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Abstract

In this paper we initiate the study of composition operators on the noncommutative Hardy space H 2
ball,

which is the Hilbert space of all free holomorphic functions of the form

f (X1, . . . ,Xn) =
∞∑

k=0

∑
|α|=k

aαXα,
∑

α∈F
+
n

|aα |2 < 1,

where the convergence is in the operator norm topology for all (X1, . . . ,Xn) in the noncommutative oper-
atorial ball [B(H)n]1 and B(H) is the algebra of all bounded linear operators on a Hilbert space H. When
the symbol ϕ is a free holomorphic self-map of [B(H)n]1, we show that the composition operator

Cϕf := f ◦ ϕ, f ∈ H 2
ball,

is bounded on H 2
ball. Several classical results about composition operators (boundedness, norm estimates,

spectral properties, compactness, similarity) have free analogues in our noncommutative multivariable set-
ting. The most prominent feature of this paper is the interaction between the noncommutative analytic
function theory in the unit ball of B(H)n, the operator algebras generated by the left creation operators on
the full Fock space with n generators, and the classical complex function theory in the unit ball of C

n. In
a more general setting, we establish basic properties concerning the composition operators acting on Fock
spaces associated with noncommutative varieties VP0

(H) ⊆ [B(H)n]1 generated by sets P0 of noncom-
mutative polynomials in n indeterminates such that p(0) = 0, p ∈ P0. In particular, when P0 consists of the
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commutators XiXj − XjXi for i, j = 1, . . . , n, we show that many of our results have commutative coun-
terparts for composition operators on the symmetric Fock space and, consequently, on spaces of analytic
functions in the unit ball of C

n.
© 2010 Elsevier Inc. All rights reserved.
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0. Introduction

An important consequence of Littlewood’s subordination principle [12,6] is the boundedness
of the composition operator Cϕ on the Hardy space H 2(D), when ϕ : D → D is an analytic
self-map of the open unit disc D := {z ∈ C: |z| < 1} and Cϕf := f ◦ ϕ. This result was the
starting point of the modern theory of composition operators on spaces of analytic functions,
which has been developed since the 1960’s through the fundamental work of Ryff [42], Nord-
gren [18,19], Schwartz [46], Shapiro [44], Cowen [2] and many others (see [45,3,1], and the
references therein). They answered basic questions about composition operators such as bound-
edness, compactness, spectra, cyclicity, revealing a beautiful interaction between operator theory
and complex function theory. In the multivariable setting, when ϕ is a holomorphic self-map of
the open unit ball

Bn := {z = (z1, . . . , zn) ∈ C
n: ‖z‖2 < 1

}
,

the composition operator Cϕ is no longer a bounded operator on the Hardy space H 2(Bn). How-
ever, significant work was done concerning the spectra of automorphism-induced composition
operators and compact composition operators on H 2(Bn) by MacCluer [13–15] and others (see
[3] and its references). The study of composition operators on the Hardy space H 2(Bn) is close
connected to the several variable function theory in the unit ball of C

n [41]. There is an exten-
sive literature on composition operators on other spaces of analytic functions in several variables
(see [3]).

For the interested reader, we mention two very nice books on composition operators: Shapiro’s
monograph [45], which is an excellent account of composition operators on H 2(D) and the
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monograph [3] by Cowen and MacCluer, which is a comprehensive treatment of composition
operators on spaces of analytic functions in one or several variables.

It is our hope that the present paper will open a new chapter in the theory of composition
operators. The goal is to initiate the study of composition operators on the noncommutative
Hardy space H 2

ball (which will be introduced shortly) and, more generally, on subspaces of the
full Fock space with n generators associated to noncommutative varieties. The most prominent
feature of this paper is the interplay between the noncommutative analytic function theory in
the unit ball of B(H)n, the operator algebras generated by the left creation operators S1, . . . , Sn

on the full Fock space with n generators: the Cuntz–Toeplitz algebra C∗(S1, . . . , Sn) [4], the
noncommutative disk algebra An and the analytic Toeplitz algebra F∞

n [26–29], as well as the
classical function theory in the unit ball of C

n [41]. To present our results we need some notation
and preliminaries on free holomorphic functions.

Initiated in [33], the theory of free holomorphic (resp. pluriharmonic) functions on the unit
ball of B(H)n, where B(H) is the algebra of all bounded linear operators on a Hilbert space
H, has been developed very recently (see [34–39]) in the attempt to provide a framework for the
study of arbitrary n-tuples of operators on a Hilbert space. Several classical results from complex
analysis and hyperbolic geometry have free analogues in this noncommutative multivariable set-
ting. Related to our work, we mention the papers [8,16,17], and [48], where several aspects of the
theory of noncommutative analytic functions are considered in various settings. We recall that
the algebra Hball of free holomorphic functions on the open operatorial n-ball of radius one is
defined as the set of all power series

∑
α∈F

+
n

aαZα with radius of convergence � 1, i.e., {aα}α∈F
+
n

are complex numbers with lim supk→∞(
∑

|α|=k |aα|2)1/2k � 1, where F
+
n is the free semigroup

with n generators g1, . . . , gn and the identity g0. The length of α ∈ F
+
n is defined by |α| := 0 if

α = g0 and |α| := k if α = gi1 · · ·gik , where i1, . . . , ik ∈ {1, . . . , n}. If (X1, . . . ,Xn) ∈ B(H)n, we
denote Xα := Xi1 · · ·Xik and Xg0 := IH. A free holomorphic function on the open ball[

B(H)n
]

1 := {(X1, . . . ,Xn) ∈ B(H)n:
∥∥X1X

∗
n + · · · + XnX

∗
n

∥∥1/2
< 1

}
,

is the representation of an element f ∈ Hball on the Hilbert space H, that is, the mapping

[
B(H)n

]
1 	 (X1, . . . ,Xn) 
→ f (X1, . . . ,Xn) :=

∞∑
k=0

∑
|α|=k

aαXα ∈ B(H),

where the convergence is in the operator norm topology. Due to the fact that a free holomorphic
function is uniquely determined by its representation on an infinite dimensional Hilbert space,
throughout this paper, we identify a free holomorphic function with its representation on a sepa-
rable infinite dimensional Hilbert space.

A free holomorphic function f on [B(H)n]1 is bounded if ‖f ‖∞ := sup‖f (X)‖ < ∞, where
the supremum is taken over all X ∈ [B(H)n]1 and H is an infinite dimensional Hilbert space. Let
H∞

ball be the set of all bounded free holomorphic functions and let Aball be the set of all elements
f ∈ H∞

ball such that the mapping[
B(H)n

]
1 	 (X1, . . . ,Xn) 
→ f (X1, . . . ,Xn) ∈ B(H)

has a continuous extension to the closed unit ball [B(H)n]−1 . We showed in [33] that H∞
ball and

Aball are Banach algebras under pointwise multiplication and the norm ‖ · ‖∞, which can be
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identified, via the noncommutative Poisson transform [30], with the noncommutative analytic
Toeplitz algebra F∞

n and the noncommutative disc algebra An, respectively.
If f : [B(H)n]1 → B(H) and ϕ : [B(H)n]1 → [B(H)n]1 are free holomorphic functions then

f ◦ ϕ is a free holomorphic function on [B(H)n]1 (see [38]), defined by

(f ◦ ϕ)(X1, . . . ,Xn) =
∞∑

k=0

∑
|α|=k

aαϕα(X1, . . . ,Xn), (X1, . . . ,Xn) ∈ [B(H)n
]

1,

where the convergence is in the operator norm topology. The noncommutative Hardy space H 2
ball

is the Hilbert space of all free holomorphic functions on [B(H)n]1 of the form

f (X1, . . . ,Xn) =
∞∑

k=0

∑
|α|=k

aαXα,
∑

α∈F
+
n

|aα|2 < 1,

with the inner product 〈f,g〉 :=∑∞
k=0

∑
|α|=k aαbα, where g =∑∞

k=0
∑

|α|=k bαXα is another

free holomorphic function in H 2
ball. The main question that we answer in this paper is whether

f ◦ϕ ∈ H 2
ball for any f ∈ H 2

ball and whether the corresponding composition operator is bounded.
This will be the starting point in our attempt to develop a theory of compositions operators on
noncommutative Hardy spaces. We are interested in extracting properties of the composition
operator Cϕ (boundedness, spectral properties, compactness) from the operatorial or dynamical
properties of the model boundary function ϕ̃ := SOT- limr→1 ϕ(rS1, . . . , rSn) ∈ F∞

n ⊗ C
n or the

scalar representation of ϕ, i.e., the holomorphic function Bn 	 λ 
→ ϕ(λ) ∈ Bn.
In Section 1, we characterize the free holomorphic self-maps of [B(H)n]1 in terms of the

model boundary functions with respect to the left creation operators on the full Fock space
F 2(Hn). This will be used, together with the natural identification of H 2

ball with F 2(Hn), to
provide a noncommutative Littlewood subordination theorem for the Hardy space H 2

ball. More
precisely, we show that if ϕ is a free holomorphic self-map of the ball [B(H)n]1 such that
ϕ(0) = 0 and f ∈ H 2

ball, then f ◦ ϕ ∈ H 2
ball and ‖f ◦ ϕ‖2 � ‖f ‖2.

Section 2 contains the core material on boundedness of compositions operators on the non-
commutative Hardy space H 2

ball and estimates for their norms. An important role in our investiga-
tion will be played by the characterization of H 2

ball in terms of pluriharmonic majorants [34] and
the Herglotz–Riesz type representation for positive free pluriharmonic functions [37]. The key
result of this section asserts that if ϕ is a free holomorphic automorphism of the noncommutative
ball [B(H)n]1 (see [38]), then(

1 − ‖ϕ(0)‖
1 + ‖ϕ(0)‖

)1/2

‖f ‖ � ‖Cϕf ‖ �
(

1 + ‖ϕ(0)‖
1 − ‖ϕ(0)‖

)1/2

‖f ‖

for any f ∈ H 2
ball. Moreover, these inequalities are best possible and we have a formula for the

norm of Cϕ . Combining this result with the noncommutative Littlewood subordination theorem
from the previous section, we obtain the main result which asserts that, for any free holomorphic
self-map ϕ of [B(H)n]1, the composition Cϕf := f ◦ ϕ is a bounded operator on H 2

ball and

1
2 1/2

� ‖Cϕ‖ �
(

1 + ‖ϕ(0)‖)1/2

.

(1 − ‖ϕ(0)‖ ) 1 − ‖ϕ(0)‖
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This leads to an extension of Cowen’s [2] one-variable spectral radius formula for composition
operators to our noncommutative multivariable setting. More precisely, we obtain

r(Cϕ) = lim
k→∞

(
1 − ∥∥ϕ[k](0)

∥∥)−1/2k
,

where ϕ[k] is the k-iterate of ϕ. Another consequence of the above-mentioned result is that Cϕ

is similar to a contraction if and only if there is ξ ∈ Bn such that ϕ(ξ) = ξ . This will also show
that similarity of composition operators on H 2

ball to contractions is equivalent to power (resp.
polynomial) boundedness. This is interesting in light of Pisier’s [22] famous example of a poly-
nomially bounded operator which is not similar to a contraction, and Paulsen’s [20] result that
every completely polynomially bounded operator is similar to a contraction. For more informa-
tion on similarity problems we refer the reader to [21] and [23].

In Section 3, extending the classical result obtained by Wolff [50,51] and MacCluer’s version
for Bn (see [13]), we provide a noncommutative analogue of Wolff’s theorem for free holomor-
phic self-maps of [B(H)n]1. We show that if ϕ : [B(H)n]1 → [B(H)n]1 is a free holomorphic
function such that its scalar representation has no fixed points in Bn, then there is a unique point
ζ ∈ ∂Bn (the Denjoy–Wolff point of ϕ) such that each noncommutative ellipsoid Ec(ζ ) (see Sec-
tion 3 for the definition) is mapped into itself by every iterate of the symbol ϕ. We also show
that the spectral radius of a composition operator on H 2

ball is 1 when the symbol is elliptic or
parabolic, which extends some of Cowen’s results [2] from the single variable case.

In Section 4, we obtain a formula for the adjoint of a composition operator on H 2
ball. It is shown

that if ϕ = (ϕ1, . . . , ϕn) is a free holomorphic self-map of the noncommutative ball [B(H)n]1,
then

C∗
ϕf =

∑
α∈F

+
n

〈f,ϕα〉eα,

where f and ϕ1, . . . , ϕn are seen as elements of the Fock space F 2(Hn). As a consequence we
prove that Cϕ is normal if and only if

ϕ(X1, . . . ,Xn) = [X1 . . . Xn]A

for some normal scalar matrix A ∈ Mn×n with ‖A‖ � 1. This leads to characterizations of
self-adjoint or unitary composition operators on H 2

ball. A nice connection between Fredholm
composition operators on H 2

ball and the automorphisms of the open unit ball Bn is also presented.
In Section 5, we study compact composition operators on the noncommutative Hardy space

H 2
ball. Using some of Shapiro’s arguments from the single variable case (see [44]) in our setting

as well as some results from Section 4, we obtain a formula for the essential norm of the compo-
sition operator Cϕ on H 2

ball. In particular, this implies that Cϕ is a compact operator if and only
if

lim
k→∞ sup

f ∈H 2
ball,‖f ‖2�1

∑
|α|�k

∣∣〈f,ϕα〉∣∣2 = 0.

Moreover, we show that if Cϕ is a compact operator on H 2
ball, then the scalar representation of ϕ

is a holomorphic self-map of Bn which
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(i) cannot have finite angular derivative at any point of ∂Bn, and
(ii) has exactly one fixed point in the open ball Bn.

As a consequence, we deduce that every compact composition operator on H 2
ball is similar to

a contraction. In the end of this section, we prove that the set of compact composition operators
on H 2

ball is arcwise connected in the set of all composition operators with respect to the operator
norm topology.

In Section 6, we consider a noncommutative multivariable extension of Schröder equation
[43] which is used to obtain results concerning the spectrum of composition operators on H 2

ball
(see Theorem 6.4). Combining these results with those from Section 5, we determine the spectra
of compact composition operators on H 2

ball. More precisely, if ϕ is a free holomorphic self-map
of the noncommutative ball [B(H)n]1 and Cϕ is a compact composition operator on H 2

ball, then
the scalar representation of ϕ has a unique fix point ξ ∈ Bn and the spectrum σ(Cϕ) consists
of 0, 1, and all possible products of the eigenvalues of the matrix

[〈ψi, ej 〉
]
n×n

,

where ψ = (ψ1, . . . ,ψn) := Φξ ◦ϕ ◦Φξ and Φξ is the involutive free holomorphic automorphism
of [B(H)n]1 associated with ξ , the functions ψ1, . . . ,ψn are seen as elements of the Fock space
F 2(Hn), and the Hilbert space Hn has e1, e2, . . . , en as orthonormal basis.

In Section 7, we consider composition operators on Fock spaces associated to noncommuta-
tive varieties in unit ball [B(H)n]1. Given a set P0 of noncommutative polynomials in n indeter-
minates such that p(0) = 0, p ∈ P0, we define a noncommutative variety VP0(H) ⊆ [B(H)n]1

by setting

V P0(H) := {(X1, . . . ,Xn) ∈ [B(H)n
]

1: p(X1, . . . ,Xn) = 0 for all p ∈ P0
}
.

According to [32], there is a universal model (B1, . . . ,Bn) associated with the noncommutative
variety VP0(H), where Bi = PN P0

Si |N P0
and NP0 is a subspace of the full Fock space F 2(Hn).

Let F∞
n (V P0) be the w∗-closed algebra generated by B1, . . . ,Bn and the identity. Using the

results from Section 2 and the noncommutative commutant lifting theorem [24] (see [47] for the
classical case n = 1), we show that given any ψ̃ ∈ F∞

n (V P0) ⊗ C
n with ‖ψ̃‖ � 1, one can define

a composition operator Cψ̃ : NP0 → NP0 , which turns out to be bounded. Many results from the
previous sections have analogues in this more general setting. In particular, if Pc := {XiXj −
XjXi : i, j = 1, . . . , n}, then NPc

coincides with the symmetric Fock space. As a consequence,
many of our results have commutative counterparts for composition operators on the symmetric
Fock space and on spaces of analytic functions in the unit ball of C

n.

1. Noncommutative Littlewood subordination principle

In this section, we characterize the free holomorphic self-maps of the unit ball [B(H)n]1 in
terms of the model boundary functions with respect to the left creation operators on the full Fock
space F 2(Hn). This will be used to provide a noncommutative Littlewood subordination theorem
for the Hardy space H 2 .
ball
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Let Hn be an n-dimensional complex Hilbert space with orthonormal basis e1, e2, . . . , en,
where n ∈ {1,2, . . .}. We consider the full Fock space of Hn defined by

F 2(Hn) := C1 ⊕
⊕
k�1

H⊗k
n ,

where H⊗k
n is the (Hilbert) tensor product of k copies of Hn. We denote eα := ei1 ⊗ · · · ⊗ eik if

α = gi1 · · ·gik , where i1, . . . , ik ∈ {1, . . . , n}, and eg0 := 1. Note that {eα}α∈F
+
n

is an orthonormal

basis for F 2(Hn). Define the left (resp. right) creation operators Si (resp. Ri ), i = 1, . . . , n, acting
on F 2(Hn) by setting

Siϕ := ei ⊗ ϕ, ϕ ∈ F 2(Hn),

(resp. Riϕ := ϕ ⊗ ei ). Note that SiRj = RjSi for i, j ∈ {1, . . . , n}. The noncommutative disc
algebra An (resp. Rn) is the norm closed algebra generated by the left (resp. right) creation
operators and the identity. The noncommutative analytic Toeplitz algebra F∞

n (resp. R∞
n ) is the

weakly closed version of An (resp. Rn). These algebras were introduced in [26] in connection
with a noncommutative version of the classical von Neumann inequality [49].

Let C∗(S1, . . . , Sn) be the Cuntz–Toeplitz C∗-algebra generated by the left creation operators
(see [4]). The noncommutative Poisson transform at X := (X1, . . . ,Xn) ∈ [B(H)n]−1 is the unital
completely contractive linear map PX : C∗(S1, . . . , Sn) → B(H) defined by

PX[f ] := lim
r→1

K∗
rX(f ⊗ IH)KrX, f ∈ C∗(S1, . . . , Sn),

where the limit exists in the operator norm topology of B(H). Here, KrX : H → F 2(Hn) ⊗ H,
0 < r � 1, is the noncommutative Poisson kernel defined by

KrXh :=
∞∑

k=0

∑
|α|=k

eα ⊗ r |α|�rXX∗
αh, h ∈ H,

where �rX := (IH − r2X1X
∗
1 − · · · − r2XnX

∗
n)

1/2. We recall that

PX

[
SαS∗

β

]= XαX∗
β, α,β ∈ F

+
n .

When X := (X1, . . . ,Xn) is a pure row contraction, i.e. SOT- limk→∞
∑

|α|=k XαX∗
α = 0, then

we have

PX[f ] = K∗
X(f ⊗ IH)KX, f ∈ C∗(S1, . . . , Sn) or f ∈ F∞

n .

Under an appropriate modification of the Poisson kernel (eα becomes eα̃ where α̃ = gik · · ·gik is
the reverse of α = gi1 · · ·gik ∈ F

+
n ), similar results hold for C∗(R1, . . . ,Rn) of R∞

n . For simplic-
ity, we use the same notation for the noncommutative Poisson transform. We refer to [30,31,35]
for more on noncommutative Poisson transforms on C∗-algebras generated by isometries.

