts that if
¥ : B, — B, is analytic and & € 0B, then v has finite angular derivative at £ if and only if

.y L=y @)l
iminf ———— <
r—>g 1 — A

)

where the limit is taking as A — & unrestrictedly in B,,. If C, is a compact operator on Hbau,
then according to part (i), we have

. <1—ww yﬂ
lim sup — 3 =
oz \L— o)

Now, combining these results when v : B, — B, is defined by ¥ (1) := ¢(A), A € B, the result
in part (ii) follows. The proof is complete. O

We need the following lemma which can be extracted from [14]. We include a proof for
completeness.

Lemma 5.5. Let v = (Y1, ..., ¥n) be a holomorphic self-map of the open unit ball B, with the
property that W (E (L, $1)) € E(L, 1) for each ellipsoid

E(L, )= {reBy: [1— o) <L(1—1P)}, L>0,

where ¢y := (1,0,...,n) € B,. Then the slice function ¢;, : 1D — D defined by ¢ (z) =
¥1(z,0...,0), z €D, has the property that

1=1ga @ _

X

liminf
z—1 1— |Z|

Proof. Note that when w = (r,0,...,0) € B, with r € (0,1) and L := 1— the inclusion

V(E(L, 1)) C E(L, 1) implies 1

H—wumﬁgL
1— |y w)?

Hence, and using the inequality 1 — |¢1(w)| < |1 — ¥1(w)]|, we obtain

L=l _1-r
1+me|1+f
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which implies |1 (w)| > r = ||w|| and, therefore,

-l _,

I —Jlw]

for w = (r,0,...,0) € B,. The latter inequality can be used to complete the proof. O

In what follows we also need the following lemma. Since the proof is straightforward, we
shall omit it. We denote by H 2([B(H)11) the Hilbert space of all free holomorphic functions
on [B(H)]i of the form f(X) = Y 5o, cx Xk with Y72, lax|? < oo. It is easy to see that
H2([B(H)]1) can be identified with the classical Hardy space H2(I)).

Lemma 5.6. Let F : [B(H)"]; = B(H) be a free holomorphic function and let {1 :=
(1,0,...,0) € 9B,,. The slice function Fy, : [B(H)]1 — B(H) defined by

Fp(Y):=F(1Y), Y e[BMH)],,
has the following properties.

(i) Fy, is a free holomorphic function on [B(H)];.
(ii) If F € Hyy then F, € H*(B(H)]) and | Fy, |2 < | Fl2.
(iii) The inclusion H*((B(H)11) C Hlfa“ is an isometry.

(iv) Under the identification of Hﬁa“ with the full Fock space F?(H,),
FCI = PFZ(H])F,

where Ppay,) is the orthogonal projection of F%(H,) onto F2(H,) C F*(H,).
(v) If F is bounded on [B(H)"11, then Fy, is bounded on [B(H)]1 and || Fy, lloo < || Fllco-

Now, we have all the ingredients to prove the following result.

Theorem 5.7. Let ¢ = (@1, ..., ¢n) be a free holomorphic self-map of the noncommutative ball
[B(H)"11. If Cy is a compact composition operator on Hlfa“, then the scalar representation of ¢
is a holomorphic self-map of B, which has exactly one fixed point in the open ball B,,.

Proof. Lety = (1, ..., ¥y,) be the scalar representation of ¢, i.e. the map ¢ : B,, — B,, defined
by ¥ (A) := ¢ (1), L € B,,. It is clear that ¥ is a holomorphic self-map of the open unit ball B,,.
Assume that 1 has no fixed points in B,,. According to [13] (see also Theorem 3.1), there exists a
unique Denjoy—Wolff point ¢ € dB,, such that ¢ (E(L, ¢)) € E(L, ¢) for eachellipsoid E(L, ¢),
L > 0. Without loss of generality we can assume that ¢ = ¢1 := (1,0, ...,0) € B,. Then, due to
Lemma 5.5, the slice function ¢¢, : D — I defined by ¢¢, (z) := ¥1(z,0...,0) has the property
that

1= Ige, ) _

liminf < 1.

z—1 1—|Z|

According to Julia—Carathéodory theorem (see [41]), ¢, has finite angular derivative at 1 which
is less than or equal to 1. On the other hand, it is well known (see also Theorem 5.4 whenn = 1)
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that if a composition operator is compact on H(ID), then its symbol cannot have a finite angular
derivative at any point. Consequently, Cg, ~is not a compact operator on H 2(D).

