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The Yoneda definition of Ext” (A, C) in terms of exact sequences of length n 
from C to A [Z4], [Z5], enables one to define the homological dimension of 
a nonzero object A (h.d. A) in an arbitrary Abelian category fl as the largest 
integer n (or co) for which the one variable functor Ext” (A, ) is not zero. 

(We set h.d. 0 = -1). The global dimension of Of! (gl.dim. 02) is then defined 
as the sup of the homological dimensions of all of its objects. Given a small 
category L7 and an Abelian category GZ, one can ask for the global dimension 
of the category 6P of covariant functors from 17 to GZ in terms of the global 
dimension of CL If l7 has only a finite number of objects, each such result 
specializes in the case where a is a category of modules to a statement about 
the global dimension of some ring [9, p. 1471. 

In this paper we shall obtain complete results (up to a mild assumption 
on the existence of products in O!) for the following cases: 

(1) 17 is a free (or free Abelian) monoid. 

(2) n is a free (or free Abelian) group. 

(3) 17 is a finitely generated Abelian group. 

(Actually (1) and (2) will be obtained simultaneously as special instances 
of a more general situation.) We shall also examine the case where X7 is any 
countable Abelian group. It turns out that the global dimension of 6P in 
this case can be determined to within one. There are examples to show that 

there is actually this much play. Here we shall be following ideas of Balcerzyk 
[I], [2], who handled the torsion free case for categories of modules. 
In Section 4 we shall examine the category of endomorphisms in O! satisfying 
a manic polynomial relation. The Ext functor of such a category turns out 
always to be periodic of period 2. 

In a subsequent paper [IO], we shall consider the case where 17 is a finite 
partially-ordered set. 

* Research supported by National Science Foundation Grant No, GP-6024. 
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ON THE DIMENSION OF OBJECTS AND CATEGORIES I 315 

For basic facts relating to the theory of adjoint functors and to the Ext 
functor, the reader can refer to [9], Chapters V and VII respectively. 

1. PRELIMINARIES 

Throughout the paper a and 9 will denote Abelian categories. When there 
may be confusion of categories we shall use the notation Ext$, or Ext$ 
when the category concerned is a functor category GYP. Likewise we shall 
sometimes write h.d., or h.d.n . When we are working with the category of 
left modules over some ring R, we shall write h.d.R . (All rings have identities, 
and all modules are unitary.) The notation gl.dim. R stands for the global 
dimension of the category of left R-modules. All of our results will be easily 
obtainable for right global dimension as well. 

Let E denote an exact sequence 

0 ---f c -+ B,_r --f a.. -+ B, -+ B, --+ A + 0 (1) 

in an Abelian category GZ (n > 1). Then E represents an element of 
Ext” (A, C). A morphism E + E’ of exact sequences of the same length is 
a commutative diagram 

(2) 
O--WC’-B’__, w. . . 

We shall call LX and y the covariant end and contravariant end respectively of 
the given morphism. If A = A’ and C = C’ and y and cz are identity 
morphisms, then E and E’ represent the same element of Extn (A, C), and 
we say that the morphism E -+ E’ has fixed ends. On the other hand, if 
E and E’ represent the same element of Ext” (A, C) [notation E - E’], then 
there exists a sequence E” together with morphisms of sequences 

with fixed ends [15]. (A three step process for getting from E to E’ is given in 
[9, Chapter VII, Theorem 4.21. Actually we shall be u’sing only the fact that 
the number of such steps is bounded.) 

Now consider a morphism (2) of sequences where y and OL are not necessarily 
identity morphisms. The existence of such a morphism expresses the fact 
that yE - E’ 01, where yE (respectively E’cx) represents the image under 
Ext”(A, y) [respectively ExtlE(a, C’)] of the element represented by E 

[respectively E’] in Ext”(A, C) [respectively Extn(A’, C’)]. 
For n = 0, ExtO(A, C) is the group [A, C] of morphisms from A to C. 
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If E E ExtO(A, C) and E’ E ExtO(A’, C’), then we define a morphism E -+ E’ 
in this case to be a commutative diagram 

E 
A-C 

LY 1 c Y 
E’ 

A’+ C’ . 

Thus we have yE = E’a, and so the formal discussion of the preceding 
paragraph applies in the case ft = 0 as well. 