According to [33] and [37], the noncommutative Hardy space H∞
ball (see the introduction) can

be identified with the noncommutative analytic Toeplitz algebra F∞. More precisely, a bounded
n
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free holomorphic function ψ on [B(H)n]1 is uniquely determined by its (model) boundary func-
tion ψ̃(S1, . . . , Sn) ∈ F∞

n defined by

ψ̃ = ψ̃(S1, . . . , Sn) := SOT- lim
r→1

ψ(rS1, . . . , rSn).

Moreover, ψ is the noncommutative Poisson transform of ψ̃(S1, . . . , Sn) at X := (X1, . . . ,Xn) ∈
[B(H)n]1, i.e.,

ψ(X1, . . . ,Xn) = PX

[
ψ̃(S1, . . . , Sn)

]
.

Similar results hold for bounded free holomorphic functions on the noncommutative ball
[B(H)n]1 with operator-valued coefficients. There are also versions of these results when the
boundary function is taken with respect to the right creation operators R1, . . . ,Rn.

Throughout this paper, we deal with free holomorphic self-maps of the unit ball [B(H)n]1.
The following results gives us, in particular, a characterization of these maps in terms of the
model boundary functions with respect to the left creation operators on the full Fock space
F 2(Hn). For simplicity, [X1, . . . ,Xn] denotes either the n-tuple (X1, . . . ,Xn) ∈ B(H)n or the
operator row matrix [X1 . . . Xn] acting from H(n), the direct sum of n copies of a Hilbert space
H, to H.

Theorem 1.1. Let ϕ : [B(H)n]1 → [B(H)m]−1 be a free holomorphic function. Then the following
statements hold.

(i) Either ϕ([B(H)n]1) ⊆ [B(H)m]1 or there exists ζ ∈ ∂Bm such that ϕ(X) = ζ for all X ∈
[B(H)n]1.

(ii) ϕ is constant if and only if ‖ϕ(0)‖ = ‖ϕ‖∞.
(iii) If ϕ is non-constant and ϕr(X) := ϕ(rX), X ∈ [B(H)n]1, then the map [0,1) 	 r 
→ ‖ϕr‖∞

is strictly increasing.
(iv) If ϕ̃ is the boundary function of ϕ with respect to S1, . . . , Sn, then ϕ([B(H)n]1) ⊆ [B(H)m]1

if and only if either ϕ̃ = ζ I for some ζ ∈ Bn or ϕ̃ is non-constant with ‖ϕ̃‖ � 1.

Proof. If ‖ϕ‖∞ < 1, then (i) holds. Assume that ‖ϕ‖∞ = 1. In this case, if ‖ϕ(0)‖ < 1
then, according to the maximum principle for free holomorphic functions (see Proposition 5.2
from [38]), we have ‖ϕ(X)‖ < 1 for all X ∈ [B(H)n]1. It remains to consider the case when
‖ϕ(0)‖ = 1. Set ζ = [ζ1, . . . , ζm] := ϕ(0) ∈ ∂Bm and let U ∈ Mm×m be a unitary matrix such
that [ζ1, . . . , ζm]U = ξ1 := [1,0, . . . ,0] ∈ ∂Bm. Let ϕU(X) := [X1, . . . ,Xm]U and note that
g := ϕU ◦ ϕ : [B(H)n]1 → [B(H)m]−1 is a free holomorphic function with g(0) = ξ1. Set-
ting g = (g1, . . . , gm), we deduce that gi are free holomorphic functions with g1(0) = 1 and
gi(0) = 0 if i = 2, . . . ,m. Applying Theorem 5.1 from [38] to g1, we deduce that g1(X) = 1 for
all X ∈ [B(H)n]1. Hence g2 = · · · = gm = 0. This implies that ϕ(X) = ζ for all X ∈ [B(H)n]1,
and completes the proof of item (i). Since the direct implication in item (ii) is obvious, we as-
sume that ‖ϕ(0)‖ = ‖ϕ‖∞ and ‖ϕ‖∞ = 1. The rest of the proof of (ii) is contained in the proof
of item (i).

To prove item (iii), assume that ϕ is non-constant. Due to part (ii), we must have ‖ϕ(0)‖ <

‖ϕ‖∞. Using again Proposition 5.2 from [38], we have ‖ϕ(X)‖ < ‖ϕ‖∞ for all X ∈ [B(H)n]1.
Let 0 � r1 < r2 < 1. We recall that, if r ∈ [0,1), then the boundary function ϕ̃r is in An ⊗M1×m,
where An is the noncommutative disc algebra and ‖ϕr‖∞ = ‖ϕ̃r‖ = ‖ϕr(S1, . . . , rSn)‖. Using
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the noncommutative von Neumann inequality (see [26]) and applying the above-mentioned result
to ϕr2 and (X1, . . . ,Xn) := ( r1

r2
S1, . . . ,

r1
r2

Sn), we obtain

‖ϕr1‖∞ = ∥∥ϕr1(S1, . . . , Sn)
∥∥=

∥∥∥∥ϕr2

(
r1

r2
S1, . . . ,

r1

r2
Sn

)∥∥∥∥<
∥∥ϕr2(S1, . . . , Sn)

∥∥= ‖ϕr2‖∞,

which shows that (iii) holds.
Now we prove (iv). If ϕ([B(H)n]1) ⊆ [B(H)m]1, then ‖ϕ̃‖ = ‖ϕ‖∞ � 1 and the result fol-

lows. Conversely, assume that ‖ϕ̃‖ � 1 and ϕ̃ is not of the form ζ I for some ζ ∈ Bn. Then ϕ is
not a constant and due to (ii) we have ‖ϕ(0)‖ < ‖ϕ‖∞. Using now item (iii), we deduce that the
map [0,1) 	 r 
→ ‖ϕr‖∞ is strictly increasing. If X := (X1, . . . ,Xn) ∈ [B(H)n]1, then there is
r ∈ [0,1) such that ‖X‖ < r . Consequently, due to the noncommutative von Neumann inequality,
we have ∥∥ϕ(X1, . . . ,Xn)

∥∥�
∥∥ϕ(rS1, . . . , rSn)

∥∥= ‖ϕr‖∞ < 1.

The proof is complete. �
Note that if f ∈ Hball, then f ∈ H 2

ball if and only supr∈[0,1) ‖f (rS1, . . . , rSn)1‖ < ∞. More-
over, in this case, we have

‖f ‖2 = lim
r→1

∥∥f (rS1, . . . , rSn)1
∥∥= sup

r∈[0,1)

∥∥f (rS1, . . . , rSn)1
∥∥.

If f =∑∞
k=0

∑
|α|=k aαXα and g =∑∞

k=0
∑

|α|=k bαXα are in H 2
ball, then

〈f,g〉 = lim
r→1

〈
f (rS1, . . . , rSn)1, g(rS1, . . . , rSn)1

〉
F 2(Hn)

=
〈 ∑

α∈F
+
n

aαeα,
∑

α∈F
+
n

bαeα

〉
F 2(Hn)

.

Consequently, the noncommutative Hardy space H 2
ball can be identified with the full Fock space

F 2(Hn), via the unitary operator U : H 2
ball → F 2(Hn) defined by the mapping

H 2
ball 	

∞∑
k=0

∑
|α|=k

aαXα 
→
∞∑

k=0

∑
|α|=k

aαeα ∈ F 2(Hn).

This identification will be used throughout the paper whenever necessary. We recall from [38]
that if f : [B(H)n]1 → B(H) and ϕ : [B(H)n]1 → [B(H)n]1 are free holomorphic functions
then f ◦ ϕ is a free holomorphic function on [B(H)n]1 defined by

(f ◦ ϕ)(X1, . . . ,Xn) =
∞∑

k=0

∑
|α|=k

aαϕα(X1, . . . ,Xn), (X1, . . . ,Xn) ∈ [B(H)n
]

1,

where the convergence is in the operator norm topology.
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We can prove now the following noncommutative Littlewood subordination theorem for the
Hardy space H 2

ball, which will play an important role in this paper.

Theorem 1.2. Let ϕ be a free holomorphic self-map of the ball [B(H)n]1 such that ϕ(0) = 0,
and let f ∈ H 2

ball. Then f ◦ ϕ ∈ H 2
ball and ‖f ◦ ϕ‖2 � ‖f ‖2.

Proof. Let ϕ := (ϕ1, . . . , ϕn) be a free holomorphic self-map of the ball [B(H)n]1 such that
ϕ(0) = 0, and let ϕ̃ = (ϕ̃1, . . . , ϕ̃n) ∈ F∞

n ⊗ C
n be the model boundary function with respect to

the left creation operators S1, . . . , Sn. Thus ϕ̃i := SOT- limr→1 ϕi(rS1, . . . , rSn) for i = 1, . . . , n.
Let Pn be the set of all polynomials in F 2(Hn) and define Cϕ̃ : Pn → F 2(Hn) by setting

Cϕ̃

( ∑
|α|�m

aαeα

)
:=

∑
|α|�m

aαϕ̃α(1).

If q :=∑
|α|�m aαXα is a polynomial in H 2

ball, then p := U q =∑
|α|�m aαeα is a polynomial

in F 2(Hn). Note that p = p(0) +∑n
i=1 Si(S

∗
i p), where p(0) = PCp = a0 := ag0 . Hence, we

deduce that

Cϕ̃p = a0 +
n∑

i=1

ϕ̃iCϕ̃

(
S∗

i p
)
.

Since ϕ(0) = 0, the vector
∑n

i=1 ϕ̃iCϕ̃(S∗
i p) is orthogonal to the constants in F 2(Hn). Conse-

quently, using the fact that [ϕ̃1, . . . , ϕ̃n] is a row contraction, we have

‖Cϕ̃p‖2
2 = |a0|2 +

∥∥∥∥∥
n∑

i=1

ϕ̃iCϕ̃

(
S∗

i p
)∥∥∥∥∥

2

� |a0|2 +
∥∥∥∥∥

n⊕
i=1

Cϕ̃

(
S∗

i p
)∥∥∥∥∥

2

.

Note that, for each i = 1, . . . , n, we have

Cϕ̃

(
S∗

i p
)= (S∗

i p
)
(0) +

n∑
j=1

ϕ̃jCϕ̃

(
S∗

j S∗
i p
)
.

Hence, using again that ϕ(0) = 0 and that [ϕ̃1, . . . , ϕ̃n] is a row contraction, we deduce that∥∥∥∥∥
n⊕

i=1

Cϕ̃

(
S∗

i p
)∥∥∥∥∥

2

=
∥∥∥∥∥

n⊕
i=1

(
S∗

i p
)
(0)

∥∥∥∥∥
2

+
∥∥∥∥∥

n⊕
i=1

(
n∑

j=1

ϕ̃jCϕ̃

(
S∗

j S∗
i p
))∥∥∥∥∥

2

�
∑
|α|=1

|aα|2 +
n∑

i=1

∥∥∥∥∥
n∑

j=1

ϕ̃jCϕ̃

(
S∗

j S∗
i p
)∥∥∥∥∥

2

�
∑

|aα|2 +
∥∥∥∥⊕ Cϕ̃

(
S∗

βp
)∥∥∥∥2

.

|α|=1 |β|=2
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Similarly, for any k ∈ {1, . . . ,m + 1}, we obtain∥∥∥∥ ⊕
|β|=k−1

Cϕ̃

(
S∗

βp
)∥∥∥∥2

�
∑

|α|=k−1

|aα|2 +
∥∥∥∥⊕

|β|=k

Cϕ̃

(
S∗

βp
)∥∥∥∥2

.

Using these relations and the fact that S∗
γ p = 0 for |γ | � m + 1, we obtain

‖Cϕ̃p‖2
2 �

∑
|α|�m

|aα|2 = ‖p‖2
2.

Since U Cϕ U −1p = Cϕ̃p, we deduce that

‖Cϕq‖2 � ‖q‖2 for any polynomial q ∈ H 2
ball. (1.1)

Now, we prove that f ◦ϕ is in H 2
ball for any f ∈ H 2

ball and ‖f ◦ϕ‖2 � ‖f ‖2. Let f (X1, . . . ,Xn) =∑∞
k=0

∑
|α|=k cαXα be a free holomorphic function in H 2

ball. Then f ◦ ϕ is a free holomorphic
function on [B(H)n]1, defined by

(f ◦ ϕ)(X1, . . . ,Xn) =
∞∑

k=0

∑
|α|=k

cαϕα(X1, . . . ,Xn), (X1, . . . ,Xn) ∈ [B(H)n
]

1,

where the convergence is in the operator norm topology. In particular, we have

(f ◦ ϕ)(rS1, . . . , rSn)1 =
∞∑

k=0

∑
|α|=k

cαϕα(rS1, . . . , rSn)1, (1.2)

where the convergence is in F 2(Hn). On the other hand, setting pm(X1, . . . ,Xn) :=∑m
k=0

∑
|α|=k cαXα , we have pm → f in H 2

ball as m → ∞. Therefore, {pm} is a Cauchy se-

quence in H 2
ball. Due to relation (1.1), we have

‖pm ◦ ϕ − pk ◦ ϕ‖2 � ‖pm − pk‖2, m, k ∈ N.

Hence, {pm ◦ ϕ} is a Cauchy sequence in H 2
ball and, consequently, there is g ∈ H 2

ball such that
pm ◦ ϕ → g in H 2

ball. Hence, for each r ∈ [0,1), we have

lim
m→∞(pm ◦ ϕ)(rS1, . . . , rSn)1 = g(rS1, . . . , rSn)1.

Combining this relation with (1.2), we get

g(rS1, . . . , rSn)1 = (f ◦ ϕ)(rS1, . . . , rSn)1, r ∈ [0,1).

Since f ◦ ϕ and g are free holomorphic functions, we deduce that f ◦ ϕ = g ∈ H 2
ball. Now, since

pm ◦ ϕ → f ◦ ϕ in H 2
ball, relation (1.1) implies ‖f ◦ ϕ‖2 � ‖f ‖2 for any f ∈ H 2

ball. The proof is
complete. �
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If in addition to the hypothesis of Theorem 1.2, we assume that ϕ is inner, i.e. the boundary
function ϕ̃ is an isometry, then we can prove the following result.

Theorem 1.3. Let ϕ be an inner free holomorphic self-map of the ball [B(H)n]1 such that
ϕ(0) = 0. Then the composition operator Cϕ is an isometry on H 2

ball.

Proof. Let ϕ̃ := [ϕ̃1, . . . , ϕ̃n] be the boundary function of ϕ with respect to the left creation
opeartors. Note that due to the fact that ϕ(0) = 0, we have 〈1, ϕ̃α1〉 = 0 for any α ∈ F

+
n with

|α| � 1. On the other hand, since [ϕ̃1, . . . , ϕ̃n] is an isometry, we have ϕ̃∗
i ϕ̃j = δij IF 2(Hn) for

i, j ∈ {1, . . . , n}. Consequently,

〈ϕα,ϕβ〉H 2
ball

= 〈ϕ̃α1, ϕ̃β1〉

=
⎧⎨⎩

〈ϕ̃γ 1,1〉 if α = βγ,

1 if α = β,

〈1, ϕ̃γ 1〉 if β = αγ

=
{

1 if α = β,

0 if α �= β.

This shows that {ϕα}α∈F
+
n

is an orthonormal set in H 2
ball. If f =∑∞

k=0
∑

|α|=k cαXα is in H 2
ball,

then setting pm(X1, . . . ,Xn) := ∑m
k=0

∑
|α|=k cαXα , we have pm → f in H 2

ball, as m → ∞.
Note that

‖pm ◦ ϕ‖2
2 =

〈
m∑

k=0

∑
|α|=k

cαϕα,

m∑
k=0

∑
|β|=k

cβϕβ

〉
=

m∑
k=0

∑
|α|=k

|cα|2 = ‖pm‖2
2. (1.3)

Consequently, {pm ◦ϕ} is a Cauchy sequence in H 2
ball and there is g ∈ H 2

ball such that pm ◦ϕ → g

in H 2
ball. Hence, we deduce that

g(rS1, . . . , rSn)1 = lim
m→∞(pm ◦ ϕ)(rS1, . . . , rSn)1 = (f ◦ ϕ)(rS1, . . . , rSn)1, r ∈ [0,1).

Since f ◦ ϕ and g are free holomorphic functions, the identity theorem for free holomorphic
functions implies f ◦ ϕ = g. Therefore, relation (1.3) implies that Cϕ is an isometry and the
proof is complete. �
2. Composition operators on the noncommutative Hardy space H 2

ball

This section contains the core material on the boundedness of compositions operators on the
noncommutative Hardy space H 2

ball and the estimates of their norms. We also characterize the
similarity of composition operators on H 2

ball to contractions.
Let θ be an analytic function on the open disc D. It is well known that the map ϕ : D → R

+
defined by ϕ(λ) := |θ(λ)|2 is subharmonic. A classical result on harmonic majorants (see Sec-
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tion 2.6 in [6]) states that θ is in the Hardy space H 2(D) if and only if ϕ has a harmonic majorant.
Moreover, the least harmonic majorant of ϕ is given by the Herglotz–Riesz [9,40] formula

h(λ) = 1

2π

2π∫
0

eit + λ

eit − λ

∣∣θ(eit
)∣∣2 dt, λ ∈ D.

In [34], we obtained free analogues of these results. Since these results play an important role in
our investigation we shall recall them.

We say that a map h : [B(H)n]1 → B(H) is a self-adjoint free pluriharmonic function on
[B(H)n]1 if h = �f := 1

2 (f ∗ + f ) for some free holomorphic function f on [B(H)n]1. An
arbitrary free pluriharmonic function is a linear combination of self-adjoint free pluriharmonic
functions. A pluriharmonic curve in C∗(S1, . . . , Sn) is a map ϕ : [0,1) → An + An

‖·‖ satisfying
the Poisson mean value property, i.e.,

ϕ(r) = P r
t
S

[
ϕ(t)

]
for 0 � r < t < 1,

where S := (S1, . . . , Sn) and PX[u] is the noncommutative Poisson transform of u at X. Ac-
cording to [37], there exists a one-to-one correspondence u 
→ ϕ between the set of all free
pluriharmonic functions on the noncommutative ball [B(H)n]1, and the set of all pluriharmonic
curves ϕ : [0,1) → A∗

n + An
‖·‖. Moreover, we have

u(X) = P 1
r
X

[
ϕ(r)

]
for X ∈ [B(H)n

]
r

and r ∈ (0,1),

and ϕ(r) = u(rS1, . . . , rSn) if r ∈ [0,1). We say that a map ψ : [0,1) → An + An
‖·‖ is self-

adjoint if ψ(r) = ψ(r)∗ for r ∈ [0,1). We call ψ a sub-pluriharmonic curve provided that for
each γ ∈ (0,1) and each self-adjoint pluriharmonic curve ϕ : [0, γ ] → An + An

‖·‖, if ψ(γ ) �
ϕ(γ ), then ψ(r) � ϕ(r) for any r ∈ [0, γ ]. We proved that a self-adjoint map g : [0,1) →

A∗
n + An

‖·‖ is a sub-pluriharmonic curve in C∗(S1, . . . , Sn) if and only if

g(r) � P r
γ

S

[
g(γ )

]
for 0 � r < γ < 1.

We obtained a characterization for the class of all sub-pluriharmonic curves that admit free
pluriharmonic majorants, and proved the existence of the least pluriharmonic majorant. We men-
tion that all these results can be written for sub-pluriharmonic curves in C∗(R1, . . . ,Rn), where
R1, . . . ,Rn are the right creation operators on the full Fock space.