Under the identification of Hlfa“ with the full Fock space F 2(H,), set

I = PFZ(H])(pl, (53)

where Ppayy) is the orthogonal projection of FZ(Hn) onto F2(H;) C F2(Hn). According to
Lemma 5.5, I" : [B(H)]1 — [B(H)]: is a bounded free holomorphic function. Now we show
that C is a compact composition operator on F2(Hy). Let { f (”’)}fn‘;] be a bounded sequence
in FZ(H)) such that ™ — 0 weakly in F>(H;). Since F2(H;) C F*(H,) and F?(H,) =
F2(H)) ® F?(H))", it is easy to see that £ — 0 weakly in F2(H,). Due to the compactness
of Cy, on F%(H,), we must have

1Cot ™ || pagyy,, =0 as m— o0, (5.4)

Since f™ e F2(Hy), it has the representation f = Yo a,ﬁm)e’f for some coefficients
a,im) € C with Y 72 lax|? < co. Hence C, f™ =332, a,ﬁm)(plf, where ¢y is seen in F2(H,),
ie., cp’f = g?’f(l), and the convergence of the series is in F%(H,). Note also that, due to (5.3), for
each k e N, <pr =rk4 Xk for some xi € F2(H,,) <) F2(H1). Consequently, we have

(o) (o8]
s =3 =Yl = o
k=0 k=0

for some g € F*(H,) © F*(H)). Hence, we deduce that |Cr £ || p2¢z1,) < 1Cy f ™ | p2 (11,
Using relation (5.4), we have ||Cr Fom I F2(p1,y — 0 as m — oo. This proves that the compo-
sition operator C is compact on F 2(H)). Note also that, under the natural identification of
F%(H;) with H3(D), i.e., f = Yo cke]f > 2(2) = 1o cxz¥, the composition operator C
on F?(Hy) is unitarily equivalent to the composition operator Cy, on H (D). Consequently, Co,
is compact, which is a contradiction. Therefore the map 1 has fixed points in B,,.

Now we prove that ¥ has only one fixed point in B,,. Assume that there are two distinct points
e £@ B, such that Y (D) =W and ¥ (@) = €@ It is well known [41] that the fixed
point set of the map ¢ is affine. As in the proof of Theorem 2.1, we have

C;ZMZZ Z Va(W)ew =Zpu), M= (UL, ..., Uy) € By,
k=0 || =k

where the vector z;, € F2(H,) is defined by z, = Z}?io Z|a\:k Uaey. As a consequence, we
deduce that Cjzg = z¢ for any & in the fixed point set A of . Since A is infinite and accord-
ing to the proof of Lemma 4.3 the vectors {zg}sca are linearly independent, we deduce that
ker(I — Cy) is infinite dimensional. This contradicts the fact that C,, is a compact operator on

H&a“. In conclusion, ¥ has exactly on fixed point in B,. This completes the proof. O
Combining now Theorem 5.7 and Theorem 2.6, we can deduce the following similarity result.

Corollary 5.8. Every compact composition operator on Hl%a“ is similar to a contraction.
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Theorem 5.9. The set of compact composition operators on Hl%all is arcwise connected, with

respect to the operator norm topology, in the set of all composition operators.

Proof. Let ¢ = (¢1, ..., ¢,) be a non-constant free holomorphic self-map of the noncommuta-
tive ball [B(H)"]; such that Cy, is a compact composition operator on Hl%all' For each r € [0, 1],
consider the free holomorphic map ¢, : [B(H)"]1 — [B(H)"]1 defined by ¢,(X) = ¢(rX),
X € [B(H)"]1. If [l¢llo < 1, then [|¢r|loc < 1 and due to Proposition 5.2, the operator Cy, is
compact on Hlfa“. Now assume that ||¢||oc = 1. Since ¢ is non-constant, Theorem 1.1 implies
le(0)]| < 1 and the map [0,1) > 7 — ||¢r|loo is strictly increasing. Therefore ||¢,||cc < 1 for
all r € [0, 1). Using again Proposition 5.2, we deduce that the operator C, is compact on Hlfa“
for any r € [0, 1). Let (Hlfa“) denote the algebra of all compact operators on Hlfa“ and define
the function y : [0, 1] — IC(Hlfa“) by setting y (r) := Cy,. Now we show that y is a continuous
map in the operator norm topology. Fix ry € [0, 1]. For any g(X) := Zaew ag Xy € Hga“ set
gr(X) = Zae]F,T agr®X, leall and note that

llgr — &rllz—0 asr—ro. (5.5)

In particular, taking g = C,, f where f € H, 2

ban @nd || fll2 < 1, we have

|(fo@) —(fo@)|,>0 asr—r.

We need to show that the latter convergence is uniform with respect to f € Hlfa“ with || fl» < 1.

Indeed, if we assume the contrary, then there is €y > 0 such that for any n € N there is r,, € [0, 1]
with |r, —rg| < % and there exists f, € Hl%all with || f; ]2 < 1 such that

” (fuo (P)r,, —(fuo (P)ro ”2 > €0. (5.6)