Consider an exact functor T : a -+ 99, so that in particular T is additive 
and preserves finite products. If E denotes the exact sequence (1) in @, then 

we let T(E) denote the exact sequence 

0 + T(C) + T(B,_,) -+ -a- + T(B,) + T(B,) --+ T(A) + 0 

in 29’. If E - E’, then clearly T(E) N T(E’), and consequently T induces 
a function 

p = P”a,c : Ext”(A, C) --+ Ext”(T(A), T(C)). (3) 

Furthermore we have the obvious relations 

WE) = WW)~ T(Eor) = T(E)T(or), (4) 

and so using the fact that T (as do all additive functors) preserves diagonal 
morphisms n : A -+ A @ A and codiagonal morphisms v : C @ C + C, 
it is straightforward to show that p is a natural transformation of group 
valued bifunctors. In fact, p is a morphism of multiply-connected sequences 
of functors; that is, p commutes with the connecting morphisms relative to 
short exact sequences 

0 --f A’ + A -+ A” + 0 and o+c’+c~c”+o in (2, 

The statements h.d. A ,( n and Extn+l(A, ) = 0 are equivalent, as is 
easily seen from the fact that an exact sequence of length >n + 1 can be 
obtained by splicing an exact sequence of length 71 + 1 together with some 
other exact sequence. Likewise, the statements Extn+r(A, ) = 0 and 
Ext’b(A, ) is cokernel preserving are equivalent. To see this one takes 
advantage of the exactness of the connected sequence of functors Exti(A, ), 
as well as the fact that any exact sequence of length 71 + 1 can be obtained 
by splicing an exact sequence of length n with a short exact sequence. 

Let S : ~29 -+ GZ be a coadjoint (i.e., a left adjoint) for T : a+ ~8’. This 
means that there is a natural equivalence of group-valued bifunctors 
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for B E L%’ and A E GL’. Then we have natural transformations 

JI:ST+lfl, ?: I,+ TS 

which are such that 

T(~h7lA) = 1 T(A) , #SOJP%B) = 1S03) (6) 

for all AEGsdand BE9. 
Most of our results will depend in some way or other on the following 

simple lemma. 

LEMMA 1.1. Consider an adjoint situation (5), and suppose that T and S 
are exact functors. Then there is a natural equivalence of bifunctors 

77 = ?:.A : Ext”(S(B), A) w Ext?‘(B, T(A)) 

which commutes with the connecting morphisms. 

Proof. If E represents an element of Ext*(S(B), A), we define 

T(E) = T(E)FB. 

Also we define 

/L : Ext”(B, T(A)) + Ext”(S(B), A) 

Now for E E Ext%(S(B), A), th e natural transformation 4 gives us a morphism 
ST(E) -+ E with $,, at the covariant end and #S(B) at the contravariant end. 
Hence we have 

#A'T(E)-WSCB). (7) 

Therefore using (4), (6), and (7), we obtain 

p(dE)) = P(T(E)vB) = A~TE)S(YB) -J%S(BPYVB) my E. 

This shows that ~7 is the identity function, and dually it follows that 7~ 
is the identity. Consequently 7 is a l-l correspondence. The fact that v is 
actually a morphism of multiply connected sequences of group-valued 
bifunctors, which we shall not be using in any case, is straightforward and 
is left to the reader. 

COROLLARY 1.2. Let S be an exact coadjoint for the exact functor T. 
Then fat each B E 9 we have 

h.d., S(B) < h.d., B. 
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If P)B is a coretraction (split monomorphism) for all B E .9Y’, then equality 
holds, and consequently in this case we have 

gl.dim. 9? < gldim. GY. 

Proof. The first assertion is clear from Lemma 1.1. Now if P)B, is a 
coretraction, then Extan(B, B’) is a retract of Ext#(B, TS(B’)). Consequently 
if the former is not zero, then by Lemma 1.1, Ext,“(S(B), S(B’)) f 0: 
This proves the second assertion. 

Remark. If T is representative (that is, for each B ~g’, there is an 
A E GZ such that T(A) is isomorphic to B), then it follows from the first of 
Eqs. (6) that ~a is a coretraction. However it follows also directly from 
Lemma 1.1 that B and S(B) have the same homological dimension in this case. 

Let I be any set. We form the product category @ whose objects are 
I-tuples (AJ of objects of GZ, and where a morphism from (AJ to (Bi) is 
a family of morphisms Ai + Bi in GY. (Actually, @ is just a functor category 
if we regard I as a category having I objects and I morphisms). Using the 
fact that the number of steps required to get from a representative of a 
member of Extn to another such representative is bounded, it is easy to 
establish an isomorphism 

Ext”((AJ, (C,)) w )( Ext”(A, , Ci). (8) 
&I 

Suppose now that G! has products indexed over I. Then we have the 
functor T : @ -+ a such that 

WA,)) = X Ai . 
&I 

An exact coadjoint for T is the functor S : 02 + GP such that S(A) = (AJ 
where Ai = A for all i E I. Using Lemma I. 1, and taking (8) into account, 
we therefore obtain 

COROLLARY 1.3. Suppose that M has exact products over I. Then we have 

fw all 71 > 0. 