In [34], we showed that, for any free holomorphic function Θ on the noncommutative ball
[B(H)n]1, the mapping

ϕ : [0,1) → C∗(R1, . . . ,Rn), ϕ(r) = Θ(rR1, . . . , rRn)
∗Θ(rR1, . . . , rRn),

is a sub-pluriharmonic curve in the Cuntz–Toeplitz algebra generated by the right creation op-
erators R1, . . . ,Rn. We proved that a free holomorphic function Θ is in the noncommutative
Hardy space H 2

ball if and only if ϕ has a pluriharmonic majorant. In this case, the least plurihar-
monic majorant ψ for ϕ is given by ψ(r) := �W(rR1, . . . rRn), r ∈ [0,1), where W is the free
holomorphic function having the Herglotz–Riesz type representation
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W(X1, . . . ,Xn) = (μθ ⊗ id)

[(
I +

n∑
i=1

R∗
i ⊗ Xi

)(
I −

n∑
i=1

R∗
i ⊗ Xi

)−1]

for (X1, . . . ,Xn) ∈ [B(H)n]1, where μθ : R∗
n + Rn → C is a positive linear map uniquely deter-

mined by the function Θ .
Now, we need to recall from [38] some basic facts concerning the free holomorphic automor-

phisms of the noncommutative ball [B(H)n]1. A map ϕ : [B(H)n]1 → [B(H)n]1 is called free
biholomorphic if ϕ is free homolorphic, one-to-one and onto, and has free holomorphic inverse.
The automorphism group of [B(H)n]1, denoted by Aut([B(H)n]1), consists of all free biholo-
morphic functions of [B(H)n]1. It is clear that Aut([B(H)n]1) is a group with respect to the
composition of free holomorphic functions. We used the theory of noncommutative characteris-
tic functions for row contractions [25] to find all the involutive free holomorphic automorphisms
of [B(H)n]1, which turned out to be of the form

Φλ(X1, . . . ,Xn) = −Θλ(X1, . . . ,Xn), (X1, . . . ,Xn) ∈ [B(H)n
]

1,

for some λ = [λ1, . . . , λn] ∈ Bn, where Θλ is the characteristic function of the row contraction λ,
acting as an operator from C

n to C. We recall that the characteristic function of the row contrac-
tion λ is the boundary function (with respect to R1, . . . ,Rn)

Θ̃λ := SOT- lim
r→1

Θλ(rR1, . . . , rRn)

of the free holomorphic function Θλ : [B(H)n]1 → [B(H)n]1 given by

Θλ(X1, . . . ,Xn) := −λ + �λ

(
IH −

n∑
i=1

λiXi

)−1

[X1, . . . ,Xn]�λ∗

for (X1, . . . ,Xn) ∈ [B(H)n]1, where �λ = (1 − ‖λ‖2
2)

1/2IC and �λ∗ = (IK − λ∗λ)1/2. For sim-
plicity, we used the notation λ := [λ1IG , . . . , λnIG ] for the row contraction acting from G(n) to G ,
where G is a Hilbert space.

In [38], we proved that if λ := (λ1, . . . , λn) ∈ Bn\{0} and γ := 1
‖λ‖2

, then Φλ := −Θλ is a free
holomorphic function on [B(H)n]γ which has the following properties:

(i) Φλ(0) = λ and Φλ(λ) = 0;
(ii) the identities

IH − Φλ(X)Φλ(Y )∗ = �λ

(
I − Xλ∗)−1(

I − XY ∗)(I − λY ∗)−1
�λ,

IH⊗Cn − Φλ(X)∗Φλ(Y ) = �λ∗
(
I − X∗λ

)−1(
I − X∗Y

)(
I − λ∗Y

)−1
�λ∗ , (2.1)

hold for all X and Y in [B(H)n]γ ;
(iii) Φλ is an involution, i.e., Φλ(Φλ(X)) = X for any X ∈ [B(H)n]γ ;
(iv) Φλ is a free holomorphic automorphism of the noncommutative unit ball [B(H)n]1;
(v) Φλ is a homeomorphism of [B(H)n]−1 onto [B(H)n]−1 ;

(vi) Φλ is inner, i.e., the boundary function Φ̃λ is an isometry.



920 G. Popescu / Journal of Functional Analysis 260 (2011) 906–958
Moreover, we determined all the free holomorphic automorphisms of the noncommutative ball
[B(H)n]1 by showing that if Φ ∈ Aut([B(H)n]1) and λ := Φ(0), then there is a unitary operator
U on Cn such that

Φ = Φλ ◦ ΦU,

where

ΦU(X1, . . .Xn) := [X1, . . . ,Xn]U, (X1, . . . ,Xn) ∈ [B(H)n
]

1.

We have now all the ingredients to prove the key result of this section.

Theorem 2.1. If ϕ is a free holomorphic automorphism of the noncommutative ball [B(H)n]1,
then Cϕf ∈ H 2

ball for all f ∈ H 2
ball, and

(
1 − ‖ϕ(0)‖
1 + ‖ϕ(0)‖

)1/2

‖f ‖ � ‖Cϕf ‖ �
(

1 + ‖ϕ(0)‖
1 − ‖ϕ(0)‖

)1/2

‖f ‖

for all f ∈ H 2
ball. Moreover, these inequalities are best possible and

‖Cϕ‖ =
(

1 + ‖ϕ(0)‖
1 − ‖ϕ(0)‖

)1/2

.

Proof. Let ϕ := (ϕ1, . . . , ϕn) be an inner free holomorphic self-map of the noncommutative ball
[B(H)n]1. Then the boundary function with respect to the right creation operators R1, . . . ,Rn,
i.e.,

ϕ̃ := (ϕ̃1, . . . , ϕ̃n), where ϕ̃i := SOT- lim
r→1

ϕi(rR1, . . . , rRn),

is an isometry. Consequently, ϕ̃∗
i ϕ̃j = δij IF 2(Hn) for i, j ∈ {1, . . . , n}. Recall that R1, . . . ,Rn are

isometries with orthogonal ranges, so R∗
i Rj = δij IF 2(Hn) for i, j ∈ {1, . . . , n}. Consequently, we

have

R∗
αRβ =

⎧⎨⎩
Rγ if β = αγ,

I if α = β,

R∗
γ if α = βγ,

and ϕ̃∗
αϕ̃β =

⎧⎨⎩
ϕ̃γ if β = αγ,

I if α = β,

ϕ̃∗
γ if α = βγ.

Fix a noncommutative polynomial p(X1, . . . ,Xn) := ∑
|α|�m aαr |α|Xα . Note that, using the

above-mentioned relations and applying the noncommutative Poisson transform (with respect
to R1, . . . ,Rn) at [ϕ̃1, . . . , ϕ̃n], we obtain

P[ϕ̃1,...,ϕ̃n]
[
p(rR1, . . . , rRn)

∗p(rR1, . . . , rRn)
]= p(rϕ̃1, . . . , rϕ̃n)

∗p(rϕ̃1, . . . , rϕ̃n) (2.2)

for any r ∈ [0,1). Since p ∈ H 2
ball, Theorem 2.3 from [34] shows that the map[

0,1) 	 r 
→ p(rR1, . . . , rRn)
∗p(rR1, . . . , rRn) ∈ C∗(R1, . . . ,Rn)



G. Popescu / Journal of Functional Analysis 260 (2011) 906–958 921
has a pluriharmonic majorant. In this case, the least pluriharmonic majorant is given by

[0,1) 	 r 
→ �W(rR1, . . . rRn) ∈ C∗(R1, . . . ,Rn),

where W is the free holomorphic function on [B(H)n]1 having the Herglotz–Riesz type repre-
sentation

W(X1, . . . ,Xn) = (μp ⊗ id)

[(
I +

n∑
i=1

R∗
i ⊗ Xi

)(
I −

n∑
i=1

R∗
i ⊗ Xi

)−1]
(2.3)

for (X1, . . . ,Xn) ∈ [B(H)n]1, where μp : R∗
n + Rn → C is the completely positive linear map

uniquely determined by the equation

μp

(
R∗̃

α

) := lim
r→1

〈
p(rR1, . . . , rRn)

∗S ∗̃
αp(rR1, . . . , rRn)1,1

〉
(2.4)

for α ∈ F
+
n , where α̃ is the reverse of α ∈ F

+
n , i.e., α̃ = gik · · ·gik if α = gi1 · · ·gik ∈ F

+
n . There-

fore, we have

p(rR1, . . . , rRn)
∗p(rR1, . . . , rRn) � �W(rR1, . . . , rRn)

for any r ∈ [0,1). Hence, using relation (2.2) and the fact that the noncommutative Poisson
transform is a completely positive map, we deduce that

p(rϕ̃1, . . . , rϕ̃n)
∗p(rϕ̃1, . . . , rϕ̃n) � �W(rϕ̃1, . . . , rϕ̃n)

for any r ∈ [0,1). The latter relation implies

∥∥p(rϕ̃1, . . . , rϕ̃n)1
∥∥2 �

〈
ReW(rϕ̃1, . . . , rϕ̃n)1,1

〉= �W
(
rϕ1(0), . . . , rϕn(0)

)
.

On the other hand, according to the Harnak type theorem for positive free pluriharmonic func-
tions (see [36]), we have

ReW
(
rϕ1(0), . . . , ϕn(0)

)
� �W(0)

1 + r‖ϕ(0)‖
1 − r‖ϕ(0)‖ .

Combining the latter two inequalities and taking r → 1, we deduce that

‖p ◦ ϕ‖2
2 = ∥∥p(ϕ̃1, . . . , ϕ̃n)1

∥∥2 � �W(0)
1 + ‖ϕ(0)‖
1 − ‖ϕ(0)‖ . (2.5)

Using the Herglotz–Riesz representation (2.3) and relation (2.4), we obtain

W(0) = μp(I) = lim
∥∥p(rR1, . . . , rRn)1

∥∥2 = ‖p‖2
2.
r→1
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Hence, and using relation (2.5), we have

‖p ◦ ϕ‖2 � ‖p‖2

(
1 + ‖ϕ(0)‖
1 − ‖ϕ(0)‖

)1/2

(2.6)

for any noncommutative polynomial p ∈ H 2
ball. Let f (X1, . . . ,Xn) =∑∞

k=0
∑

|α|=k cαXα be a

free holomorphic function in H 2
ball. Then f ◦ ϕ is a free holomorphic function on [B(H)n]1 and

(f ◦ ϕ)(rS1, . . . , rSn)1 =
∞∑

k=0

∑
|α|=k

cαϕα(rS1, . . . , rSn)1, (2.7)

where the convergence is in F 2(Hn). Setting pm(X1, . . . ,Xn) :=∑m
k=0

∑
|α|=k cαXα , we have

pm → f in H 2
ball as m → ∞. Therefore, {pm} is a Cauchy sequence in H 2

ball. Due to relation
(2.6), we have

‖pm ◦ ϕ − pk ◦ ϕ‖2 �
(

1 + ‖ϕ(0)‖
1 − ‖ϕ(0)‖

)1/2

‖pm − pk‖2, m, k ∈ N.

Consequently, {pm ◦ϕ} is a Cauchy sequence in H 2
ball and there is g ∈ H 2

ball such that pm ◦ϕ → g

in H 2
ball as m → ∞. Hence, and using relation (2.7), we deduce that

g(rS1, . . . , rSn)1 = lim
m→∞(pm ◦ ϕ)(rS1, . . . , rSn)1 = (f ◦ ϕ)(rS1, . . . , rSn)1, r ∈ [0,1).

Since f ◦ ϕ and g are free holomorphic functions, the identity theorem for free holomorphic
functions implies f ◦ ϕ = g. Using that fact that pm ◦ ϕ → f ◦ ϕ in H 2

ball and relation (2.6), we
obtain

‖f ◦ ϕ‖2 �
(

1 + ‖ϕ(0)‖
1 − ‖ϕ(0)‖

)1/2

‖f ‖2, f ∈ H 2
ball. (2.8)

Since any free holomorphic automorphism of [B(H)n]1 is inner, i.e., its boundary function with
respect to R1, . . . ,Rn is an isometry, the result above implies the right-hand inequality of the
theorem.

Now, we prove the left-hand inequality. For each μ := (μ1, . . . ,μn) ∈ Bn, we define the vec-
tor zμ :=∑

k=0
∑

|α|=k μαeα , where μα := μi1 · · ·μip if α = gi1 · · ·gip ∈ F
+
n and i1, . . . , ip ∈

{1, . . . , n}, and μg0 = 1. Note that zμ ∈ F 2(Hn) and Zμ(X) :=∑
k=0

∑
|α|=k μαXα is in H 2

ball.

Since Cϕ is a bounded operator on H 2
ball, we have

(
C∗

ϕZμ

)
(X) =

∑
k=0

∑
|α|=k

bαXα, X ∈ [B(H)n
]

1,

for some coefficients bα ∈ C with
∑

α∈F
+
n

|bα|2 < ∞. Since the monomials {Xα}α∈F
+
n

form an

orthonormal basis for H 2 , for each α ∈ F
+, we have
ball n
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bα = 〈C∗
ϕZμ,Xα

〉= 〈Zμ,Cϕ(Xα)
〉

= 〈zμ,ϕα(S1, . . . , Sn)1
〉

= 〈ϕα(S1, . . . , Sn)
∗zμ,1

〉
.

Since S∗
i zμ = μizμ, one can see that ϕα(S1, . . . , Sn)

∗zμ = ϕα(μ)zμ. Consequently, we deduce
that bα = ϕα(μ), α ∈ F

+
n , and

C∗
ϕZμ =

∑
k=0

∑
|α|=k

ϕα(μ)Xα = Zϕ(μ), μ := (μ1, . . . ,μn) ∈ Bn. (2.9)

A straightforward computation shows that

∥∥C∗
ϕZμ

∥∥= ‖zϕ(μ)‖ =
(

1

1 − ‖ϕ(μ)‖2

)1/2

.

Now, we assume that ϕ = Φλ ∈ Aut([B(H)n]1). Then, using relation (2.1), we deduce that

‖CΦλ‖ = ∥∥C∗
Φλ

∥∥�
‖C∗

Φλ
Zμ‖

‖Zμ‖ =
(

1 − ‖μ‖2

1 − ‖Φλ(μ)‖2

)1/2

=
( |1 − 〈μ,λ〉|2

1 − ‖λ‖2

)1/2

for any μ ∈ Bn. Taking μ → − λ
‖λ‖ and using the fact that Φλ(0) = λ, we obtain

‖CΦλ‖ �
(

1 + ‖Φλ(0)‖
1 − ‖Φλ(0)‖

)1/2

.

Combining this inequality with relation (2.8), we obtain

‖CΦλ‖ =
(

1 + ‖Φλ(0)‖
1 − ‖Φλ(0)‖

)1/2

, (2.10)

which also shows that the right-hand inequality in the theorem is sharp.
Now, we assume that ϕ ∈ Aut([B(H)n]1) with ϕ(0) = λ. Then, due to [38], we have ϕ =

Φλ ◦ ΦU , where U ∈ B(Cn) is a unitary operator. Since ΦU is inner and ΦU(0) = 0, Theo-
rem 1.3 shows that CΦU

is an isometry. Consequently, using relation (2.10) and the fact that
Cϕ = CΦU

CΦλ , we deduce that

‖Cϕ‖ =
(

1 + ‖ϕ(0)‖
1 − ‖ϕ(0)‖

)1/2

.

Taking into account that Φλ ◦ Φλ = id, we deduce that

‖f ‖ � ‖CΦλ‖‖CΦλf ‖ �
(

1 + ‖Φλ(0)‖)1/2

‖CΦλf ‖

1 − ‖Φλ(0)‖
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for any f ∈ H 2
ball. Now, we assume that ϕ ∈ Aut([B(H)n]1) with ϕ(0) = λ. As above, ϕ =

Φλ ◦ ΦU and Cϕ = CΦU
CΦλ . Since CΦU

is an isometry, the latter inequality implies

‖Cϕf ‖ = ‖CΦλCΦU
f ‖ �

(
1 − ‖ϕ(0)‖
1 + ‖ϕ(0)‖

)1/2

‖f ‖,

which shows that the left-hand inequality of the theorem holds. To prove that this inequality is
sharp, let gk ∈ H 2

ball with ‖gk‖2 = 1 and ‖CΦλ‖ = limk→∞ ‖CΦλgk‖. Set fk := CΦλgk and note

that the inequality (
1−‖Φλ(0)‖
1+‖Φλ(0)‖ )1/2‖fk‖ � ‖CΦλfk‖ is equivalent to ‖CΦλgk‖ � (

1+‖Φλ(0)‖
1−‖Φλ(0)‖ )1/2,

which is sharp due to (2.10), and proves our assertion. The proof is complete. �
Theorem 2.2. If ϕ is an inner free holomorphic self-map of the noncommutative ball [B(H)n]1,
then Cϕf ∈ H 2

ball for all f ∈ H 2
ball, and

(
1 − ‖ϕ(0)‖
1 + ‖ϕ(0)‖

)1/2

‖f ‖ � ‖Cϕf ‖ �
(

1 + ‖ϕ(0)‖
1 − ‖ϕ(0)‖

)1/2

‖f ‖

for any f ∈ H 2
ball. Moreover, these inequalities are best possible and

‖Cϕ‖ =
(

1 + ‖ϕ(0)‖
1 − ‖ϕ(0)‖

)1/2

.

Proof. First, we consider the case when ϕ is an inner free holomorphic self-map of the noncom-
mutative ball [B(H)n]1 with ϕ(0) = 0. Then Theorem 1.3 shows that the composition operator
Cϕ is an isometry on H 2

ball and, therefore, the theorem holds.
Now, we consider the case when λ := ϕ(0) �= 0. Since ϕ is a free holomorphic self-map

of the noncommutative ball [B(H)n]1, we must have ‖λ‖2 < 1. Let Φλ be the corresponding
involutive free holomorphic automorphism of [B(H)n]1 and let Ψ := Φλ ◦ ϕ. Since Φλ is inner
and the composition of inner free holomorphic functions is inner (see Theorem 1.2 from [39]),
we deduce that Ψ is also inner. Since Ψ (0) = 0, the first part of the proof implies

‖CΨ f ‖ = ‖f ‖, f ∈ H 2
ball.

Consequently, using Theorem 2.1 and the fact that Φλ ◦ Φλ = id, we get

‖Cϕf ‖ = ‖CΨ CΦλf ‖ = ‖CΦλf ‖ �
(

1 + ‖Φλ(0)‖
1 − ‖Φλ(0)‖

)1/2

‖f ‖

=
(

1 + ‖ϕ(0)‖
1 − ‖ϕ(0)‖

)1/2

‖f ‖ (2.11)

for any f ∈ H 2
ball. Similarly, one can show that

‖Cϕf ‖ = ‖CΦλf ‖ �
(

1 − ‖Φλ(0)‖)1/2

‖f ‖ =
(

1 − ‖ϕ(0)‖)1/2

‖f ‖

1 + ‖Φλ(0)‖ 1 + ‖ϕ(0)‖
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for any f ∈ H 2
ball. Therefore, the inequalities in the theorem hold. Now, we show that they are

sharp. According to Theorem 2.1, we can find fk ∈ H 2
ball with ‖fk‖2 = 1 such that

lim
k→∞‖CΦλfk‖ =

(
1 + ‖Φλ(0)‖
1 − ‖Φλ(0)‖

)1/2

.

Hence, using relation (2.11) and the fact that Φλ(0) = ϕ(0), we obtain

lim
k→∞‖Cϕfk‖ = lim

k→∞‖CΦλfk‖ =
(

1 − ‖ϕ(0)‖
1 + ‖ϕ(0)‖

)1/2

,

which shows that the right-hand inequality in the theorem is sharp. Similarly, one can show that
the left-hand inequality is also sharp. The proof is complete. �

Now, we can prove the main result of this section.

Theorem 2.3. If ϕ is a free holomorphic self-map of the ball [B(H)n]1, then the composition
operator Cϕf := f ◦ ϕ is bounded on H 2

ball. Moreover,

1

(1 − ‖ϕ(0)‖2)1/2
� sup

λ∈Bn

(
1 − ‖λ‖2

1 − ‖ϕ(λ)‖2

)1/2

� ‖Cϕ‖ �
(

1 + ‖ϕ(0)‖
1 − ‖ϕ(0)‖

)1/2

.