Since Cy, is a compact operator the image of the unit ball of Hﬁan under C,, is relatively compact.
Therefore there is a subsequence { f;,, } such that

fox 09— ¥ € Hiyp- (5.7)
Now, note that
” (fie © (p)r,,k — (fu 0 Oy ”2

<N e 0 0ry, = Wi o+ 1, = Wigll2 + W0 — i 0 010
<2 fu 00 = Vll2 + ¥, — Vroll2-

Due to relations (5.5) and (5.7), we deduce that

“ (fe O(p)rnk = (fux © @y ”2 — 0 asr—rp,

which contradicts relation (5.6). Therefore ||Cy, — C‘Pro || = 0 as r — rg, which proves the con-
tinuity of the map y. Let x = (x1, ..., x») be another non-constant free holomorphic self-map
of the noncommutative ball [B(H)"]; such that C, is a compact composition operator on Hﬁa“.
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As above, the function £ : [0, 1] — IC(HIfa“) given by £(r) := C,, is continuous in the operator
norm topology. It remains to show that there is a continuous mapping w : [0, 1] — K(Hfa“) such
that w(0) = Cy, and w (1) = C,,. To this end, since [[¢(0)|| < I and | x (0)|| < 1, we can define
the map o : [0, 1] — B, by setting o (¢) := (1 —1)@(0) + ¢ x (0) for ¢ € [0, 1]. Using again Propo-
sition 5.2, we deduce that C,(;); is a compact composition operator on Hl%all for any ¢ € [0, 1].
Now we define w: [0, 1] — IC(Hlfa“) by setting w(t) := Cy(+)s. To prove continuity of this map
in the operator norm topology, note that

ICswy1 f = Count FIl = {f. 200) — 2o} S N f 121120ty — Zo (e ll2, (5.8)

where z; = Y weF haeq for A € B,. On the other hand, consider the noncommutative Cauchy
kernel G, := (I —A1S1—- - — A, Sp) "L, A := (A1, ..., An) € B,. Note that || A S+ -+ A Sy =
A2 < 1 and C, € F® for any A € B,,. We have

Iz @) — Zoanll2 = || (Cory = Coy)1 ||
<NCoy = Conll
<NCo HCoiy o @) — o ()],

Consequently, since B, > A = C, € F° is continuous, we deduce that [0,1] 3 7 > z5() €
F2(H,) is continuous as well. Combining this result with relation (5.8), we deduce the continuity
of w, which completes the proof. O

6. Schroder equation for noncommutative power series and spectra of composition
operators

In this section, we consider a noncommutative multivariable Schréder type equation and use it
to obtain results concerning the spectrum of composition operators on H&a“. As a consequence,
using the results from the previous section, we determine the spectra of compact composition
operators on Hl%all'

First, we provide the following noncommutative Schroder [43] type result.

Theorem 6.1. Let A € M, «,, be a scalar matrix and let A = (A1, ... A,) be an n-tuple of power
series in noncommuting indeterminates Z1, ..., Zy, of the form

A=[Zy,.... Zy)JA+ (I, ..., T},

where I, ..., I, are noncommutative power series containing only monomials of degree greater
than or equal to 2. If there is a noncommutative power series F which is not identically zero and
satisfies the Schroder type equation

FoA=cF

for some c € C, then either c = 1 or ¢ is a product of eigenvalues of the matrix A.
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Proof. Since A € M, , there is a unitary matrix U € M, «, such that U ~lAU is an upper
triangular matrix. Setting @y = [Zy, ..., Z,]U, the equation F o A = cF is equivalent to F’ o
A =cF’', where F':= @y o F o @;—1 and

Ai=byoAody1=[Z,...,Z, WU AU + U, ..., [1U.

Therefore, we can assume that A = [a;;] € M, x,, is an upper triangular matrix. We introduce
a total order < on the free semigroup F;' as follows. If «, B € F;F with |a| < |B| we say that
o < B.If o, B € F;f are such that |o| = |B], then @ = g;, --- g, and B = gj, ---gj, for some
iy eeeslly J1s---s Jk €{1, ..., k}. Wesay that @ < B if eitheri| < jj or there exists p € {2, ..., k}
such that iy = ji,...,ip—1 = jp—1 and i, < j,. It is easy to see that relation < is a total order
onF}.

According to the hypothesis and due to the fact that A is an upper triangular matrix, we have

J
AJZZaUXl_l_F’ ]ZI,,I’l (61)
i=1
Consequently, if o« = g;, --- g, GIE‘,T, i1,...ir €{l,...,n}, then
Agi= Ay Ay =0~ +ayg, - ai Xa + x, (6.2)

where ¥ =% is a power series containing only monomials X g such that || = || and 8 < «, and
%@ is a power series containing only monomials X y with |y [ > || + 1.

Let F = Z?:o Z|a|= p Ca Zy, ¢y € C, be a noncommutative power series and assume that it
satisfies the Schroder type equation F o A = AF for some A € C such that A 7 1 and A is not a
product of eigenvalues of the matrix A. We will show by induction over p, that ZI al=p CaZa = 0
forany p =0, 1, .... Note that the above-mentioned equation is equivalent to

i Z Caly =,\§: Z coZy.- 6.3)

p=0la|=p p=0la|=p

Due to relation (6.1), we have co = Acg. Since A # 1, we deduce that ¢y = 0. Assume that ¢, =0
for any o € IF,J{ with |o| < k. According to Egs. (6.2) and (6.3), we have