Proof. If ϕ(0) = 0, then the right-hand inequality follows from the noncommutative Littlewood
subordination principle of Theorem 1.2. Now, we consider the case when λ := ϕ(0) �= 0. Since
‖λ‖2 < 1, let Φλ be the corresponding involutive free holomorphic automorphism of [B(H)n]1
and let Ψ := Φλ ◦ϕ. Since Ψ is a free holomorphic self-map of the ball [B(H)n]1 with Ψ (0) = 0,
Theorem 1.2 implies ‖CΨ ‖ � 1. Using Theorem 2.1 and the fact that Φλ ◦ Φλ = id, we deduce
that

‖Cϕ‖ = ‖CΨ CΦλ‖ � ‖CΨ ‖‖CΦλ‖ �
(

1 + ‖ϕ(0)‖
1 − ‖ϕ(0)‖

)1/2

.

On the other hand, as in the proof of Theorem 2.1, we have

‖Cϕ‖ = ∥∥C∗
ϕ

∥∥�
‖C∗

ϕZμ‖
‖Zμ‖ =

(
1 − ‖μ‖2

1 − ‖ϕ(μ)‖2

)1/2

for any μ ∈ Bn. Hence, we deduce the left-hand inequality. The proof is complete. �
Under the identification of the noncommutative Hardy space H 2

ball with the full Fock space
F 2(Hn), via the unitary operator U : H 2

ball → F 2(Hn) defined by

H 2
ball 	 F 
→ f := lim

r→1
F(rS1, . . . , rSn)1 ∈ F 2(Hn),

the composition operator Cϕ : H 2
ball → H 2

ball associated with ϕ, a free holomorphic self-map of
[B(H)n]1, can be identified with the composition operator Cϕ̃ : F 2(Hn) → F 2(Hn) defined by
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Cϕ̃

( ∞∑
k=0

∑
|α|=k

aαeα

)
:= lim

r→1

∞∑
k=0

∑
|α|=k

aαϕα(rS1, . . . , rSn)1 (2.12)

for any
∑∞

k=0
∑

|α|=k aαeα ∈ F 2(Hn). Indeed, note that Cϕ̃ = U Cϕ U −1.
A consequence of Theorem 2.3 is the following result.

Corollary 2.4. If ϕ is a free holomorphic self-map of the ball [B(H)n]1, then the composition
operator Cϕ̃ : F 2(Hn) → F 2(Hn) satisfies the equation

Cϕ̃

( ∞∑
k=0

∑
|α|=k

aαeα

)
=

∞∑
k=0

∑
|α|=k

aα(ϕ̃α1),

where the convergence of the series is in F 2(Hn) and ϕ̃ := SOT- limr→1 ϕ(rS1, . . . , rSn) is the
boundary function of ϕ with respect to the left creation operators S1, . . . , Sn.

Proof. Let ϕ̃ := (ϕ̃1, . . . , ϕ̃n) be the boundary of ϕ̃ and let f =∑∞
k=0

∑
|α|=k aαXα be in H 2

ball.

Due to Theorem 2.3 and the identification of H 2
ball with F 2(Hn), we have

∥∥∥∥ ∑
p�|α|�m

aαϕ̃α1

∥∥∥∥�
(

1 + ‖ϕ(0)‖
1 − ‖ϕ(0)‖

)1/2( ∑
p�|α|�m

|aα|2
)1/2

(2.13)

for any p,m ∈ N, p � m. Consequently, since f ∈ H 2
ball, the sequence {∑m

k=0
∑

|α|=k aαϕ̃α1}∞m=1

is Cauchy in F 2(Hn) and therefore convergent to an element in F 2(Hn). Hence, and using rela-
tion (2.13), we deduce that∥∥∥∥∥

∞∑
k=0

∑
|α|=k

aαϕ̃α1

∥∥∥∥∥�
(

1 + ‖ϕ(0)‖
1 − ‖ϕ(0)‖

)1/2

‖f ‖.

Similarly, one can show that
∑∞

k=0
∑

|α|=k aαϕα(rS1, . . . , rSn)1 is in F 2(Hn) and∥∥∥∥∥
∞∑

k=0

∑
|α|=k

aαϕα(rS1, . . . , rSn)1

∥∥∥∥∥�
(

1 + ‖ϕ(0)‖
1 − ‖ϕ(0)‖

)1/2

‖f ‖

for each r ∈ [0,1). Consequently, taking into account that ϕ̃ := SOT- limr→1 ϕ(rS1, . . . , rSn),
a simple approximation argument shows that

lim
r→1

∞∑
k=0

∑
|α|=k

aαϕα(rS1, . . . , rSn)1 =
∞∑

k=0

∑
|α|=k

aαϕ̃α1

in F 2(Hn), which together with relation (2.12) completes the proof. �
In this paper, we will use either one of the representations Cϕ or Cϕ̃ for the composition

operator with symbol ϕ.
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Corollary 2.5. Let ϕ = (ϕ1, . . . , ϕn) be a free holomorphic self-map of the noncommutative ball
[B(H)n]1 and let Cϕ be the composition operator on H 2

ball. Then the following statements hold.

(i) ‖Cϕ‖ � 1.
(ii) Cϕ is a contraction if and only if ϕ(0) = 0.

(iii) Cϕ is an isometry if and only if {ϕα}α∈Fn
is an orthonormal set in H 2

ball.

Proof. Since Cϕ1 = 1, we have ‖Cϕ‖ � 1. To prove part (ii), note that if ‖Cϕ‖ = 1, then accord-
ing to Theorem 2.3, we have

1

(1 − ‖ϕ(0)‖2)1/2
� ‖Cϕ‖ = 1,

which implies ϕ(0) = 0. Conversely, if ϕ(0) = 0, the same theorem implies ‖Cϕ‖ = 1. Now,
assume that Cϕ is an isometry. Then

δα,β = 〈Cϕ(Xα),Cϕ(Xβ)
〉= 〈ϕα,ϕβ〉, α,β ∈ F

+
n .

Conversely, assume that {ϕα}α∈Fn
is an orthonormal set in H 2

ball. Then, for any

f =
∞∑

k=0

∑
|α|=k

aαXα

in the Hardy space H 2
ball, we have

‖Cϕf ‖2 =
∥∥∥∥∥

∞∑
k=0

∑
|α|=k

aαϕα

∥∥∥∥∥
2

=
∞∑

k=0

∑
|α|=k

|aα|2 = ‖f ‖2.

The proof is complete. �
Halmos’ famous similarity problem [7] asked whether any polynomially bounded operator is

similar to a contraction. This long standing problem was answered by Pisier [22] in a remarkable
paper where he shows that there are polynomially bounded operator which are not similar to
contractions. In what follows we show that, for compositions operators on H 2

ball, similarity to
contractions is equivalent polynomial boundedness.

Theorem 2.6. Let ϕ be a free holomorphic self-map of the noncommutative ball [B(H)n]1 and
let Cϕ be the composition operator on H 2

ball. Then the following statements are equivalent:

(i) Cϕ is similar to a contraction;
(ii) Cϕ is polynomially bounded;

(iii) Cϕ is power bounded;
(iv) there is ξ ∈ Bn such that ϕ(ξ) = ξ .

Proof. The fact that an operator similar to a contraction is power bounded and polynomially
bounded is a consequence of the well-known von-Neumann inequality [49]. We prove that
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(iii) ⇒ (iv). Assume that Cϕ is power bounded, i.e., there is a constant M > 0 such that
‖Ck

ϕ‖ � M for any k ∈ N. Note that the scalar representation of ϕ, i.e. Bn 	 λ 
→ ϕ(λ) ∈ Bn,
is a holomorphic self-map of Bn. Suppose there is no ξ ∈ Bn such that ϕ(ξ) = ξ . Then,
due to MacCluer’s result [13], there is γ ∈ ∂Bn, called the Denjoy–Wolff point of the map
Bn 	 λ 
→ ϕ(λ) ∈ Bn, such that the sequence of iterates ϕ[k] := ϕ ◦ · · · ◦ ϕ converges to γ uni-
formly on any compact subset of Bn. In particular, we have ‖ϕ[k](0)‖ → 1 as k → ∞. On the
other hand, Theorem 2.3 implies

∥∥Ck
ϕ

∥∥= ‖Cϕ[k]‖ � 1

(1 − ‖ϕ[k](0)‖2)1/2
.

Consequently, ‖Ck
ϕ‖ → ∞ as k → ∞, which contradicts the fact that Cϕ is a power bounded

operator. Therefore, item (iv) holds. Finally, to prove that (iv) ⇒ (i), assume that there is ξ ∈ Bn

such that ϕ(ξ) = ξ . Set Ψ := Φξ ◦ ϕ ◦ Φξ , where Φξ is the involutive free holomorphic auto-
morphism of [B(H)n]1 associated with ξ . Note that Ψ is a bounded free holomorphic function
on [B(H)n]1 and Ψ (0) = 0. Due to Theorem 1.2, we have ‖CΨ ‖ � 1. On the other hand, since
Φξ ◦ Φξ = id and Cϕ = C−1

Φξ
CΨ CΦξ , the result follows. The proof is complete. �

Corollary 2.7. Let ϕ be a free holomorphic self-map of the noncommutative ball [B(H)n]1 and
let Cϕ be the composition operator on H 2

ball. If there is ξ ∈ Bn such that ϕ(ξ) = ξ , then the
spectral radius of Cϕ is 1.

Proof. According to the proof of Theorem 2.6, Cϕ is similar to a composition operator CΨ with
Ψ (0) = 0. Since Ψ [k](0) = 0, Theorem 1.2 implies ‖CΨ [k]‖ = 1 for any k ∈ N. Consequently, we
have

r(Cϕ) = r(CΨ ) = lim
k→∞‖CΨ [k]‖1/k = 1.

The proof is complete. �
Corollary 2.8. Let ϕ be an inner free holomorphic self-map of the noncommutative ball
[B(H)n]1 and let Cϕ be the composition operator on H 2

ball. Then the following statements hold.

(i) Cϕ is an isometry if and only if ϕ(0) = 0.
(ii) Cϕ is similar to an isometry if and only if there is ξ ∈ Bn such that ϕ(ξ) = ξ .

Proof. Assume that Cϕ is an isometry. Due to Theorem 2.2, we have

1 = ‖Cϕ‖ =
(

1 + ‖ϕ(0)‖
1 − ‖ϕ(0)‖

)1/2

.

Consequently, ϕ(0) = 0. The converse follows also from Theorem 2.2. Therefore, item (i) holds.
The direct implication in item (ii) follows from Theorem 2.6. To prove the converse, assume that
there is ξ ∈ Bn such that ϕ(ξ) = ξ and set Ψ := Φξ ◦ ϕ ◦ Φξ , where Φξ is the involutive free
holomorphic automorphism of [B(H)n]1 associated with ξ .



G. Popescu / Journal of Functional Analysis 260 (2011) 906–958 929
According to [39], the composition of inner free holomorphic functions on [B(H)n]1 is in-
ner. Consequently, Ψ is an inner free holomorphic function and Ψ (0) = 0. Due to part (i), the
composition operator CΨ is an isometry. Since Cϕ = C−1

Φξ
CΨ CΦξ , the result follows. �

The following result is an extension to our noncommutative multivariable setting of
Cowen’s [2] one-variable spectral radius formula for composition operators.

Theorem 2.9. Let ϕ be a free holomorphic self-map of the noncommutative ball [B(H)n]1 and
let Cϕ be the composition operator on H 2

ball. Then the spectral radius of Cϕ satisfies the relation

r(Cϕ) = lim
k→∞

(
1 − ∥∥ϕ[k](0)

∥∥)−1/2k
.

Moreover,

r(Cϕ) = lim
k→∞

(
1 − ‖ϕ[k](0)‖

1 − ‖ϕ[k+1](0)‖
)1/2

if the latter limit exists.

Proof. Note that Theorem 2.3 implies

(
1

1 − ‖ϕ[k](0)‖2

)1/2k

�
∥∥Ck

ϕ

∥∥1/k �
(

1 + ‖ϕ[k](0)‖
1 − ‖ϕ[k](0)‖

)1/2k

�
(

2

1 − ‖ϕ[k](0)‖
)1/2k

.

Taking k → ∞, we obtain the first formula for the spectral radius of Cϕ . To prove the second
formula, note that

r(Cϕ) = lim
k→∞

(
1 − ∥∥ϕ[k](0)

∥∥)−1/2k

= lim
k→∞

(
k−1∏
p=0

1 − ‖ϕ[p](0)‖
1 − ‖ϕ[p+1](0)‖

)1/2k

= lim
k→∞

(
1 − ‖ϕ[k](0)‖

1 − ‖ϕ[k+1](0)‖
)1/2

if the latter limit exists. The proof is complete. �
3. Noncommutative Wolff theorem for free holomorphic self-maps of [B(H)n]1

In this section, we use Julia type lemma for free holomorphic functions [39] and the ideas
from the classical result obtained by Wolff [50,51] and MacCluer’s extension to Bn (see [13]),
to provide a noncommutative analogue of Wolff’s theorem for free holomorphic self-maps of
[B(H)n]1. We also show that the spectral radius of a composition operator on H 2

ball is 1 when
the symbol is elliptic or parabolic, which extends some of Cowen’s results [2] from the single
variable case.
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Julia’s lemma [10] says that if f : D → D is an analytic function and there is a sequence
{zk} ⊂ D with zk → 1, f (zk) → 1, and such that 1−|f (zk)|

1−|zk | is bounded, then f maps each disc in
D tangent to ∂D at 1 into a disc of the same kind. Wolff [50,51] used this result to show that if f

has no fixed points in D, then there is a unique point ξ ∈ ∂D such that any closed disc in D which
is tangent to ∂D at ξ is mapped into itself by every iterate of f , i.e., f [1] = f , f [k+1] := f [k] ◦f ,
k ∈ N. The Denjoy–Wolff theorem [50,5] asserts that, under the above-mentioned conditions,
the sequence of iterates of f converges uniformly on compact subsets of D to the constant map
g(z) = ξ , z ∈ D. The point ξ is called the Denjoy–Wolff point of f . This result was extended to
the unit ball of C

n by MacCluer [13].
If A,B ∈ B(K) are selfadjoint operators, we say that A < B if B −A is positive and invertible,

i.e., there exists a constant γ > 0 such that 〈(B − A)h,h〉 � γ ‖h‖2 for any h ∈ K. Note that
T ∈ B(K) is a strict contraction (‖T ‖ < 1) if and only if T T ∗ < I . For 0 < c < 1 and ξ1 =
(1,0, . . . ,0), we define the noncommutative ellipsoid

Ec(ξ1) :=
{
(X1, . . . ,Xn) ∈ B(H)n:

[X1 − (1 − c)I ][X∗
1 − (1 − c)I ]

c2
+ X2X

∗
2

c
+ · · · + XnX

∗
n

c
< I

}
with center at (1 − c)ξ1 and containing ξ1 in its boundary. If ξ ∈ Bn we define the noncommuta-
tive ellipsoid Ec(ξ) centered at (1 − c)ξ and containing ξ in its boundary in a similar manner.

In [39], we obtained a Julia type lemma for free holomorphic functions. Let F : [B(H)n]1 →
[B(H)m]1 be a free holomorphic function and F = (F1, . . . ,Fm). Let {zk} be a sequence of
points in Bn such that limk→∞ zk = (1,0, . . . ,0) ∈ ∂Bn, limk→∞ F(zk) = (1,0, . . . ,0) ∈ ∂Bm,
and

lim
k→∞

1 − ‖F(zk)‖2

1 − ‖zk‖2
= L < ∞.

Then L > 0 and(
I − F1(X)∗

)(
I − F(X)F(X)∗

)−1(
I − F1(X)

)
� L

(
I − X∗

1

)(
I − XX∗)−1

(I − X1)

for any X = (X1, . . . ,Xn) ∈ [B(H)n]1. Moreover, if 0 < c < 1, then

F
(
Ec(ξ1)

)⊂ Eγ (ξ1), where γ := Lc

1 + Lc − c
.

In what follows we provide a noncommutative analogue of Wolff’s theorem for free holomor-
phic self-maps of [B(H)n]1.

Theorem 3.1. Let ϕ : [B(H)n]1 → [B(H)n]1 be a free holomorphic function such that its scalar
representation has no fixed points in Bn. Then there is a unique point ζ ∈ ∂Bn such that each
noncommutative ellipsoid Ec(ζ ), c ∈ (0,1), is mapped into itself by every iterate of ϕ.

Proof. Let rk ∈ (0,1) be a convergent sequence to 1. Define the map ψk : [B(H)n]−rk →
[B(H)n]−rk by ψk := rkϕ(X), X ∈ [B(H)n]−rk , and note that ψk is a free holomorphic func-
tion in [B(H)n]− . Consequently, its scalar representation χk : [Cn]− → [Cn]− , defined by
rk rk rk
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χk(λ) := ψk(λ), λ ∈ [Cn]−rk , is holomorphic in [Cn]−rk . According to Brouwer fixed point theorem

there exists λk ∈ [Cn]−rk such that χ(λk) = λk . Hence, ϕ(λk) = λk

rk
. Passing to a subsequence and

taking into account that the scalar representation of ϕ has no fixed point in Bn, we may assume
that λk → ζ ∈ ∂Bn. This implies that ϕ(λk) → ζ and

1 − ‖ϕ(λk)‖2

1 − ‖λk‖2
=

1 − 1
r2
k

‖λk‖2

1 − ‖λk‖2
< 1.

Consequently, we may assume that

lim
k→∞

1 − ‖ϕ(λk)‖2

1 − ‖λk‖2
= L � 1.

Without loss of generality, we may also assume that ζ = ξ1 := (1,0, . . . ,0) ∈ ∂Bn. Using the
above-mentioned Julia type lemma for free holomorphic functions, we deduce that L > 0 and

ϕ
(
Ec(ξ1)

)⊂ Eγ (ξ1), where γ := Lc

1 + Lc − c
. (3.1)

Note that X ∈ Ec(ξ1) if and only if

(I − X1)
(
I − X∗

1

)
<

c

1 − c

(
I − XX∗).

Since L � 1, it is easy to see that γ � c, which implies Eγ (ξ1) ⊆ Ec(ξ1). Combining this with
relation (3.1), we obtain ϕ(Ec(ξ1)) ⊆ Ec(ξ1) for any c ∈ (0,1), which proves the first part of the
theorem.

To prove the uniqueness, assume that there two distinct points ζ, ζ ′ ∈ ∂Bn such that
ϕ(Ec(ζ )) ⊆ Ec(ζ ) and ϕ(Ec(ζ

′)) ⊆ Ec(ζ
′) for any c ∈ (0,1). Let EC

c (ζ ) be the scalar repre-
sentation of the noncommutative ellipsoid Ec(ζ ) and let ϕC be the scalar representation of ϕ.
Choose c, c′ ∈ (0,1) such that EC

c (ζ ) and EC

c′(ζ ′) are tangent to each other at some point ξ ∈ Bn.

Note that ϕC(ξ) ∈ EC
c (ζ ) ∩ EC

c′(ζ ′) = {ξ}, which contradicts the hypothesis. The proof is com-
plete. �

The point ζ of Theorem 3.1 is called the Denjoy–Wolff point of ϕ. We remark that Theo-
rem 3.1 shows that

0 < lim inf
z→ζ

1 − ‖ϕ(z)‖2

1 − ‖z‖2
= α � 1.

The number α is called the dilatation coefficient of ϕ. When n = 1, α is the angular derivative of
ϕ at ζ .