(o) (o)
D (W Hda@Xa+x )+ Y D cada=r D caZatr Y. Y. cuZa

la|=k p=k+1|a|=p la|=k p=k+1|a|=p

where da(a) :=aji, ---aii, f o =g, ---gi, € IF,;L and iy,...ix € {1,...,n}. Since X("‘) is a
power series containing only monomials X, with |y| > |a| + 1, and the power series Ag, o] >
k + 1, contains only monomials X, with |o| > k + 1, we deduce that

D ca(W+da@Xe) =2 Y caZa. (6.4)

loe|=k | =k
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We arrange the elements of the set {o € F;': |a| = k} increasingly with respect to the total order,
ie., f1 < P2 <--- < B, Note that 8| = g{‘ and B« = g,’i. The relation (6.4) becomes

nk nk
Y (g, ¥ Pt epd(BnXp, ) =1 ) cp X, (6.5)
j=1 j=1

Taking into account that ¥ =% is a power series containing only monomials X g such that | 8| = |«/|
and B < a, one can see that the monomial Xg , occurs just once in the left-hand side of relation
(6.5). Identifying the coefficients of the monomial X o in the equality (6.5), we deduce that

CB d(B,x) = )»Cﬁnk .
Since A # aX, = d(B,«), we must have cp . = 0. Consequently, Eq. (6.5) becomes

nk—1

k_1
(Cﬁle/<ﬁ_/ +Cﬂjd('6j)Xﬂﬁj) =A Z CﬂjXﬂj~
j:1 j_l

Continuing the process, we deduce that cg; = 0for j=1,..., n*. Therefore ¢y = 0 for any
o € Fl with |a| = k, which completes our induction. The proof is complete. O

Corollary 6.2. Let ¢ = (¢1,...,¢n) be a free holomorphic self-map of the noncommutative
ball [B(H)"]1 such that ¢(§) = & for some & € B,,. If there is a free holomorphic function
f:[B(H)"1y — B(H) such that

foo=cf
for some c € C, then either c = 1 or c is a product of eigenvalues of the matrix
[(Wisei)],uns

where ¥ = (Y1, ..., Y¥p) := P¢ o o D¢ and D¢ is the involutive free holomorphic automorphism
of [B(H)"11 associated with &€ € B,,, and V1, ..., Y, are seen as elements in the Fock space
F?(Hy).

Proof. Note that ¥ (0) = 0 and the equation f o@ = c¢f is equivalent to the equation f'ovr = cf’,
where f’:= @¢ o f o @¢. Applying Theorem 6.1 to the power series associated with ¢ and f’
the result follows. O

Theorem 6.3. Let ¢ = (¢1, ..., @) be a free holomorphic self-map of the noncommutative ball
[B(H)" 11 such that ¢(0) =0, and let Cy, be the associated composition operator on Hlfa“. Then
the point spectrum of C, ; contains the conjugates of all possible products of the eigenvalues of
the matrix

[(‘Pi’ e./)]nxn’

where i1, ..., Y, are seen as elements in the Fock space F*(Hy,).
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Proof. Foreach m =0, 1, ..., consider the subspace ), := span{ey: o € ]F;f, || < m}. Since
¢(0) =0, we have (C;ea,e,g) = (eq,pp) =0forany o, B € Ff with |o| <m and |B] >m + 1.
This implies Cy;(Kn) € Ky and Cg has the matrix representation

C* — [C; |IC»1 * }
¢ 0 Pryyer,Col F2H)ek,

with respect to the orthogonal decomposition F?(H,) = K, & (F?(H,) © K,), and
UP(C;I;Cm) C GP(C;), where 0, (T) denotes the point spectrum of 7. Moreover, since Ky, is
finite dimensional, we have

o (Cy) =0 (Colic, ) Yo (Preq ok, Col r2emor,)-
Since C;'j (Km—1) € K,—1 we have the matrix decomposition
Cc* *
C:;“Cm = [ ¢|’Cm * }
0 P’CmeKm—] C(p |Kmelcm—l

with respect to the orthogonal decomposition FZ(H,,) = K ® (KCn © KCn—1). Consequently, we
have

op(Colic, ) =0p(Colic ) Yop(Prner,  Colic ok, )

for any m =1, 2... .. Iterating this formula, we get

m
GP(C;|ICM) ={1}V U (’P(P’C_/G’C,/—lc:z IC,-eIC,-_l)' (6.6)
j=I

Now, we determine o, (Px, ok, _, C;|1Ckelck71) fork=1,2,.... Asin the proof of Theorem 6.1,
we can assume that

X)) =[X1,.... Xy JA+ (M(X), ..., [(X), X=(X1.....X,) € [BOH)"],.

where A = [a;;] € M;x, is an upper triangular scalar matrix and I7, ..., I}, are free holomor-
phic functions on [B(H)"]; containing only monomials of degree greater than or equal to 2.
Consequently, using the Fock space representation of ¢, ..., ¢, and I, ..., I}, we have
J
gj=> aije+ T, j=1...n, (6.7)

i=1

where I'j € F%*(H,) & span{ey: |a| < 1}. Note that the matrix [{(@;, €;)],xn is upper triangular

and its eigenvalues are ai1, ..., a,,. Using relation (6.7), one can see thatif « = g;, --- g;, € IF,“IL,
it,...ir €{l,...,n}, then
Co =iy - iy =V + i, - digiyea + X, (6.8)

where ¥ =% € span{eg: || = || and < a} and x@ e span{e,: |y| > |a| 4 1}.
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We arrange the elements of the set {o € F;: |o| = k} increasingly with respect to the total
order introduced in the proof of Theorem 6.1, i.e., f1 < B2 < -+ < B,x. We denote da(a) :=
Qjyiy - Qigi, T =gi -8, € F,T and iy,...i; € {1,...,n}. Note that wp, = d(ﬂ])éﬂl + Xﬂ]
and

1
vy = (Zbﬁj_leﬁ,—_) +d(Bies, + 1P if 2<i <,
j=1

for some bg i, € C, j=1,...,i. Using these relations, we deduce that

——— _ dB) ifi=],
(P’CkGICkIC;|ICkele_1eﬂj’eﬂi>:Wﬁweﬁ.f):{O l ifi<j

This shows that the matrix of Px,ex,_,Cyli,ok,_, With respect to the orthonormal basis

{es, f’il is lower triangular with the diagonal entries d(B1),...,d(B,x). Therefore
op(Prroky i Cyliiok,_,) consists of these diagonal entries. On the other hand, due to rela-
tion (6.6), we have

o]

muy Up(P’Cj@’CHC;‘/cjeicj,l) Cop(C5)-
j=1

The proof is complete. 0O

Theorem 6.3 and Corollary 6.2 imply the following result concerning the spectrum of com-
position operators on the noncommutative Hardy space Hlfa“.

Theorem 6.4. Let ¢ be a free holomorphic self-map of the noncommutative ball [B(H)"]; such
that its scalar representation has a fixed point § € By, and let C, be the associated composition
operator on Hﬁa“. Then

Up(C<p) c{1}uy Peig - U(Crp)7

where Peiq is the set of all possible products of eigenvalues of the matrix [{{;, €;)nxn, Where
Y =W1,..., ) =P 0@ o D¢ and D¢ is the involutive free holomorphic automorphism of
[B(H)"]1 associated with & € B,,.

Proof. The first inclusion follows from Corollary 6.2. To prove the second inclusion note that
Cyol=1and Cy =Cq, CWC;;. Consequently, 1 € 6(Cy) = o (Cy). Since ¥ (0) =0, we can
apply Theorem 6.3 to the composition operator Cy, and complete the proof. O

Now we can determine the spectra of compact composition operators on Hﬁan.

Theorem 6.5. Let ¢ be a free holomorphic self-map of the noncommutative ball [B(H)" 1. If Cy

is a compact composition operator on Hl%a“, then the scalar representation of ¢ has a unique fix
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point & € By, and the spectrum o (Cy,) consists of 0, 1, and all possible products of the eigenvalues
of the matrix

[“ﬁi’ ej)]nxn’

where Y = (Y1, ..., ¥n) i:= P¢ o o D¢ and D¢ is the involutive free holomorphic automorphism
of [B(H)"]1 associated with &€ € B, and {1, ..., ¥, are seen as elements in the Fock space
F?(Hy).

Proof. If C, is a compact composition operator on Hl%all’ then, according to Theorem 5.7, the
scalar representation of ¢ has a unique fix point £ € B,,. On the other hand, it is well known that
any nonzero point in the spectrum of a compact operator is an eigenvalue. Using Theorem 6.4,
we deduce that

0p(Cy) S {1} UPeig {0} U0, (Cyp),

where P,;g is the set of all possible products of eigenvalues of the matrix [(;, e;)]nxn. Hence
the result follows and the proof is complete. O

In [14], MacCluer determined the spectrum of composition operators on H 2(B,,) when the
symbols are automorphisms of B, which fix at least one point in B,. The following theorem
is an extension of this result to compositions operators on Hlfa“ induced by free holomorphic
automorphisms of [B(H)"];.

Theorem 6.6. Let ¢ € Aut(B(H)}) be such that ¢(§) = & for some & € B,,. Then the spectrum of

the composition operator Cy, on Hﬁa“ is the closure of all possible products of the eigenvalues of
the matrix

[((Wire)], e

where v = (Y1, ..., ¥y) := Pg 0 o D¢ and D¢ is the involutive free holomorphic automorphism
of [B(H)™]1 associated with & € B,,. Moreover, 6 (Cy) is either the unit circle T, or a finite
subgroup of T.

Proof. Note that ¢ € Aut(B(H)’l') and ¥ (0) = 0. According to [38], the free holomorphic auto-
morphism ¥ has the form ¥ (X) = [X1, ..., X,,]U for some unitary matrix U € M, . It is easy
to see that U = [(, ;) ]uxn. Since U is unitary there is another unitary matrix W € M,,«,, such

that
w; 0 -~ 0
W_IUW=|:O wy - 0]
0 0 - wy
where wi,...,w, are the eigenvalues of U. Set x := ¢¥w o ¢¥ o Ip;,l, where Yy (X) =

[X1,...,X,]W for X :=[X1,..., X,] € [B(H)"];. Note that x(X) = [X,..., X, W 'UW
and C, = ClZvIV qu; CyCy.Cyy, . Hence, 0(Cy) =0(¥) =o0(p). Now we determine the spec-

trum of C,. Since Cy is invertible and ¥ (0) = 0, Theorem 2.3 implies [|Cy || = ||C1;1 | =1.