Combining Theorem 3.1 with Julia type lemma for free holomorphic functions [39], we obtain
the following result.
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Theorem 3.2. Let ϕ : [B(H)n]1 → [B(H)n]1 be a free holomorphic function with Denjoy–Wolff
point ζ ∈ ∂Bn and dilatation coefficient α. Then, for any X ∈ [B(H)n]1,

[
I − ζϕ(X)∗

][
I − ϕ(X)ϕ(X)∗

]−1[
I − ϕ(X)ζ ∗]� α

(
I − ζX∗)(I − XX∗)−1(

I − Xζ ∗).
Let ϕ : [B(H)n]1 → [B(H)n]1 be a free holomorphic self-map. Following the classical case,

ϕ will be called:

(i) elliptic if ϕ fixes a point in Bn;
(ii) parabolic if ϕ has no fixed points in Bn and dilatation coefficient α = 1;

(iii) hyperbolic if ϕ has no fixed points in Bn and dilatation coefficient α < 1.

In the single variable case, when ϕ : D → D, Cowen [2] proved that the spectral radius of the
composition operator Cϕ on H 2(D) is 1 if ϕ is elliptic or parabolic, and 1√

α
if ϕ is hyperbolic.

We can extend his result to composition operators on H 2
ball when the symbol ϕ is elliptic or

parabolic.

Theorem 3.3. Let ϕ be a free holomorphic self-map of the noncommutative ball [B(H)n]1. If ϕ

is elliptic or parabolic, then the spectral radius of the composition operator Cϕ on H 2
ball is 1.

Proof. The case when ϕ is elliptic was considered in Corollary 2.7. Now, we assume that ϕ is
parabolic and let ζ ∈ ∂Bn be the corresponding Denjoy–Wolff point. According to MacCluer
version [13] of Denjoy–Wolff theorem, the iterates of the scalar representation of ϕ converge
uniformly to ζ on compact subsets of Bn. In particular, we have ϕ[k](0) → ζ as k → ∞. Since

the dilatation coefficient of ϕ is 1, we must have lim infk→∞(
1−‖ϕ[k+1](0)‖

1−‖ϕ[k](0)‖ )1/2 � 1. Consequently,
as in the proof of Theorem 2.9, we deduce that

r(Cϕ) � lim sup
k→∞

(
1 − ‖ϕ[k](0)‖

1 − ‖ϕ[k+1](0)‖
)1/2

� 1.

Taking into account that Cϕ1 = 1, the result follows. �
To calculate the spectral radius of a composition operator on H 2

ball when the symbol is hyper-
bolic remains an open problem. Another open problem is to find a Denjoy–Wolff type theorem
(see [5,50]) for free holomorphic self-maps of [B(H)n]1.

4. Composition operators and their adjoints

In this section, we obtain a formula for the adjoint of a composition operator on H 2
ball. As

a consequence we characterize the normal composition operators on H 2
ball. We also present a

nice connection between Fredholm composition operators on H 2
ball and the automorphisms of

the open unit ball Bn.
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Proposition 4.1. Let ϕ = (ϕ1, . . . , ϕn) be a free holomorphic self-map of the noncommutative
ball [B(H)n]1. Then the adjoint of the composition Cϕ on H 2

ball satisfies the relation

(
C∗

ϕf
)
(X1, . . . ,Xn) =

∑
α∈F

+
n

〈f,ϕα〉Xα, f ∈ H 2
ball.

Proof. According to Theorem 2.3, then composition operator Cϕ is bounded on the Hardy space
H 2

ball. If f =∑∞
k=0

∑
|α|=k cαXα is in H 2

ball, then,

C∗
ϕf =

∑
k=0

∑
|α|=k

bαXα, X ∈ [B(H)n
]

1,

for some coefficients bα ∈ C with
∑

α∈F
+
n

|bα|2 < ∞. Since the monomials {Xα}α∈F
+
n

form an

orthonormal basis for H 2
ball, we have

bα = 〈C∗
ϕf,Xα

〉= 〈f,Cϕ(Xα)
〉= 〈f,ϕα〉, α ∈ F

+
n .

The proof is complete. �
We remark that under the identification of H 2

ball with the Fock space F 2(Hn), the operator Cϕ

is unitarily equivalent to Cϕ̃ (see Corollary 2.4) and

Cϕ̃g =
∑

α∈F
+
n

〈
g, ϕ̃α(1)

〉
eα, g ∈ F 2(Hn).

By abuse of notation, we also write C∗
ϕf =∑

α∈F
+
n
〈f,ϕα〉eα, where f,ϕ1, . . . , ϕn are seen as

elements in the Fock space F 2(Hn).

Theorem 4.2. Let ϕ be a free holomorphic self-map of the noncommutative ball [B(H)n]1. Then
the composition operator Cϕ on H 2

ball is normal if and only if

ϕ(X1, . . . ,Xn) = [X1, . . . ,Xn]A

for some normal scalar matrix A ∈ Mn×n with ‖A‖ � 1.

Proof. Assume that A = [aij ]n×n is a scalar matrix and ‖A‖ � 1. Then it is clear that the relation

ϕ(X1, . . . ,Xn) = [X1, . . . ,Xn]A, (X1, . . . ,Xn) ∈ [B(H)n
]

1,

defines a bounded free holomorphic function ϕ : [B(H)n]1 → [B(H)n]1. According to Theo-
rem 2.3, the composition operator Cϕ is bounded on H 2

ball. Setting ϕ = (ϕ1, . . . , ϕn), we have
the Fock representation ϕj =∑n

p=1 apj ep for each j = 1, . . . , n. Fix β = gi1 · · ·gik ∈ F
+
n and let

α = ej1 · · · ejk
. Note that 〈eβ,ϕγ 〉 = 0 if |α| �= |γ |, γ ∈ F+

n , and

〈eβ,ϕα〉 = ai j · · ·ai j .
1 1 k k
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Consequently, using Proposition 4.1, we deduce that

C∗
ϕeβ =

∑
|α|=k

〈eβ,ϕα〉eα =
∑

α=ej1 ···ejk
, i1,...ik∈{1,...,n}

ai1j1 · · ·aikjk
eα.

Now, define

ψ(X1, . . . ,Xn) = [X1, . . . ,Xn]A∗, (X1, . . . ,Xn) ∈ [B(H)n
]

1,

and note that ψ : [B(H)n]1 → [B(H)n]1 is a bounded free holomorphic function. Once again.
Theorem 2.3 shows that the composition operator Cψ is bounded on H 2

ball. Setting ψ =
(ψ1, . . . ,ψn), we have the Fock representation ψi =∑n

j=1 aij ej for each i = 1, . . . , n. Hence, if
β = gi1 · · ·gik ∈ F

+
n , we have

Cψ(eβ) = ψi1 · · ·ψik =
∑

α=ej1 ···ejk
,i1,...ik∈{1,...,n}

ai1j1 · · ·aikjk
eα.

This shows that C∗
ϕ = Cψ . If we assume that A is a normal matrix, then ϕ ◦ ψ = ψ ◦ ϕ. Indeed,

for any (X1, . . . ,Xn) ∈ [B(H)n]1, we have

(ϕ ◦ ψ)(X1, . . . ,Xn) = [X1, . . . ,Xn]A∗A = [X1, . . . ,Xn]AA∗ = (ψ ◦ ϕ)(X1, . . . ,Xn).

Consequently, we deduce that

CϕC∗
ϕ = CϕCψ = Cψ◦ϕ = Cϕ◦ψ = CψCϕ = C∗

ϕCϕ.

Now we prove the direct implication. Assume that ϕ is a free holomorphic self-map of the
noncommutative ball [B(H)n]1 and the composition operator Cϕ is normal. Since Cϕ1 = 1,
the vector 1 ∈ F 2(Hn) is also an eigenvector for C∗

ϕ . Since, due to Theorem 4.1, C∗
ϕ1 =∑

α∈F
+
n
〈1, ϕα〉eα , we deduce that 〈1, ϕα〉 = 0 for all α ∈ F

+
n with |α| � 1. In particular, we

have 〈1, ϕi〉 = 0 which implies ϕi(0) = 0 for i = 1, . . . , n. Therefore ϕ(0) = 0 and C∗
ϕ1 = 1.

Consequently, we have

ϕ(X1, . . . ,Xn) = [X1, . . . ,Xn]A + (ψ1, . . . ,ψn)

for some matrix A ∈ Mn×n and bounded free holomorphic functions ψi =∑
|α|�2 c

(i)
α eα , i =

1, . . . , n. Consequently, using again the Fock space representation formula for the adjoint of Cϕ ,
we obtain

C∗
ϕ(egi

) =
∑

α∈F
+
n

〈egi
, ϕα〉eα,

which implies that the subspace M := span{egi
: i = 1, . . . , n} is invariant under C∗

ϕ . Since
M is finite dimensional, it is also invariant under Cϕ and Cϕ |M is a normal operator. This
implies that, for each j = 1, . . . , n, Cϕ(ej ) is a linear combination of e1, . . . , en and, conse-
quently, ϕ(X1, . . . ,Xn) = [X1, . . . ,Xn]A for (X1, . . . ,Xn) ∈ [B(H)n]1. Since ϕ : [B(H)n]1 →
[B(H)n]1, we must have ‖A‖ � 1. Setting ψ(X1, . . . ,Xn) = [X1, . . . ,Xn]A∗ for (X1, . . . ,Xn) ∈



G. Popescu / Journal of Functional Analysis 260 (2011) 906–958 935
[B(H)n]1, the first part of the proof shows that Cψ is a bounded operator on H 2
ball and C∗

ϕ = Cψ .
Since Cϕ is normal, we have

Cψ◦ϕ = CϕCψ = CϕC∗
ϕ = C∗

ϕCϕ = CψCϕ = Cϕ◦ψ,

which implies ψ ◦ϕ(X) = ϕ ◦ψ(X), X ∈ [B(H)n]1. Hence, we deduce that [X1, . . . ,Xn]A∗A =
[X1, . . . ,Xn]AA∗ for any (X1, . . . ,Xn) ∈ [B(H)n]1, which implies A∗A = AA∗. The proof is
complete. �

Due to Theorem 4.2, characterizations of self-adjoint or unitary composition operators on
H 2

ball are now obvious.

Lemma 4.3. Let ϕ be a free holomorphic self-map of the noncommutative ball [B(H)n]1 and let
Cϕ be the composition operator on H 2

ball. If the kernel of C∗
ϕ is finite dimensional, then the scalar

representation of ϕ is one-to-one.

Proof. Let λ(j) = (λ
(j)

1 , . . . , λ
(j)
n ), j = 1, . . . , k, be k distinct points in Bn and fix p ∈ {1, . . . , k}.

For each j ∈ {1, . . . , k} with j �= p, there exists qj ∈ {1, . . . , n} such that λ
(p)
qj

�= λ
(j)
qj

. Define the
free holomorphic function ϕp : [B(H)n]1 → B(H) by setting

ϕp(X1, . . . ,Xn) =
∏

j∈{1,...,k}, j �=p

1

λ
(p)
qj

− λ
(j)
qj

(
Xqj

− λ
(j)
qj

I
)
.

Note that ϕp(λ(p)) = 1 and ϕp(λ(j)) = 0 for any j ∈ {1, . . . , k} with j �= p.
For each μ := (μ1, . . . ,μn) ∈ Bn, we define the vector zμ := ∑

k=0
∑

|α|=k μαeα , where
μα := μi1 · · ·μip if α = gi1 · · ·gip ∈ F

+
n and i1, . . . , ip ∈ {1, . . . , n}, and μg0 = 1. Since zμ ∈

F 2(Hn) and S∗
i zμ = μizμ, one can see that q(S1, . . . , Sn)

∗zμ = q(μ)zμ for any noncommuta-
tive polynomial q . Now we prove that the vectors zλ(1) , . . . , zλ(k) are linearly independent. Let
a1, . . . , ak ∈ C be such that a1zλ(1) + · · ·+ akzλ(k) = 0. Due to the properties of the free holomor-
phic function ϕp , p ∈ {1, . . . , k}, we deduce that

ϕp(S1, . . . , Sn)
∗(a1zλ(1) + · · · + akzλ(k) ) = a1ϕp

(
λ(1)

)
zλ(1) + · · · + akϕp

(
λ(k)

)
zλ(k)

= apϕp

(
λ(p)

)
zλ(p) = apzλ(p) = 0.

Hence, we deduce that a1 = · · · = ak = 0, which proves our assertion.
Let ψ : Bn → Bn be the scalar representation of ϕ, i.e., ψ(λ) = ϕ(λ), λ ∈ Bn. Assume that

there is ξ ∈ Bn such that ψ−1(ξ) is an infinite set. Let {λ(j)}k∈N ⊂ ψ−1(ξ) be a sequence of
distinct points. Due to relation (2.9), we have C∗

ϕ(zλ(j) ) = C∗
ϕ(zλ(k) ) = zξ , which implies zλ(j) −

zλ(k) ∈ kerC∗
ϕ . As shown above, {zλ(j)}j∈N is a set of linearly independent vectors. Consequently,

kerC∗
ϕ is infinite dimensional, which contradicts the hypothesis. Therefore, for each ξ ∈ Bn, the

inverse image ψ−1(ξ) is a finite set. According to Rudin’s result (Theorem 15.1.6 from [41]),
ψ : Bn → Bn is an open map. Suppose that ψ is not one-to-one. Let u,v ∈ Bn, u �= v, be such
that ψ(u) = ψ(v), and let U,V be open sets in Bn with the property that u ∈ U , v ∈ V , and
U ∩ V �= ∅. Since ψ is an open map, we deduce that ψ(U) ∩ ψ(V ) is a nonempty open set.
Consequently, we can find sequences {λ(j)}j∈N ⊂ U and {μ(j)}j∈N ⊂ V of distinct points such
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that ψ(λ(j)) = ψ(μ(j)) for all j ∈ N. As above, we deduce that zλ(j) − zμ(j) ∈ kerC∗
ϕ for j ∈ N.

Using the linear independence of the set {zλ(j)}j∈N ∪{zμ(j)}j∈N, we deduce that kerC∗
ϕ is infinite

dimensional, which contradicts the hypothesis. Therefore, ψ is a one-to-one map. The proof is
complete. �

Note that, unlike the single variable case, if n � 2, then the composition operator Cϕ is not
one-to-one on H 2

ball. For example, one can take ϕ = (ϕ1, ϕ1) : [B(H)2]1 → [B(H)2]1 and f =
e1e2 − e2e1, and note that Cϕf = 0.

We remark that if ϕ ∈ Aut([B(H)n]1), then the composition operator Cϕ is invertible on H 2
ball

and therefore Fredholm. It will be interesting to see if the converse is true. At the moment, we
can prove the following result.

Theorem 4.4. Let ϕ be a free holomorphic self-map of the noncommutative ball [B(H)n]1. If Cϕ

is a Fredholm operator on H 2
ball, then the scalar representation of ϕ is a holomorphic automor-

phism of Bn.

Proof. Let ψ : Bn → Bn be the scalar representation of ϕ, i.e., ψ(λ) := ϕ(λ), λ ∈ Bn. Due to
Lemma 4.3, ψ is a one-to-one holomorphic map. We need to prove that ψ is surjective. To this
end, assume that ψ is not surjective. Then there is a sequence {λ(k)} ⊂ Bn and ζ ∈ ∂Bn such that
λ(k) → ζ as k → ∞ and ψ(λ(k)) → w for some w ∈ Bn.

As we will see in the proof of Theorem 5.4 (see relation (5.2)),
z
λ(k)

‖z
λ(k)‖ → 0 weakly as k → ∞.

On the other hand taking into account relation (2.9), we have

C∗
ϕzλ(k) =

∑
k=0

∑
|α|=k

ϕα

(
λ(k)

)
eα = zϕ(λ(k)), k ∈ N.

Hence, we get

∥∥∥∥C∗
ϕ

(
zλ(k)

‖zλ(k)‖
)∥∥∥∥= ‖zϕ(λ(k))‖

‖zλ(k)‖ .

Since ‖zϕ(λ(k))‖ → ‖zw‖ < ∞ and ‖zλ(k)‖ → ∞ as k → ∞, we deduce that ‖C∗
ϕ(

z
λ(k)

‖z
λ(k)‖ )‖ → 0 as

k → ∞. Denote fk := z
λ(k)

‖z
λ(k)‖ . Since Cϕ is a Fredholm operator on H 2

ball, there is an operator Λ ∈
B(F 2(Hn)) such that ΛC∗

ϕ − I = K for some compact operator K ∈ B(F 2(Hn)). Consequently,
we have

∥∥ΛC∗
ϕfk

∥∥2 = ‖fk + Kfk‖2 = ‖fk‖2 + ‖Kfk‖2 + 2�〈fk,Kfk〉. (4.1)

Since K is a compact operator, ‖fk‖ = 1 and fk → 0 weakly as k → ∞, we must have
‖Kfk‖ → 0. Consequently, we have |�〈fk,Kfk〉| � ‖fk‖‖Kfk‖ → 0 as k → ∞. On the other
hand, we have ‖C∗

ϕfk‖ → 0. Now it is easy to see that relation (4.1) leads to a contradiction.
Therefore, ψ is surjective. In conclusion ψ is an automorphism of Bn. �
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5. Compact composition operators on H 2
ball

In this section we obtain a formula for the essential norm of the composition operators Cϕ on
H 2

ball. In particular, this implies a characterization of compact composition operators. We show
that if Cϕ is a compact operator on H 2

ball, then the scalar representation of ϕ is a holomorphic self-
map of Bn which cannot have finite angular derivative at any point of ∂Bn and has exactly one
fixed point in the open ball Bn. As a consequence, we deduce that every compact composition
operator on H 2

ball is similar to a contraction. In the end of this section, we prove that the set
of compact composition operators on H 2

ball is arcwise connected in the set of all composition
operators.

We recall that the essential norm of a bounded operator T ∈ B(H) is defined by

‖T ‖e := inf
{‖T − K‖: K ∈ B(H) is compact

}
.

Theorem 5.1. Let ϕ be a free holomorphic self-map of the noncommutative ball [B(H)n]1. Then
the essential norm of the composition operator Cϕ on H 2

ball satisfies the equality

‖Cϕ‖e = lim
k→∞ sup

f ∈H 2
ball,‖f ‖2�1

( ∑
|α|�k

∣∣〈f,ϕα〉∣∣2)1/2

.

Consequently, Cϕ is a compact operator if and only if

lim
k→∞ sup

f ∈H 2
ball,‖f ‖2�1

∑
|α|�k

∣∣〈f,ϕα〉∣∣2 = 0.

Proof. Let ϕ be a free holomorphic self-map of the noncommutative ball [B(H)n]1. Since Cϕ

is a bounded composition operator on H 2
ball (see Theorem 2.3), one can use standard arguments

(see Proposition 5.1 from [44]) to show that the essential norm of the composition operator Cϕ

on H 2
ball satisfies the equality

‖Cϕ‖e = lim
k→∞‖CϕPk‖, (5.1)

where Pk is the orthogonal projection of F 2(Hn) onto the closed linear span of all eα with α ∈ F+
n

and |α| � k. Indeed, note that the sequence {‖CϕPk‖}∞k=1 is decreasing and, due to the fact that
I − Pk is a finite rank projection, we have ‖Cϕ‖e � ‖CϕPk‖ for any k ∈ N. Hence ‖Cϕ‖e �
limk→∞ ‖CϕPk‖. On the other hand, let K be a compact operator and a := limk→∞ ‖KPk‖.
Assume that a > 0 and let ε > 0 with 0 < a − ε. Then there is a sequence hk ∈ F 2(Hn) with
‖hk‖ � 1, such that ‖PkK

∗hk‖ � a − ε for any k � N and some N ∈ N. Since K∗ is a compact
operator, there is a subsequence km ∈ N such that K∗hkm → v for some v ∈ F 2(Hn). Conse-
quently, taking into account that Pkmv → 0, ‖Pk‖ � 1, and

∥∥PkmK∗hkm

∥∥� ‖Pkmv‖ + ‖Pkm‖∥∥v − K∗hkm

∥∥,
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we deduce that PkmK∗hkm → 0, which is a contradiction. Therefore, limk→∞ ‖KPk‖ = 0. Note
also that

‖Cϕ − K‖ �
∥∥(Cϕ − K)Pk

∥∥� ‖CϕPk‖ − ∥∥PkK
∗∥∥.