G. Popescu / Journal of Functional Analysis 260 (2011) 906-958 951

Therefore, 0 (C,) C T. Using now Theorem 6.4, we deduce that 7_33ig Co(Cy) CT, where Pejq
is the set of all possible products of eigenvalues of the matrix U. It is obvious that if 736,~g =T,
then o (Cy) = T. When ’ﬁeig # T, then 7361-5, is a finite subgroup of T. Consequently, there is
m € N such that Py = {z € T: 2" = 1}. This implies w” =1 for j=1,...,n and C} =1.
Consequently, if L € 0(C,) then A" € o(C;’) = {1}. This shows that A € 7_Deig and completes the
proof. O

Comparing our Theorem 6.6 with MacCluer result (see Theorem 3.1 from [14]), we are led to
the conclusion that if ¢ € Aut(B(H)'l’) has at least one fixed point in BB, then the spectrum of the
composition operator Cy, on Hl%all coincides with the spectrum of the composition operator C ¢
on H2(B,), where ¢C is the scalar representation of .

Theorem 6.7. If ¢ € Aut(B(H)}) and there is only one point ¢ € B, such that ¢(¢) = ¢ and

¢ € 0By, then the spectral radius of the composition operator C, on Hl%all is equal to 1 and
o(Cy) CT.

Proof. The proof that the spectral radius is 1 is similar to that of Theorem 3.3, in the parabolic
case. The inclusion o (Cy) C T is due to the fact that go_l (¢) = ¢ and, according to the first part
of the theorem we have r(ngl) =r(Cy)=1. O

7. Composition operators on Fock spaces associated to noncommutative varieties

In this section, we consider composition operators on Fock spaces associated to noncommu-
tative varieties in unit ball [B()"]; and obtain results concerning boundedness, norm estimates,
and spectral radius. In particular, we show that many of our results have commutative counter-
parts for composition operators on the symmetric Fock space and on spaces of analytic functions
in the unit ball of C". In particular, we obtain new proofs for some of Jury’s [11] recent results
concerning compositions operators on the unit ball B,,.

Let Pp be a set on noncommutative polynomials in »n indeterminates such that p(0) =0 for
all p € Py. Consider the noncomutative variety Vp,(H) € [B(H)"]; defined by

Vp,(H) :={(X1,.... X») € [BCH)"],: p(X1,...,X,)=0forall pePo}.
Let
Mp, = SpTl{Sap(Sl,...,Sn)Sﬂli pePoy, a,p EF;:'}

and Np, := F2(H,) © Mp,. We remark that | € N’p, and the subspace Np, is invariant under
Sf, ..., S*and RT, ..., R}. Define the constrained left (resp. right) creation operators by setting

Bi:zPNPOSi|N7>0 and WizzPNpoRileo, i=1,...,n.

We proved in [32] that the n-tuple (B, ..., B,) € Vp, (./\/730) is the universal model associated
with the noncommutative variety Vp, (H). Let F°(Vp,) be the w*-closed algebra generated by
B, ..., B, and the identity. The w* and WOT topologies coincide on this algebra and

F°(Vp,) = Prip, F,;>°|NP0 ={f(Bi,....By): feFy},
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where if f has the Fourier representation ), p+ do Se then

o0
Bi,...,B,) =SOT-li *l g, By.
f (B ) rLIS%ller Ao Dy
=0 |a|=

The latter limit exists due to the F,>°-functional calculus for row contractions [27]. Similar results
hold for R,?O(Vpo), the w*-closed algebra generated by Wy, ..., W, and the identity. Moreover,

F°(Vp)' =Ry°(Vpy) and R(Vp) = F°(Vp,),

where ’ stands for the commutant. According to [32], each X € F°(Vp,) generates a mapping
x : Vp,(H) — B(H) given by

x (X1, ..., Xn) :=Px[X], X:=(X1,...,Xn) eVp,(H),

where Py is the noncommutative Poisson transform associated with Vp (). On the other hand,
since ¥ = PNp, @I, for some ¢ = > wert AaSa in F°, we have

e¢]
X(Xlw--vXn):ZZaaXa’ (Xl,--an)EVPO(H)’
k=0 |a|=k

where the convergence is in the operator norm topology. This shows that x is the restriction to
Vp,(H) of a bounded free holomorphic function on [B(H)"]i, namely X — ¢(X) =Px[y].
We remark that the map x does not depend on the choice of ¢ € F,° with the property that
X = PNP()¢|N7>0' Note also that x (0) = (X1, 1).

We remark that when f € F2(H,) and f =32, > la|=k Ga€q, then f € Np, if and only if

o0 oo
Z Z Ayeq = Z Z ay By 1.
k=0 |a|=k k=0 |or|=k

We say that 1’/7 € F°(Vp,) ® C" is non-scalar operator if it does not have the form (a; I Npgr =+
anl N”o) for some a; € C. The main result of this section is the following.

Theorem 7.1. Let 1} = (1;1, cee Izn) € F°(Vp,) ® C" be a non-scalar operator with ||1/~f|| <L
Then the following statements hold.

() If g € Np, has the representation y g > la|=k Calq then

gOKZi:Z Z Caaal GNP()’

k=0 |a|=k

where the convergence of the series is in F?(H,).
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(ii) The composition operator Cy; Np, = Np, defined by

Cjg:=goVy, geNp,

is bounded. Moreover,

1Py ol < sup ARl (Lw«»n)/
"o revp©  zall AN TAOY

(iii) The adjoint of the composition operator C; : Np, = Np, satisfies the formula

Chg=2 " (. ¥a(D)Prp ea: 8§ €NP,.

k=0 |or|=k

Proof. Since R°(Vp,) = F{°(Vp,), the operator W : Np, ® C" — Np, satisfies the commu-
tation relations

IZ(WNX)I(cn):W,-&, i=1,...,n.

Since W; .= PN’PO R; |N7,0, i=1,...,n,itis clear that [R| ® I¢,, ..., R1 ® I¢,] is an isomet-
ric dilation of the row contraction [W| ® Ic,, ..., W1 ® Ic,]. According to the noncommutative
commutant theorem [24], there exists @ = [§1, ..., @n]: F>(H,) ® C* — F?(H,,) with the prop-
erties ||¢] < 1, (Z*lj\/po = ¢*, and $(R; ® Icn) = Ri@ for i = 1,...,n. Hence, we deduce
that &;" B, = J}“ and §;R; = R; (Z] for i, j =1,...,n. Since, due to [28], the commutant of
the right creation operators Ry, ..., R, commdes W1th the noncommutative analytic Toeplitz
algebra F,>°, we deduce that ¢; € F°, j =1,...,n. Since ¢*|n;, = w* and w is a non-
scalar operator, so is ¢. According to Theorem 2.3 and Corollary 2.4, the composition operator
Cy: F*(H,) — F*(H,) satisfies the equation

Ca(Z > aaea) =" au(@ul) (7.1)

k=0 |a|=k k=0 |or|=k

for any f = Zk 0 2 |o|=k da€a 1N F2(H,). Since §* |N7’o = 1//}“, j=1,....n, we have
PNPO (Poz|N7> 'ﬁa for all « € F;\". Since 1 € Np,, we assume that f € Npo in relation (7.1)
and, taking the projection on N’po, we complete the proof of part (i).

Now, to prove item (ii), note that part (i) implies Cy; = PNPO Cyl Ny Using this relation and

Theorem 2.3, we deduce that IC71 < (ingEg;H)‘/z. Recall that z; := Zaew ha€us A €B,.

Note thatif A = (A1, ..., A;) is in the scalar representation of the noncommutative variety Vp,,
ie.,

Vpo(C) :={ (A1, ..., k) €By: p(Ai,..., %) =0, pePol,

then we have

([Sap(St, ..., $)Sp](1), z2) = ha p(W)1p =0
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for any p € Py and «, B € F;\. Hence z; € Np, for any A € Vp,(C). As in the proof of Theo-
rem 2.1, we have

Chzn=D)_ D ¢aWea =2y, 1= (11, ..., 1tn) €By.
k=0 |a|=k

Now, note that

ICGzull PN Cozull 1PN 2y

Izl lzpll lIZull

Icgi=lc3l >

for any A € Vp,(C). Since 0 € Vp, (C) the first two inequalities in part (ii) follow.
Now, it remains to prove part (iii). According to Proposition 4.1, we have

C%g = Pnp, C8 = Z (8. @al) Pnp ear G € F2(H,).

acFy}

Since PN‘PO Ol Np, = @a for all « € F\ and 1 € Np,, we deduce part (iii). The proof is com-
plete. O

We remark that under the conditions of Theorem 7.1, we can use Theorem 1.1 to show that
lv Xy, ... X <1, (Xi,...,Xn) € Vp,(H).
Consequently, g o 1; induces the map
o0
©ov)(X) =) Y catu(X), XeVp(H),
k=0 |a|=k

where the convergence is in the operator norm topology. Using Corollary 2.4, we deduce that

~

lim(goy)(#By,...,rBy)l =go.
r—1

Moreover, the map g o ¥ is the restriction to Vp,(H) of the free holomorphic function g o ¢ on
[B(H)"]1, where ¢ was introduced in the proof of Theorem 7.1.