Now, taking k → ∞, we obtain ‖Cϕ − K‖ � limk→∞ ‖CϕPk‖, which proves relation (5.1).
According to Proposition 4.1 and the remarks that follow, we have

PkC
∗
ϕf =

∑
|α|�k

〈f,ϕα〉eα, f ∈ F 2(Hn),

where Pk is the orthogonal projection of the full Fock space F 2(Hn) onto the closed span of the
vectors {eα: α ∈ F

+
n , |α| � k}, and f , ϕ1, . . . , ϕn are seen as elements of the Fock space F 2(Hn).

Hence, we deduce that

∥∥PkC
∗
ϕ

∥∥= sup
f ∈H 2

ball,‖f ‖�1

( ∑
|α|�k

∣∣〈f,ϕα〉∣∣2)1/2

.

Combining this result with relation (5.1), we obtain the formula for the essential norm of Cϕ .
The last part of the theorem is now obvious. �
Proposition 5.2. Let ϕ := (ϕ1, . . . , ϕn) be a free holomorphic self-map of the noncommutative
ball [B(H)n]1 and let Cϕ be the composition operator on H 2

ball. Then the following statements
hold.

(i) If ϕ is inner then Cϕ is not compact.
(ii) If ‖ϕ‖∞ < 1 then Cϕ is compact.

(iii) If ‖ϕ1‖∞ + · · · + ‖ϕn‖∞ < 1, then Cϕ is a trace class operator.
(iv) If ‖ϕ1‖2∞ + · · · + ‖ϕn‖2∞ < 1, then Cϕ is a Hilbert–Schmidt operator.

Proof. To prove item (i), assume first that ϕ is an inner free holomorphic self-map of the non-
commutative ball [B(H)n]1 with ϕ(0) = 0. As in the proof of Theorem 2.2, {ϕα}α∈F

+
n

is an

orthonormal set in H 2
ball. Consequently, if {aα}|α|�k ⊂ C is such that

∑
|α|�k |aα|2 = 1, then

g :=∑|β|�k aβϕβ is in F 2(Hn) and ‖g‖2 = 1. Note also that∑
|α|�k

∣∣〈g,ϕα〉∣∣2 =
∑

|α|�k

|aα|2 = 1.

Since {ϕα}α∈F
+
n

is an orthonormal set in H 2
ball, we have

∑
|α|�k |〈f,ϕα〉|2 � ‖f ‖2 for any f ∈

H 2
ball. Now, one can deduce that

sup
f ∈H 2

ball,‖f ‖�1

( ∑
|α|�k

∣∣〈f,ϕα〉∣∣2)1/2

= 1.

Due to Theorem 5.1, we deduce that ‖Cϕ‖e = 1. Now, we consider the case when ξ := ϕ(0) �= 0.
Since the involutive free holomorphic automorphism Φξ is inner and the composition of inner
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free holomorphic functions is inner (see [39]), we deduce that Ψ := Φξ ◦ ϕ is an inner free
holomorphic self-map of [B(H)n]1. Since Ψ (0) = 0, the first part of the proof shows that CΨ is
not compact. Taking into account that CΨ = CϕCΦξ , we deduce that Cϕ is not compact.

To prove item (ii), let ϕ̃ := (ϕ̃1, . . . , ϕ̃n) be the boundary function with respect to the left
creation operators S1, . . . , Sn, and set ‖ϕ̃‖ = s < 1. It is easy to see that ‖[ϕ̃α: |α| = k]‖ �
‖[ϕ̃1, . . . , ϕ̃n]‖k = sk , k ∈ N. For any g ∈ F 2(Hn) and m ∈ N, we have∥∥∥∥∥Cϕ̃g −

m∑
k=0

∑
|α|=k

〈g, eα〉ϕ̃α(1)

∥∥∥∥∥=
∥∥∥∥ ∑

k=m+1

∑
|α|=k

〈g, eα〉ϕ̃α(1)

∥∥∥∥
�

∑
k=m+1

∥∥∥∥∥∥[ϕ̃α: |α| = k]
⎡⎣ 〈g, eα〉

...

|α| = k

⎤⎦∥∥∥∥∥∥
�

∑
k=m+1

sk

( ∑
|α|=k

∣∣〈g, eα〉∣∣2)1/2

�
( ∑

k=m+1

s2k

)1/2( ∑
k=m+1

∑
|α|=k

∣∣〈g, eα〉∣∣2)1/2

� ‖g‖2
sm

√
1 − s2

.

Consequently, the operator Gm : F 2(Hn) → F 2(Hn) defined by

Gm(g) :=
m∑

k=0

∑
|α|=k

〈g, eα〉ϕ̃α(1)

has finite rank and converges to the composition operator Cϕ̃ in the operator norm topology.
Therefore, Cϕ is a compact operator.

To prove item (iii), note that

∑
α∈F

+
n

‖Cϕ̃eα‖ =
∑

α∈F
+
n

∥∥ϕ̃α(1)
∥∥�

∞∑
k=0

∑
|α|=k

‖ϕ̃α‖ �
∞∑

k=0

(‖ϕ̃1‖ + · · · + ‖ϕ̃n‖
)k

< ∞.

Consequently, Cϕ is a trace class operator. Finally, we prove item (iv). First, note that Cϕ is a
Hilbert–Schmidt operator if and only if

∑
α∈F

+
n

‖ϕα‖2
2 < ∞. On the other hand, as above, one ca

show that

∑
α∈F

+
n

‖Cϕ̃eα‖2 �
∞∑

k=0

(‖ϕ̃1‖2 + · · · + ‖ϕ̃n‖2)k < ∞,

which shows that Cϕ is a Hilbert–Schmidt operator. The proof is complete. �
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Corollary 5.3. If ϕ is an inner free holomorphic self-map of the noncommutative ball [B(H)n]1
such that ϕ(0) = 0, then the essential norm of the composition operator Cϕ on H 2

ball is 1.

Theorem 5.4. Let ϕ be a free holomorphic self-map of the noncommutative ball [B(H)n]1 and
let Cϕ be the composition operator on H 2

ball. Then the following statements hold.

(i) The essential norm of Cϕ on H 2
ball satisfies the inequality

‖Cϕ‖e � lim sup
‖λ‖→1

(
1 − ‖λ‖2

1 − ‖ϕ(λ)‖2

)1/2

.

(ii) If Cϕ is a compact operator on H 2
ball, then the scalar representation of ϕ cannot have finite

angular derivative at any point of ∂Bn.

Proof. For each μ := (μ1, . . . ,μn) ∈ Bn, we define the vector zμ :=∑∞
k=0

∑
|α|=k μαeα , where

μα := μi1 · · ·μip if α = gi1 · · ·gip ∈ F
+
n and i1, . . . , ip ∈ {1, . . . , n}, and μg0 = 1. Since zμ ∈

F 2(Hn) and S∗
i zμ = μizμ, one can see that q(S1, . . . , Sn)

∗zμ = q(μ)zμ for any noncommuta-

tive polynomial q . Let λ(j) := (λ
(j)

1 , . . . , λ
(j)
n ) ∈ Bn be such that ‖λ(j)‖ → 1 as j → ∞. Since

‖zμ‖ = 1√
1−‖μ‖2

, we deduce that

lim
j→∞

〈
q,

zλ(j)

‖zλ(j)‖
〉
= lim

j→∞
q(λ(j))

‖zλ(j)‖ = 0,

where q is seen as a noncommutative polynomial in F 2(Hn). Consequently, since the unit ball
of F 2(Hn) is weakly compact and the polynomials are dense in F 2(Hn), there is a subsequence
z
λ(jk)

‖z
λ(jk)‖ which converges weakly to 0 as jk → ∞. Since this is true for any subsequence, we

deduce that

zλ(j)

‖zλ(j)‖ → 0 weakly as
∥∥λ(j)

∥∥
2 → 1. (5.2)

If K ∈ B(F 2(Hn)) is an arbitrary compact operator, then lim‖λ(j)‖→1 ‖K∗( z
λ(j)

‖z
λ(j)‖ )‖ = 0. On the

other hand, due to relation (2.9), we have

∥∥C∗
ϕzλ(j)

∥∥=
(

1

1 − ‖ϕ(λ(j))‖2

)1/2

.

Using all these facts, we deduce that

‖Cϕ‖e = inf
{‖T − K‖: K ∈ B(H) is compact

}
� lim sup

(j)

∥∥∥∥(Cϕ − K)∗
(

zλ(j)

‖z (j)‖
)∥∥∥∥
‖λ ‖→1 λ
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= lim sup
‖λ(j)‖→1

∥∥∥∥C∗
ϕ

(
zλ(j)

‖zλ(j)‖
)∥∥∥∥

= lim sup
‖λ(j)‖→1

(
1 − ‖λ(j)‖2

1 − ‖ϕ(λ(j))‖2

)1/2

,

which proves item (i).
To prove part (ii), we recall that the Julia–Carathéodory theorem in Bn asserts that if

ψ : Bn → Bn is analytic and ξ ∈ ∂Bn, then ψ has finite angular derivative at ξ if and only if

lim inf
λ→ξ

1 − ‖ψ(λ)‖
1 − ‖λ‖ < ∞,

where the limit is taking as λ → ξ unrestrictedly in Bn. If Cϕ is a compact operator on H 2
ball,

then according to part (i), we have

lim sup
λ→ξ

(
1 − ‖λ‖2

1 − ‖ϕ(λ)‖2

)1/2

= 0.

Now, combining these results when ψ : Bn → Bn is defined by ψ(λ) := ϕ(λ), λ ∈ Bn, the result
in part (ii) follows. The proof is complete. �

We need the following lemma which can be extracted from [14]. We include a proof for
completeness.

Lemma 5.5. Let ψ = (ψ1, . . . ,ψn) be a holomorphic self-map of the open unit ball Bn with the
property that ψ(E(L, ζ1)) ⊆ E(L, ζ1) for each ellipsoid

E(L, ζ1) := {λ ∈ Bn:
∣∣1 − 〈λ, ζ1〉

∣∣2 � L
(
1 − ‖λ‖2)}, L > 0,

where ζ1 := (1,0, . . . , n) ∈ Bn. Then the slice function φζ1 : D → D defined by φζ1(z) :=
ψ1(z,0 . . . ,0), z ∈ D, has the property that

lim inf
z→1

1 − |φζ1(z)|
1 − |z| � 1.

Proof. Note that when w = (r,0, . . . ,0) ∈ Bn with r ∈ (0,1) and L := 1−r
1+r

, the inclusion
ψ(E(L, ζ1)) ⊆ E(L, ζ1) implies

|1 − ψ1(w)|2
1 − ‖ψ(w)‖2

� L.

Hence, and using the inequality 1 − |ψ1(w)| � |1 − ψ1(w)|, we obtain

1 − |ψ1(w)| � 1 − r
,

1 + |ψ1(w)| 1 + r
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which implies |ψ1(w)| � r = ‖w‖ and, therefore,

1 − |ψ1(w)|
1 − ‖w‖ � 1

for w = (r,0, . . . ,0) ∈ Bn. The latter inequality can be used to complete the proof. �
In what follows we also need the following lemma. Since the proof is straightforward, we

shall omit it. We denote by H 2([B(H)]1) the Hilbert space of all free holomorphic functions
on [B(H)]1 of the form f (X) = ∑∞

k=0 ckX
k with

∑∞
k=0 |ak|2 < ∞. It is easy to see that

H 2([B(H)]1) can be identified with the classical Hardy space H 2(D).

Lemma 5.6. Let F : [B(H)n]1 → B(H) be a free holomorphic function and let ζ1 :=
(1,0, . . . ,0) ∈ ∂Bn. The slice function Fζ1 : [B(H)]1 → B(H) defined by

Fζ1(Y ) := F(ζ1Y), Y ∈ [B(H)
]

1,

has the following properties.

(i) Fζ1 is a free holomorphic function on [B(H)]1.
(ii) If F ∈ H 2

ball then Fζ1 ∈ H 2([B(H)]1) and ‖Fζ1‖2 � ‖F‖2.
(iii) The inclusion H 2([B(H)]1) ⊂ H 2

ball is an isometry.
(iv) Under the identification of H 2

ball with the full Fock space F 2(Hn),

Fζ1 = PF 2(H1)
F,

where PF 2(H1)
is the orthogonal projection of F 2(Hn) onto F 2(H1) ⊂ F 2(Hn).

(v) If F is bounded on [B(H)n]1, then Fζ1 is bounded on [B(H)]1 and ‖Fζ1‖∞ � ‖F‖∞.

Now, we have all the ingredients to prove the following result.

Theorem 5.7. Let ϕ = (ϕ1, . . . , ϕn) be a free holomorphic self-map of the noncommutative ball
[B(H)n]1. If Cϕ is a compact composition operator on H 2

ball, then the scalar representation of ϕ

is a holomorphic self-map of Bn which has exactly one fixed point in the open ball Bn.

Proof. Let ψ = (ψ1, . . . ,ψn) be the scalar representation of ϕ, i.e. the map ψ : Bn → Bn defined
by ψ(λ) := φ(λ), λ ∈ Bn. It is clear that ψ is a holomorphic self-map of the open unit ball Bn.
Assume that ψ has no fixed points in Bn. According to [13] (see also Theorem 3.1), there exists a
unique Denjoy–Wolff point ζ ∈ ∂Bn such that ψ(E(L, ζ )) ⊆ E(L, ζ ) for each ellipsoid E(L, ζ ),
L > 0. Without loss of generality we can assume that ζ = ζ1 := (1,0, . . . ,0) ∈ Bn. Then, due to
Lemma 5.5, the slice function φζ1 : D → D defined by φζ1(z) := ψ1(z,0 . . . ,0) has the property
that

lim inf
z→1

1 − |φζ1(z)|
1 − |z| � 1.

According to Julia–Carathéodory theorem (see [41]), φζ1 has finite angular derivative at 1 which
is less than or equal to 1. On the other hand, it is well known (see also Theorem 5.4 when n = 1)
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that if a composition operator is compact on H 2(D), then its symbol cannot have a finite angular
derivative at any point. Consequently, Cφζ1

is not a compact operator on H 2(D).

Under the identification of H 2
ball with the full Fock space F 2(Hn), set

Γ = PF 2(H1)
ϕ1, (5.3)

where PF 2(H1)
is the orthogonal projection of F 2(Hn) onto F 2(H1) ⊂ F 2(Hn). According to

Lemma 5.5, Γ : [B(H)]1 → [B(H)]1 is a bounded free holomorphic function. Now we show
that CΓ is a compact composition operator on F 2(H1). Let {f (m)}∞m=1 be a bounded sequence
in F 2(H1) such that f (m) → 0 weakly in F 2(H1). Since F 2(H1) ⊂ F 2(Hn) and F 2(Hn) =
F 2(H1) ⊕ F 2(H1)

⊥, it is easy to see that f (m) → 0 weakly in F 2(Hn). Due to the compactness
of Cϕ on F 2(Hn), we must have∥∥Cϕf (m)

∥∥
F 2(Hn)

→ 0 as m → ∞. (5.4)

Since f (m) ∈ F 2(H1), it has the representation f (m) = ∑∞
k=0 a

(m)
k ek

1 for some coefficients

a
(m)
k ∈ C with

∑∞
k=0 |ak|2 < ∞. Hence Cϕf (m) =∑∞

k=0 a
(m)
k ϕk

1 , where ϕ1 is seen in F 2(Hn),
i.e., ϕk

1 := ϕ̃k
1(1), and the convergence of the series is in F 2(Hn). Note also that, due to (5.3), for

each k ∈ N, ϕk
1 = Γ k + χk for some χk ∈ F 2(Hn) � F 2(H1). Consequently, we have

Cϕf (m) =
∞∑

k=0

a
(m)
k ϕk

1 =
∞∑

k=0

a
(m)
k Γ k + g = f (m) ◦ Γ + g

for some g ∈ F 2(Hn) � F 2(H1). Hence, we deduce that ‖CΓ f (m)‖F 2(H1)
� ‖Cϕf (m)‖F 2(Hn).

Using relation (5.4), we have ‖CΓ f (m)‖F 2(H1)
→ 0 as m → ∞. This proves that the compo-

sition operator CΓ is compact on F 2(H1). Note also that, under the natural identification of
F 2(H1) with H 2(D), i.e., f =∑∞

k=0 cke
k
1 
→ g(z) =∑∞

k=0 ckz
k , the composition operator CΓ

on F 2(H1) is unitarily equivalent to the composition operator Cφζ on H 2(D). Consequently, Cφζ

is compact, which is a contradiction. Therefore the map ψ has fixed points in Bn.
Now we prove that ψ has only one fixed point in Bn. Assume that there are two distinct points

ξ (1), ξ (2) ∈ Bn such that ψ(ξ(1)) = ξ (1) and ψ(ξ(2)) = ξ (2). It is well known [41] that the fixed
point set of the map ψ is affine. As in the proof of Theorem 2.1, we have

C∗
ϕzμ =

∑
k=0

∑
|α|=k

ϕα(μ)eα = zϕ(μ), μ := (μ1, . . . ,μn) ∈ Bn,

where the vector zμ ∈ F 2(Hn) is defined by zμ :=∑∞
k=0

∑
|α|=k μαeα . As a consequence, we

deduce that C∗
ϕzξ = zξ for any ξ in the fixed point set Λ of ψ . Since Λ is infinite and accord-

ing to the proof of Lemma 4.3 the vectors {zξ }ξ∈Λ are linearly independent, we deduce that
ker(I − C∗

ϕ) is infinite dimensional. This contradicts the fact that Cϕ is a compact operator on

H 2
ball. In conclusion, ψ has exactly on fixed point in Bn. This completes the proof. �
Combining now Theorem 5.7 and Theorem 2.6, we can deduce the following similarity result.

Corollary 5.8. Every compact composition operator on H 2 is similar to a contraction.
ball
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Theorem 5.9. The set of compact composition operators on H 2
ball is arcwise connected, with

respect to the operator norm topology, in the set of all composition operators.

Proof. Let ϕ = (ϕ1, . . . , ϕn) be a non-constant free holomorphic self-map of the noncommuta-
tive ball [B(H)n]1 such that Cϕ is a compact composition operator on H 2

ball. For each r ∈ [0,1],
consider the free holomorphic map ϕr : [B(H)n]1 → [B(H)n]1 defined by ϕr(X) = ϕ(rX),
X ∈ [B(H)n]1. If ‖ϕ‖∞ < 1, then ‖ϕr‖∞ < 1 and due to Proposition 5.2, the operator Cϕr is
compact on H 2

ball. Now assume that ‖ϕ‖∞ = 1. Since ϕ is non-constant, Theorem 1.1 implies
‖ϕ(0)‖ < 1 and the map [0,1) 	 r 
→ ‖ϕr‖∞ is strictly increasing. Therefore ‖ϕr‖∞ < 1 for
all r ∈ [0,1). Using again Proposition 5.2, we deduce that the operator Cϕr is compact on H 2

ball
for any r ∈ [0,1). Let K(H 2

ball) denote the algebra of all compact operators on H 2
ball and define

the function γ : [0,1] → K(H 2
ball) by setting γ (r) := Cϕr . Now we show that γ is a continuous

map in the operator norm topology. Fix r0 ∈ [0,1]. For any g(X) :=∑
α∈F

+
n

aαXα ∈ H 2
ball set

gr(X) :=∑α∈F
+
n

aαr |α|Xα ∈ H 2
ball and note that

‖gr − gr0‖2 → 0 as r → r0. (5.5)

In particular, taking g = Cϕf where f ∈ H 2
ball and ‖f ‖2 � 1, we have∥∥(f ◦ ϕ)r − (f ◦ ϕ)r0

∥∥
2 → 0 as r → r0.