Corollary 7.2. Let 1; = (%, . Jn) € F*(Vp,) ® C" be a non-scalar operator with ||J|| <1
and p(¥(0)) =0 for all p € Py. Then the norm of composition operator Cy : Np, = Np,
satisfies the inequalities

1 1+||w(0)||>”2
— << — | -
(1 — ¥ (0)]1)1/2 IC31 <1—||1/f(0>||

Moreover, the spectral radius of C 7 satisfies the relation

r(Cy) = lim (1~ I o))"/,
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Proof. Since p(y(0)) =0 for all p € Py, we have ¥ (0) € Vp, (C) and, as in the proof of Theo-
rem 7.1, we deduce that zy, ) € N'p,. Consequently,

1

1PA 2yl = 2yl = ———————.
o<V O YOI= A w172

Combining this relation with part (ii) of Theorem 7.1, we deduce the inequalities above. The
proof of the last part of this corollary is similar to the proof of Theorem 2.9. O

Now we consider an important particular case. If P, :={X;X; — X;X;: i, j=1,...,n}, then
NPC =Span{z,: L €B,} = FSZ, the symmetric Fock space. For each A = (A, ..., X;) and each
n-tuple k := (ki ..., k,) € NJi, where No := {0, 1,...}, let 2K := 21 ... %" For each k € N,
we denote

Ax = {a €Fl: aq = 2K forall A € C"}

and define the vector

1
wk = — Z ey € F2(Hn), where yx := card Ag.

o€k

The set {wk: k € NG} consists of orthogonal vectors in F 2(H,) which span the symmetric Fock

k| =

space F2 and ||w \/LK The symmetric Fock space F? can be identified with the Drury—

Arveson space Hﬁ of all functions ¢ : B, — C which admit a power series representation ¢(A) =
> ken, CkA* with

1
lpla= Y lekl*— < oo.
2l

keNy

More precisely, every element ¢ = ZkeNo cxwk in FS2 has a functional representation on B,
given by

00) = (g, )= D ar, A=(0,..., k) €By, (7.2)
keNy
and
loll2
|§0()»)|<42, A:(Ala-~-a)¥n)€Bn-
1= [

Arveson showed that the algebra F7°(Vp,) can be identified with the algebra of all multipliers
of H2. Under this identification the creation operators L; := PFzS |p2,i=1,...,n, onthe sym-
metric Fock space become the multiplication operators M, , ..., M, by the coordmate functions
Zls ..., 2y of C".
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Theorem 7.3. Let = (1}1, e 1;,,) € FX*(Vp,) ® C" be a non-scalar operator with ||1;|| <1
Under the identification of the symmetric Fock space F, sz with the Drury-Arveson space Hﬁ, the
composition operator Cj; . F, 3 — F, S2 has the functional representation

CgNH)=FYM), reB,.

Moreover, if f € F2, then
(€3 ={fizsoP), reBy,

where 2) :=Y_y gt haCa-

Proof. As in the proof of Theorem 7.1, due to the noncommutative commutant lifting the-
orem, there is ®=(@1,....0,) € F* @ C" a non-scalar operator with ||¢|| < 1, such that
(?)‘l*le =y, i =1,...,n. In particular, due to (7.2), we have ¢(1) = (1), A € B,. Fix
f= Zadﬁ agey € F2 and A € B,,. Since z, € F2 and PF2<Pa|F2 = 1/~fa for all @ € F;, we
can use relations (7.2), (2.9), as well as Corollary 2. 4 and Theorem 7. 1, to obtain

FE W) = (frzpm) = (fr 2o0) =(f> Ca21) = (Cg f, 23)

~( L adita)=( T abptita)=( T adil.a)
ackF;

aeFI QGF:

=(Cj foz) = (Cy ).

Therefore, the first part of the theorem holds. To prove the second part, note that according to
item (iii) of Theorem 7.1, we have

o0
Chf=3" D (fivaD)Prea, feF]. (1.3)
k=0 |a|=k
On the other hand, since z; € F 52, part (i) of Theorem 7.1 implies z;, o 1; eF 52 and
o
2oV =YY haVal,
k=0 |a|=k

where the convergence is in F 2(H,). Consequently, using relations (7.3) and (7.2), we deduce
that

(f.220%) <fZZ/\ Vel >=ZZ<ﬁ%1>xa

k=0 |a|=k k=0 |a|=k

=<§ pRE %(1>)ea,a> = (C5)®)

k=0 |a|=k

for any A € B,,. The proof is complete. O
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Since ¥ (1) € Vp, for all A € B, part (ii) of Theorem 7.1 implies the following result con-
cerning the composition operators on the symmetric Fock space FS2 and, consequently, on the
Drury—Arveson space H%. The next result was obtained by Jury [11] using different methods.

Corollary 7.4. Let 1} = (lzl, e @n) € FX°(Vp,) ® C" be a non-scalar operator with ||1Z I<1
Then the composition operator Cj, : F 2 — F? is bounded and

1 1— [IAl? )1/2 <1+||w<0)||)”2
———— < _ <G| €| ——— .
(1= w172 fﬁéﬁ(l—nww I I< (v

It is obvious now that the formula for the spectral radius of Cy; (see Corollary 7.2) holds.
We also remark that one can deduce commutative versions of Corollary 2.5, Theorem 2.6, and
Corollary 2.7. We leave this task to the reader.
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