We need to show that the latter convergence is uniform with respect to f ∈ H 2
ball with ‖f ‖2 � 1.

Indeed, if we assume the contrary, then there is ε0 > 0 such that for any n ∈ N there is rn ∈ [0,1]
with |rn − r0| < 1

n
and there exists fn ∈ H 2

ball with ‖fn‖2 � 1 such that∥∥(fn ◦ ϕ)rn − (fn ◦ ϕ)r0

∥∥
2 > ε0. (5.6)

Since Cϕ is a compact operator the image of the unit ball of H 2
ball under Cϕ is relatively compact.

Therefore there is a subsequence {fnk
} such that

fnk
◦ ϕ → ψ ∈ H 2

ball. (5.7)

Now, note that∥∥(fnk
◦ ϕ)rnk

− (fnk
◦ ϕ)r0

∥∥
2

�
∥∥(fnk

◦ ϕ)rnk
− ψrnk

∥∥
2 + ‖ψrnk

− ψr0‖2 + ∥∥ψr0 − (fnk
◦ ϕ)r0

∥∥
2

� 2‖fnk
◦ ϕ − ψ‖2 + ‖ψrnk

− ψr0‖2.

Due to relations (5.5) and (5.7), we deduce that∥∥(fnk
◦ ϕ)rnk

− (fnk
◦ ϕ)r0

∥∥
2 → 0 as r → r0,

which contradicts relation (5.6). Therefore ‖Cϕr − Cϕr0
‖ → 0 as r → r0, which proves the con-

tinuity of the map γ . Let χ = (χ1, . . . , χn) be another non-constant free holomorphic self-map
of the noncommutative ball [B(H)n]1 such that Cχ is a compact composition operator on H 2 .
ball
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As above, the function � : [0,1] → K(H 2
ball) given by �(r) := Cχr is continuous in the operator

norm topology. It remains to show that there is a continuous mapping ω : [0,1] → K(H 2
ball) such

that ω(0) = Cϕ0 and ω(1) = Cχ0 . To this end, since ‖ϕ(0)‖ < 1 and ‖χ(0)‖ < 1, we can define
the map σ : [0,1] → Bn by setting σ(t) := (1− t)ϕ(0)+ tχ(0) for t ∈ [0,1]. Using again Propo-
sition 5.2, we deduce that Cσ(t)I is a compact composition operator on H 2

ball for any t ∈ [0,1].
Now we define ω : [0,1] → K(H 2

ball) by setting ω(t) := Cσ(t)I . To prove continuity of this map
in the operator norm topology, note that

‖Cσ(t)I f − Cσ(t ′)I f ‖ = ∣∣〈f, zσ(t) − zσ(t ′)〉
∣∣� ‖f ‖2‖zσ(t) − zσ(t ′)‖2, (5.8)

where zλ =∑
α∈F

+
n

λαeα for λ ∈ Bn. On the other hand, consider the noncommutative Cauchy

kernel Cλ := (I −λ1S1 −· · ·−λnSn)
−1, λ := (λ1, . . . , λn) ∈ Bn. Note that ‖λ1S1 +· · ·+λnSn‖ =

‖λ‖2 < 1 and Cλ ∈ F∞
n for any λ ∈ Bn. We have

‖zσ(t) − zσ(t ′)‖2 = ∥∥(Cσ(t) − Cσ(t ′))1
∥∥

� ‖Cσ(t) − Cσ(t ′)‖
� ‖Cσ(t)‖‖Cσ(t ′)‖

∥∥σ(t) − σ
(
t ′
)∥∥

2.

Consequently, since Bn 	 λ 
→ Cλ ∈ F∞
n is continuous, we deduce that [0,1] 	 t 
→ zσ(t) ∈

F 2(Hn) is continuous as well. Combining this result with relation (5.8), we deduce the continuity
of ω, which completes the proof. �
6. Schröder equation for noncommutative power series and spectra of composition
operators

In this section, we consider a noncommutative multivariable Schröder type equation and use it
to obtain results concerning the spectrum of composition operators on H 2

ball. As a consequence,
using the results from the previous section, we determine the spectra of compact composition
operators on H 2

ball.
First, we provide the following noncommutative Schröder [43] type result.

Theorem 6.1. Let A ∈ Mn×n be a scalar matrix and let Λ = (Λ1, . . .Λn) be an n-tuple of power
series in noncommuting indeterminates Z1, . . . ,Zn, of the form

Λ = [Z1, . . . ,Zn]A + [Γ1, . . . ,Γn],

where Γ1, . . . ,Γn are noncommutative power series containing only monomials of degree greater
than or equal to 2. If there is a noncommutative power series F which is not identically zero and
satisfies the Schröder type equation

F ◦ Λ = cF

for some c ∈ C, then either c = 1 or c is a product of eigenvalues of the matrix A.
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Proof. Since A ∈ Mn×n there is a unitary matrix U ∈ Mn×n such that U−1AU is an upper
triangular matrix. Setting ΦU = [Z1, . . . ,Zn]U , the equation F ◦ Λ = cF is equivalent to F ′ ◦
Λ′ = cF ′, where F ′ := ΦU ◦ F ◦ ΦU−1 and

Λ′ := ΦU ◦ Λ ◦ ΦU−1 = [Z1, . . . ,Zn]U−1AU + U−1[Γ1, . . . ,Γn]U.

Therefore, we can assume that A = [aij ] ∈ Mn×n is an upper triangular matrix. We introduce
a total order � on the free semigroup F

+
n as follows. If α,β ∈ F

+
n with |α| � |β| we say that

α < β . If α,β ∈ F
+
n are such that |α| = |β|, then α = gi1 · · ·gik and β = gj1 · · ·gjk

for some
i1, . . . , ik, j1, . . . , jk ∈ {1, . . . , k}. We say that α < β if either i1 < j1 or there exists p ∈ {2, . . . , k}
such that i1 = j1, . . . , ip−1 = jp−1 and ip < jp . It is easy to see that relation � is a total order
on F

+
n .

According to the hypothesis and due to the fact that A is an upper triangular matrix, we have

Λj =
j∑

i=1

aijXi + Γj , j = 1, . . . , n. (6.1)

Consequently, if α = gi1 · · ·gik ∈ F
+
n , i1, . . . ik ∈ {1, . . . , n}, then

Λα := Λi1 · · ·Λik = Ψ <α + ai1i1 · · ·aikikXα + χ(α), (6.2)

where Ψ <α is a power series containing only monomials Xβ such that |β| = |α| and β < α, and
χ(α) is a power series containing only monomials Xγ with |γ | � |α| + 1.

Let F =∑∞
p=0

∑
|α|=p cαZα , cα ∈ C, be a noncommutative power series and assume that it

satisfies the Schröder type equation F ◦ Λ = λF for some λ ∈ C such that λ �= 1 and λ is not a
product of eigenvalues of the matrix A. We will show by induction over p, that

∑
|α|=p cαZα = 0

for any p = 0,1, . . . . Note that the above-mentioned equation is equivalent to

∞∑
p=0

∑
|α|=p

cαΛα = λ

∞∑
p=0

∑
|α|=p

cαZα. (6.3)

Due to relation (6.1), we have c0 = λc0. Since λ �= 1, we deduce that c0 = 0. Assume that cα = 0
for any α ∈ F

+
n with |α| < k. According to Eqs. (6.2) and (6.3), we have

∑
|α|=k

cα

(
Ψ <α + dA(α)Xα + χ(α)

)+ ∞∑
p=k+1

∑
|α|=p

cαΛα = λ
∑
|α|=k

cαZα + λ

∞∑
p=k+1

∑
|α|=p

cαZα,

where dA(α) := ai1i1 · · ·aikik if α = gi1 · · ·gik ∈ F
+
n and i1, . . . ik ∈ {1, . . . , n}. Since χ(α) is a

power series containing only monomials Xγ with |γ | � |α| + 1, and the power series Λα , |α| �
k + 1, contains only monomials Xσ with |σ | � k + 1, we deduce that

∑
cα

(
Ψ <α + dA(α)Xα

)= λ
∑

cαZα. (6.4)

|α|=k |α|=k
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We arrange the elements of the set {α ∈ F
+
n : |α| = k} increasingly with respect to the total order,

i.e., β1 < β2 < · · · < βnk . Note that β1 = gk
1 and βnk = gk

n. The relation (6.4) becomes

nk∑
j=1

(
cβj

Ψ <βj + cβj
d(βj )Xββj

)= λ

nk∑
j=1

cβj
Xβj

. (6.5)

Taking into account that Ψ <α is a power series containing only monomials Xβ such that |β| = |α|
and β < α, one can see that the monomial Xβ

nk
occurs just once in the left-hand side of relation

(6.5). Identifying the coefficients of the monomial Xβ
nk

in the equality (6.5), we deduce that

cβ
nk

d(βnk ) = λcβ
nk

.

Since λ �= ak
nn = d(βnk ), we must have cβ

nk
= 0. Consequently, Eq. (6.5) becomes

nk−1∑
j=1

(
cβj

Ψ <βj + cβj
d(βj )Xββj

)= λ

nk−1∑
j=1

cβj
Xβj

.

Continuing the process, we deduce that cβj
= 0 for j = 1, . . . , nk . Therefore cα = 0 for any

α ∈ F
+
n with |α| = k, which completes our induction. The proof is complete. �

Corollary 6.2. Let ϕ = (ϕ1, . . . , ϕn) be a free holomorphic self-map of the noncommutative
ball [B(H)n]1 such that ϕ(ξ) = ξ for some ξ ∈ Bn. If there is a free holomorphic function
f : [B(H)n]1 → B(H) such that

f ◦ ϕ = cf

for some c ∈ C, then either c = 1 or c is a product of eigenvalues of the matrix[〈ψi, ej 〉
]
n×n

,

where ψ = (ψ1, . . . ,ψn) := Φξ ◦ϕ ◦Φξ and Φξ is the involutive free holomorphic automorphism
of [B(H)n]1 associated with ξ ∈ Bn, and ψ1, . . . ,ψn are seen as elements in the Fock space
F 2(Hn).

Proof. Note that ψ(0) = 0 and the equation f ◦ϕ = cf is equivalent to the equation f ′ ◦ψ = cf ′,
where f ′ := Φξ ◦ f ◦ Φξ . Applying Theorem 6.1 to the power series associated with ψ and f ′
the result follows. �
Theorem 6.3. Let ϕ = (ϕ1, . . . , ϕn) be a free holomorphic self-map of the noncommutative ball
[B(H)n]1 such that ϕ(0) = 0, and let Cϕ be the associated composition operator on H 2

ball. Then
the point spectrum of C∗

ϕ contains the conjugates of all possible products of the eigenvalues of
the matrix [〈ϕi, ej 〉

]
n×n

,

where ψ1, . . . ,ψn are seen as elements in the Fock space F 2(Hn).
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Proof. For each m = 0,1, . . . , consider the subspace Km := span{eα: α ∈ F
+
n , |α| � m}. Since

ϕ(0) = 0, we have 〈C∗
ϕeα, eβ〉 = 〈eα,ϕβ〉 = 0 for any α,β ∈ F

+
n with |α| � m and |β| � m + 1.

This implies C∗
ϕ(Km) ⊆ Km and C∗

ϕ has the matrix representation

C∗
ϕ =

[
C∗

ϕ |Km
∗

0 PF 2(Hn)�Km
C∗

ϕ |F 2(Hn)�Km

]
with respect to the orthogonal decomposition F 2(Hn) = Km ⊕ (F 2(Hn) � Km), and
σp(C∗

ϕ |Km
) ⊂ σp(C∗

ϕ), where σp(T ) denotes the point spectrum of T . Moreover, since Km is
finite dimensional, we have

σ
(
C∗

ϕ

)= σ
(
C∗

ϕ

∣∣
Km

)∪ σ
(
PF 2(Hn)�Km

C∗
ϕ

∣∣
F 2(Hn)�Km

)
.

Since C∗
ϕ(Km−1) ⊆ Km−1 we have the matrix decomposition

C∗
ϕ |Km

=
[

C∗
ϕ |Km

∗
0 PKm�Km−1C

∗
ϕ |Km�Km−1

]
with respect to the orthogonal decomposition F 2(Hn) = Km ⊕ (Km � Km−1). Consequently, we
have

σp

(
C∗

ϕ

∣∣
Km

)= σp

(
C∗

ϕ

∣∣
Km−1

)∪ σp

(
PKm�Km−1C

∗
ϕ

∣∣
Km�Km−1

)
for any m = 1,2 . . .. Iterating this formula, we get

σp

(
C∗

ϕ

∣∣
Km

)= {1} ∪
m⋃

j=1

σp

(
PKj �Kj−1C

∗
ϕ

∣∣
Kj �Kj−1

)
. (6.6)

Now, we determine σp(PKk�Kk−1C
∗
ϕ |Kk�Kk−1) for k = 1,2, . . .. As in the proof of Theorem 6.1,

we can assume that

ϕ(X) = [X1, . . . ,Xn]A + (Γ1(X), . . . ,Γn(X)
)
, X = (X1, . . . ,Xn) ∈ [B(H)n

]
1,

where A = [aij ] ∈ Mn×n is an upper triangular scalar matrix and Γ1, . . . ,Γn are free holomor-
phic functions on [B(H)n]1 containing only monomials of degree greater than or equal to 2.
Consequently, using the Fock space representation of ϕ1, . . . , ϕn and Γ1, . . . ,Γn, we have

ϕj =
j∑

i=1

aij ei + Γj , j = 1, . . . , n, (6.7)

where Γj ∈ F 2(Hn) � span{eα: |α| � 1}. Note that the matrix [〈ϕi, ej 〉]n×n is upper triangular
and its eigenvalues are a11, . . . , ann. Using relation (6.7), one can see that if α = gi1 · · ·gik ∈ F

+
n ,

i1, . . . ik ∈ {1, . . . , n}, then

ϕα := ϕi1 · · ·ϕik = ψ<α + ai1i1 · · ·aikik eα + χ(α), (6.8)

where ψ<α ∈ span{eβ : |β| = |α| and β < α} and χ(α) ∈ span{eγ : |γ | � |α| + 1}.
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We arrange the elements of the set {α ∈ F
+
n : |α| = k} increasingly with respect to the total

order introduced in the proof of Theorem 6.1, i.e., β1 < β2 < · · · < βnk . We denote dA(α) :=
ai1i1 · · ·aikik if α = gi1 · · ·gik ∈ F

+
n and i1, . . . ik ∈ {1, . . . , n}. Note that ϕβ1 = d(β1)eβ1 + χβ1

and

ϕβi
=
(

i∑
j=1

bβj−1eβj−1

)
+ d(βi)eβi

+ χβi if 2 � i � nk,

for some bβj−1 ∈ C, j = 1, . . . , i. Using these relations, we deduce that

〈
PKk�Kk−1C

∗
ϕ

∣∣
Kk�Kk−1

eβj
, eβi

〉= 〈ϕβi
, eβj

〉 =
{

d(βi) if i = j,

0 if i < j.

This shows that the matrix of PKk�Kk−1C
∗
ϕ |Kk�Kk−1 with respect to the orthonormal basis

{eβi
}nk

i=1 is lower triangular with the diagonal entries d(β1), . . . , d(βnk ). Therefore
σp(PKk�Kk−1C

∗
ϕ |Kk�Kk−1) consists of these diagonal entries. On the other hand, due to rela-

tion (6.6), we have

{1} ∪
∞⋃

j=1

σp

(
PKj �Kj−1C

∗
ϕ

∣∣
Kj �Kj−1

)⊂ σp

(
C∗

ϕ

)
.

The proof is complete. �
Theorem 6.3 and Corollary 6.2 imply the following result concerning the spectrum of com-

position operators on the noncommutative Hardy space H 2
ball.

Theorem 6.4. Let ϕ be a free holomorphic self-map of the noncommutative ball [B(H)n]1 such
that its scalar representation has a fixed point ξ ∈ Bn, and let Cϕ be the associated composition
operator on H 2

ball. Then

σp(Cϕ) ⊆ {1} ∪ Peig ⊆ σ(Cϕ),

where Peig is the set of all possible products of eigenvalues of the matrix [〈ψi, ej 〉]n×n, where
ψ = (ψ1, . . . ,ψn) := Φξ ◦ ϕ ◦ Φξ and Φξ is the involutive free holomorphic automorphism of
[B(H)n]1 associated with ξ ∈ Bn.

Proof. The first inclusion follows from Corollary 6.2. To prove the second inclusion note that
Cϕ1 = 1 and Cψ = CΦξ CϕC−1

Φξ
. Consequently, 1 ∈ σ(Cϕ) = σ(Cψ). Since ψ(0) = 0, we can

apply Theorem 6.3 to the composition operator Cψ and complete the proof. �
Now we can determine the spectra of compact composition operators on H 2

ball.

Theorem 6.5. Let ϕ be a free holomorphic self-map of the noncommutative ball [B(H)n]1. If Cϕ

is a compact composition operator on H 2 , then the scalar representation of ϕ has a unique fix
ball
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point ξ ∈ Bn and the spectrum σ(Cϕ) consists of 0, 1, and all possible products of the eigenvalues
of the matrix [〈ψi, ej 〉

]
n×n

,

where ψ = (ψ1, . . . ,ψn) := Φξ ◦ϕ ◦Φξ and Φξ is the involutive free holomorphic automorphism
of [B(H)n]1 associated with ξ ∈ Bn, and ψ1, . . . ,ψn are seen as elements in the Fock space
F 2(Hn).

Proof. If Cϕ is a compact composition operator on H 2
ball, then, according to Theorem 5.7, the

scalar representation of ϕ has a unique fix point ξ ∈ Bn. On the other hand, it is well known that
any nonzero point in the spectrum of a compact operator is an eigenvalue. Using Theorem 6.4,
we deduce that

σp(Cϕ) ⊆ {1} ∪ Peig ⊆ {0} ∪ σp(Cϕ),

where Peig is the set of all possible products of eigenvalues of the matrix [〈ψi, ej 〉]n×n. Hence
the result follows and the proof is complete. �

In [14], MacCluer determined the spectrum of composition operators on H 2(Bn) when the
symbols are automorphisms of Bn which fix at least one point in Bn. The following theorem
is an extension of this result to compositions operators on H 2

ball induced by free holomorphic
automorphisms of [B(H)n]1.

Theorem 6.6. Let ϕ ∈ Aut(B(H)n1) be such that ϕ(ξ) = ξ for some ξ ∈ Bn. Then the spectrum of
the composition operator Cϕ on H 2

ball is the closure of all possible products of the eigenvalues of
the matrix [〈ψi, ej 〉

]
n×n

,

where ψ = (ψ1, . . . ,ψn) := Φξ ◦ϕ ◦Φξ and Φξ is the involutive free holomorphic automorphism
of [B(H)m]1 associated with ξ ∈ Bn. Moreover, σ(Cϕ) is either the unit circle T, or a finite
subgroup of T.

Proof. Note that ψ ∈ Aut(B(H)n1) and ψ(0) = 0. According to [38], the free holomorphic auto-
morphism ψ has the form ψ(X) = [X1, . . . ,Xn]U for some unitary matrix U ∈ Mn×n. It is easy
to see that U = [〈ψi, ej 〉]n×n. Since U is unitary there is another unitary matrix W ∈ Mn×n such
that

W−1UW =
[

w1 0 · · · 0
0 w2 · · · 0
0 0 · · · wn

]
,

where w1, . . . ,wn are the eigenvalues of U . Set χ := ψW ◦ ψ ◦ ψ−1
W , where ψW(X) :=

[X1, . . . ,Xn]W for X := [X1, . . . ,Xn] ∈ [B(H)n]1. Note that χ(X) = [X1, . . . ,Xn]W−1UW

and Cχ = C−1
ψW

C−1
φξ

CϕCφξ CψW
. Hence, σ(Cχ) = σ(ψ) = σ(ϕ). Now we determine the spec-

trum of Cχ . Since Cψ is invertible and ψ(0) = 0, Theorem 2.3 implies ‖Cχ‖ = ‖C−1‖ = 1.
ψ
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Therefore, σ(Cχ) ⊆ T. Using now Theorem 6.4, we deduce that P eig ⊆ σ(Cψ) ⊆ T, where Peig

is the set of all possible products of eigenvalues of the matrix U . It is obvious that if P eig = T,
then σ(Cψ) = T. When P eig �= T, then P eig is a finite subgroup of T. Consequently, there is
m ∈ N such that P eig = {z ∈ T: zm = 1}. This implies wm

j = 1 for j = 1, . . . , n and Cm
χ = I .

Consequently, if λ ∈ σ(Cχ) then λm ∈ σ(Cm
χ ) = {1}. This shows that λ ∈ P eig and completes the

proof. �
Comparing our Theorem 6.6 with MacCluer result (see Theorem 3.1 from [14]), we are led to

the conclusion that if ϕ ∈ Aut(B(H)n1) has at least one fixed point in Bn, then the spectrum of the
composition operator Cϕ on H 2

ball coincides with the spectrum of the composition operator CϕC

on H 2(Bn), where ϕC is the scalar representation of ϕ.

Theorem 6.7. If ϕ ∈ Aut(B(H)n1) and there is only one point ζ ∈ Bn such that ϕ(ζ ) = ζ and
ζ ∈ ∂Bn, then the spectral radius of the composition operator Cϕ on H 2

ball is equal to 1 and
σ(Cϕ) ⊆ T.

Proof. The proof that the spectral radius is 1 is similar to that of Theorem 3.3, in the parabolic
case. The inclusion σ(Cϕ) ⊆ T is due to the fact that ϕ−1(ζ ) = ζ and, according to the first part
of the theorem we have r(C−1

ϕ ) = r(Cϕ) = 1. �
7. Composition operators on Fock spaces associated to noncommutative varieties

In this section, we consider composition operators on Fock spaces associated to noncommu-
tative varieties in unit ball [B(H)n]1 and obtain results concerning boundedness, norm estimates,
and spectral radius. In particular, we show that many of our results have commutative counter-
parts for composition operators on the symmetric Fock space and on spaces of analytic functions
in the unit ball of C

n. In particular, we obtain new proofs for some of Jury’s [11] recent results
concerning compositions operators on the unit ball Bn.

Let P0 be a set on noncommutative polynomials in n indeterminates such that p(0) = 0 for
all p ∈ P0. Consider the noncomutative variety VP0(H) ⊆ [B(H)n]1 defined by

VP0(H) := {(X1, . . . ,Xn) ∈ [B(H)n
]

1: p(X1, . . . ,Xn) = 0 for all p ∈ P0
}
.

Let

M P0 := span
{
Sαp(S1, . . . , Sn)Sβ1: p ∈ P0, α,β ∈ F

+
n

}
and NP0 := F 2(Hn) � M P0 . We remark that 1 ∈ NP0 and the subspace NP0 is invariant under
S∗

1 , . . . , S∗
n and R∗

1 , . . . ,R∗
n . Define the constrained left (resp. right) creation operators by setting

Bi := PN P0
Si |N P0

and Wi := PN P0
Ri |N P0

, i = 1, . . . , n.

We proved in [32] that the n-tuple (B1, . . . ,Bn) ∈ VP0(NP0) is the universal model associated
with the noncommutative variety VP0(H). Let F∞

n (V P0) be the w∗-closed algebra generated by
B1, . . . ,Bn and the identity. The w∗ and WOT topologies coincide on this algebra and

F∞
n (V P0) = PN P F∞

n

∣∣ = {f (B1, . . . ,Bn): f ∈ F∞
n

}
,

0 N P0
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where if f has the Fourier representation
∑

α∈F
+
n

aαSα then

f (B1, . . . ,Bn) = SOT- lim
r→1

∞∑
k=0

∑
|α|=k

r |α|aαBα.

The latter limit exists due to the F∞
n -functional calculus for row contractions [27]. Similar results

hold for R∞
n (V P0), the w∗-closed algebra generated by W1, . . . ,Wn and the identity. Moreover,

F∞
n (V P0)

′ = R∞
n (V P0) and R∞

n (V P0)
′ = F∞

n (V P0),

where ′ stands for the commutant. According to [32], each χ̃ ∈ F∞
n (V P0) generates a mapping

χ : VP0(H) → B(H) given by

χ(X1, . . . ,Xn) := PX[χ̃ ], X := (X1, . . . ,Xn) ∈ V P0(H),

where PX is the noncommutative Poisson transform associated with VP0(H). On the other hand,
since χ̃ = PN P0

φ̃|N P0
for some φ̃ =∑α∈F

+
n

aαSα in F∞
n , we have

χ(X1, . . . ,Xn) =
∞∑

k=0

∑
|α|=k

aαXα, (X1, . . . ,Xn) ∈ V P0(H),

where the convergence is in the operator norm topology. This shows that χ is the restriction to
VP0(H) of a bounded free holomorphic function on [B(H)n]1, namely X 
→ φ(X) = PX[ψ̃].
We remark that the map χ does not depend on the choice of φ̃ ∈ F∞

n with the property that
χ̃ = PN P0

φ̃|N P0
. Note also that χ(0) = 〈χ̃1,1〉.

We remark that when f ∈ F 2(Hn) and f =∑∞
k=0

∑
|α|=k aαeα , then f ∈ NP0 if and only if

∞∑
k=0

∑
|α|=k

aαeα =
∞∑

k=0

∑
|α|=k

aαBα1.

We say that ψ̃ ∈ F∞
n (V P0)⊗ C

n is non-scalar operator if it does not have the form (a1IN P0
, . . . ,

anIN P0
) for some ai ∈ C. The main result of this section is the following.

Theorem 7.1. Let ψ̃ = (ψ̃1, . . . , ψ̃n) ∈ F∞
n (V P0) ⊗ C

n be a non-scalar operator with ‖ψ̃‖ � 1.
Then the following statements hold.

(i) If g ∈ NP0 has the representation
∑∞

k=0
∑

|α|=k cαeα then

g ◦ ψ̃ :=
∞∑

k=0

∑
|α|=k

cαψ̃α1 ∈ NP0 ,

where the convergence of the series is in F 2(Hn).
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(ii) The composition operator Cψ̃ : NP0 → NP0 defined by

Cψ̃g := g ◦ ψ̃, g ∈ NP0 ,

is bounded. Moreover,

‖PN P0
zψ(0)‖ � sup

λ∈V P0 (C)

‖PN P0
zψ(μ)‖

‖zμ‖ � ‖Cψ̃‖ �
(

1 + ‖ψ(0)‖
1 − ‖ψ(0)‖

)1/2

.

(iii) The adjoint of the composition operator Cψ̃ : NP0 → NP0 satisfies the formula

C ∗̃
ψ
g =

∞∑
k=0

∑
|α|=k

〈
g, ψ̃α(1)

〉
PN P0

eα, g ∈ NP0 .

Proof. Since R∞
n (V P0)

′ = F∞
n (V P0), the operator ψ̃ : NP0 ⊗ C

n → NP0 satisfies the commu-
tation relations

ψ̃(Wi ⊗ ICn) = Wiψ̃, i = 1, . . . , n.

Since Wi := PN P0
Ri |N P0

, i = 1, . . . , n, it is clear that [R1 ⊗ ICn
, . . . ,R1 ⊗ ICn

] is an isomet-
ric dilation of the row contraction [W1 ⊗ ICn

, . . . ,W1 ⊗ ICn
]. According to the noncommutative

commutant theorem [24], there exists ϕ̃ = [ϕ̃1, . . . , ϕ̃n] : F 2(Hn)⊗C
n → F 2(Hn) with the prop-

erties ‖ϕ̃‖ � 1, ϕ̃∗|N P0
= ψ̃∗, and ϕ̃(Ri ⊗ ICn) = Riϕ̃ for i = 1, . . . , n. Hence, we deduce

that ϕ̃∗
j |N P0

= ψ̃∗
j and ϕ̃jRi = Riϕ̃j for i, j = 1, . . . , n. Since, due to [28], the commutant of

the right creation operators R1, . . . ,Rn coincides with the noncommutative analytic Toeplitz
algebra F∞

n , we deduce that ϕ̃j ∈ F∞
n , j = 1, . . . , n. Since ϕ̃∗|N P0

= ψ̃∗ and ψ̃ is a non-
scalar operator, so is ϕ̃. According to Theorem 2.3 and Corollary 2.4, the composition operator
Cϕ̃ : F 2(Hn) → F 2(Hn) satisfies the equation

Cϕ̃

( ∞∑
k=0

∑
|α|=k

aαeα

)
=

∞∑
k=0

∑
|α|=k

aα(ϕ̃α1) (7.1)

for any f = ∑∞
k=0

∑
|α|=k aαeα in F 2(Hn). Since ϕ̃∗

j |N P0
= ψ̃∗

j , j = 1, . . . , n, we have

PN P0
ϕ̃α|N P0

= ψ̃α for all α ∈ F
+
n . Since 1 ∈ NP0 , we assume that f ∈ NP0 in relation (7.1)

and, taking the projection on NP0 , we complete the proof of part (i).
Now, to prove item (ii), note that part (i) implies Cψ̃ = PN P0

Cϕ̃ |N P0
. Using this relation and

Theorem 2.3, we deduce that ‖Cψ̃‖ � (
1+‖ψ(0)‖
1−‖ψ(0)‖ )1/2. Recall that zλ := ∑

α∈F
+
n

λαeα , λ ∈ Bn.
Note that if λ = (λ1, . . . , λn) is in the scalar representation of the noncommutative variety VP0 ,
i.e.,

VP0(C) := {(λ1, . . . , λn) ∈ Bn: p(λ1, . . . , λn) = 0, p ∈ P0
}
,

then we have 〈[
Sαp(S1, . . . , Sn)Sβ

]
(1), zλ

〉= λαp(λ)λβ = 0,
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for any p ∈ P0 and α,β ∈ F
+
n . Hence zλ ∈ NP0 for any λ ∈ VP0(C). As in the proof of Theo-

rem 2.1, we have

C ∗̃
ϕzμ =

∑
k=0

∑
|α|=k

ϕα(μ)eα = zϕ(μ), μ := (μ1, . . . ,μn) ∈ Bn.

Now, note that

‖Cψ̃‖ = ∥∥C ∗̃
ψ

∥∥�
‖C ∗̃

ψ
zμ‖

‖zμ‖ = ‖PN P0
C ∗̃

ϕzμ‖
‖zμ‖ = ‖PN P0

zψ(μ)‖
‖zμ‖

for any λ ∈ VP0(C). Since 0 ∈ V P0(C) the first two inequalities in part (ii) follow.
Now, it remains to prove part (iii). According to Proposition 4.1, we have

C ∗̃
ψ
g = PN P0

C ∗̃
ϕg =

∑
α∈F

+
n

〈g, ϕ̃α1〉PN P0
eα, g ∈ F 2(Hn).

Since PN P0
ϕ̃α|N P0

= ψ̃α for all α ∈ F
+
n and 1 ∈ NP0 , we deduce part (iii). The proof is com-

plete. �
We remark that under the conditions of Theorem 7.1, we can use Theorem 1.1 to show that∥∥ψ(X1, . . . ,Xn)

∥∥< 1, (X1, . . . ,Xn) ∈ V P0(H).

Consequently, g ◦ ψ̃ induces the map

(g ◦ ψ)(X) :=
∞∑

k=0

∑
|α|=k

cαψα(X), X ∈ V P0(H),

where the convergence is in the operator norm topology. Using Corollary 2.4, we deduce that

lim
r→1

(g ◦ ψ)(rB1, . . . , rBn)1 = g ◦ ψ̃.

Moreover, the map g ◦ ψ is the restriction to VP0(H) of the free holomorphic function g ◦ ϕ on
[B(H)n]1, where ϕ was introduced in the proof of Theorem 7.1.

Corollary 7.2. Let ψ̃ = (ψ̃1, . . . , ψ̃n) ∈ F∞
n (V P0) ⊗ C

n be a non-scalar operator with ‖ψ̃‖ � 1
and p(ψ(0)) = 0 for all p ∈ P0. Then the norm of composition operator Cψ̃ : NP0 → NP0

satisfies the inequalities

1

(1 − ‖ψ(0)‖2)1/2
� ‖Cψ̃‖ �

(
1 + ‖ψ(0)‖
1 − ‖ψ(0)‖

)1/2

.

Moreover, the spectral radius of Cψ̃ satisfies the relation

r(Cψ̃ ) = lim
k→∞

(
1 − ∥∥ϕ[k](0)

∥∥)−1/2k
.
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Proof. Since p(ψ(0)) = 0 for all p ∈ P0, we have ψ(0) ∈ VPo
(C) and, as in the proof of Theo-

rem 7.1, we deduce that zψ(0) ∈ NP0 . Consequently,

‖PN P0
zψ(0)‖ = ‖zψ(0)‖ = 1

(1 − ‖ψ(0)‖2)1/2
.

Combining this relation with part (ii) of Theorem 7.1, we deduce the inequalities above. The
proof of the last part of this corollary is similar to the proof of Theorem 2.9. �

Now we consider an important particular case. If Pc := {XiXj −XjXi : i, j = 1, . . . , n}, then
NPc

= span{zλ: λ ∈ Bn} = F 2
s , the symmetric Fock space. For each λ = (λ1, . . . , λn) and each

n-tuple k := (k1, . . . , kn) ∈ N
n
0 , where N0 := {0,1, . . .}, let λk := λ

k1
1 · · ·λkn

n . For each k ∈ N
n
0,

we denote

Λk := {α ∈ F
+
n : λα = λk for all λ ∈ C

n
}

and define the vector

wk := 1

γk

∑
α∈Λk

eα ∈ F 2(Hn), where γk := cardΛk.

The set {wk: k ∈ N
n
0} consists of orthogonal vectors in F 2(Hn) which span the symmetric Fock

space F 2
s and ‖wk‖ = 1√

γk
. The symmetric Fock space F 2

s can be identified with the Drury–

Arveson space H2
n of all functions ϕ : Bn → C which admit a power series representation ϕ(λ) =∑

k∈N0
ckλk with

‖ϕ‖2 =
∑

k∈N0

|ck|2 1

γk
< ∞.

More precisely, every element ϕ = ∑
k∈N0

ckwk in F 2
s has a functional representation on Bn

given by

ϕ(λ) := 〈ϕ, zλ〉 =
∑

k∈N0

ckλk, λ = (λ1, . . . , λn) ∈ Bn, (7.2)

and

|ϕ(λ)| � ‖ϕ‖2√
1 − ‖λ‖2

, λ = (λ1, . . . , λn) ∈ Bn.

Arveson showed that the algebra F∞
n (V Pc

) can be identified with the algebra of all multipliers
of H2

n. Under this identification the creation operators Li := PF 2
s
Si |F 2

s
, i = 1, . . . , n, on the sym-

metric Fock space become the multiplication operators Mz1, . . . ,Mzn by the coordinate functions
z1, . . . , zn of C

n.
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Theorem 7.3. Let ψ̃ = (ψ̃1, . . . , ψ̃n) ∈ F∞
n (V Pc

) ⊗ C
n be a non-scalar operator with ‖ψ̃‖ � 1.

Under the identification of the symmetric Fock space F 2
s with the Drury–Arveson space H2

n, the
composition operator Cψ̃ : F 2

s → F 2
s has the functional representation

(Cψ̃f )(λ) = f
(
ψ(λ)

)
, λ ∈ Bn.

Moreover, if f ∈ F 2
s , then (

C ∗̃
ψ
f
)
(λ) = 〈f, zλ ◦ ψ̃〉, λ ∈ Bn,

where zλ :=∑α∈F
+
n

λαeα .

Proof. As in the proof of Theorem 7.1, due to the noncommutative commutant lifting the-
orem, there is ϕ̃ = (ϕ̃1, . . . , ϕ̃n) ∈ F∞

n ⊗ C
n a non-scalar operator with ‖ϕ̃‖ � 1, such that

ϕ̃∗
i |F 2

s
= ψ̃∗

i , i = 1, . . . , n. In particular, due to (7.2), we have ϕ(λ) = ψ(λ), λ ∈ Bn. Fix

f = ∑
α∈F

+
n

aαeα ∈ F 2
s and λ ∈ Bn. Since zλ ∈ F 2

s and PF 2
s
ϕ̃α|F 2

s
= ψ̃α for all α ∈ F

+
n , we

can use relations (7.2), (2.9), as well as Corollary 2.4 and Theorem 7.1, to obtain

f
(
ψ(λ)

)= 〈f, zψ(λ)〉 = 〈f, zϕ(λ)〉 = 〈f,C ∗̃
ϕzλ

〉= 〈Cϕ̃f, zλ〉

=
〈 ∑

α∈F
+
n

aαϕ̃α1, zλ

〉
=
〈 ∑

α∈F
+
n

aαPF 2
s
ϕ̃α1, zλ

〉
=
〈 ∑

α∈F
+
n

aαψ̃α1, zλ

〉
= 〈Cψ̃f, zλ〉 = (Cψ̃f )(λ).

Therefore, the first part of the theorem holds. To prove the second part, note that according to
item (iii) of Theorem 7.1, we have

C ∗̃
ψ
f =

∞∑
k=0

∑
|α|=k

〈
f, ψ̃α(1)

〉
PF 2

s
eα, f ∈ F 2

s . (7.3)

On the other hand, since zλ ∈ F 2
s , part (i) of Theorem 7.1 implies zλ ◦ ψ̃ ∈ F 2

s and

zλ ◦ ψ̃ =
∞∑

k=0

∑
|α|=k

λαψ̃α1,

where the convergence is in F 2(Hn). Consequently, using relations (7.3) and (7.2), we deduce
that

〈f, zλ ◦ ψ̃〉 =
〈
f,

∞∑
k=0

∑
|α|=k

λαψ̃α1

〉
=

∞∑
k=0

∑
|α|=k

〈f, ψ̃α1〉λα

=
〈 ∞∑

k=0

∑
|α|=k

〈
f, ψ̃α(1)

〉
eα, zλ

〉
= (C ∗̃

ψ
f
)
(λ)

for any λ ∈ Bn. The proof is complete. �
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Since ψ(λ) ∈ VPc
for all λ ∈ Bn part (ii) of Theorem 7.1 implies the following result con-

cerning the composition operators on the symmetric Fock space F 2
s and, consequently, on the

Drury–Arveson space H2
n. The next result was obtained by Jury [11] using different methods.

Corollary 7.4. Let ψ̃ = (ψ̃1, . . . , ψ̃n) ∈ F∞
n (V Pc

) ⊗ C
n be a non-scalar operator with ‖ψ̃‖ � 1.

Then the composition operator Cψ̃ : F 2
s → F 2

s is bounded and

1

(1 − ‖ψ(0)‖2)1/2
� sup

λ∈Bn

(
1 − ‖λ‖2

1 − ‖ψ(λ)‖2

)1/2

� ‖Cψ̃‖ �
(

1 + ‖ψ(0)‖
1 − ‖ψ(0)‖

)1/2

.

It is obvious now that the formula for the spectral radius of Cψ̃ (see Corollary 7.2) holds.
We also remark that one can deduce commutative versions of Corollary 2.5, Theorem 2.6, and
Corollary 2.7. We leave this task to the reader.
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