Extn (A, )( Cij m )( Ext”(A, CJ 
iOI &I 

The dual of Corollary 1.3 gives us 

COROLLARY 1.4. If Qd has exact coproducts indexed over I, then 

h.d. @ Ai = sup(h.d. AJ. 
i6I ie1 
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LEMMA 1.5. Let E represent a nonxero member of Ext”(A, C), and let E’ 
represent any member of Extn(A’, C’). Then E @ E’ represents a nonzero 

member of Extn(A @ A’, C @ Cl). 

Proof. Let u : C + C @ C’ and v : A + A @ A’ denote the coproduct 
injections, and let p : C @ C’ -+ C denote the projection. Then we have 
a morphism E - E @ E’ with u at the covariant end and v at the contra- 
variant end, and consequently 

uE-E@E’v. 

Therefore 

E =puE-pEaE’v, 

and so E @ E’ is not zero. 

COROLLARY 1.6. If T : 59 -+ 02 and L : a---f .B are exact functors such 
that TL admits the identity functor on G? as a retract, and if E represents a 

nonzero element of Ext&A, C); then TL(E) re p resents a nonzero element of 

Extan( TL(A), TL(C)). H ence if h.d., A > n, then h.d.BL(A) > n. 
If LZ is a small category andp is an object in LI, then we shall let T, : GP + 172 

denote the corresponding evaluation functor. If D E 6F’, we shall sometimes 

denote T,(D) by D, , and if 6 : D + E is a morphism in GP, we shall 
sometimes denote T,(6) by 6,. If x : p -+ q is a morphism in 17, then x 
induces a natural transformation T, - T, whose value at D we denote by 
D(x), or simply by x when there is no danger of confusion. Notice that T, 
is always representative, for if A E G& then the constant functor D defined 
by D, = A for all 9 E II and D(x) = I A for all morphisms x in IZi is such that 
T,(D) = A. 

We let C(a) denote the class of all natural transformations from the 
identity functor on 02 to itself, and we call C(a) the center of GY. Then C(a) 
is a commutative ring with identity (neglecting the fact that it may not be a set), 
and in the case where 02 is the category of (right or left) R-modules, C(a) is 
isomorphic to the center of R in the usual sense. Observe that for all c E C(a) 
and all morphisms f in 02 we have fc = cf, where the c on the left side is 
different from that on the right unless f is an endomorphism.An element c 
in C(a) is a unit if and only if c is a natural isomorphism from ld to itself. 
If c is not a unit, then for some A E a we can form an exact sequence 

O+K-+A-%A-+K’-+O 

where at least one of K and K’ is not zero. Since c is zero on K and K’, we 
see that c is not a unit if and only if c is zero on some nonzero object of a. 
The value of c at an object A will be denoted by cA . 
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LEMMA 1.7. Let II be a small category, and let p, , p, ,..., p,, , q be objects 
in Il. Suppose that for each j, 1 < j < n, we have a family of morphisms 
xij : pj -+ q, 1 < i < ki . Let L : 6Y + GFt be an exact functor such thut the 
composition T,L : a + GI admits the identity functor on @ as a retract. Suppose 
further that L takes all its values in the full subcategory of GF consisting of those 
ob&cts for which the n expressions 

kj 

r, = c cijxij 
i=l 

are zero, where the cij are a fixed family in C(a). Consider an exact sequence 

E:O+L(A+D+B-0 (9) 

in @, and suppose that there exist morphisms 

such that 

i r*rj = 6,. 
i=l 

If E represents a ?u)nzero element of Ext&A, C), then L(E)E represents a nonzero 
element of ExtF’(B, L(C)). Consequently ff A f 0, then 

h.d.n B > 1 + h.d.@ A. 

Proof. Suppose that L(E)E - 0. Using the exact sequence for Ext relative 
to (9), we can then write L(E) = bS for some B E Ext&D, L(C)). Now for 
eachj, 1 < j < n, the expression I’j induces a morphism 

with 0 at the covariant end (by assumption on the values ofL) and Fj evaluated 
on D at the contravariant end. Hence we can write 

T,(6’)Pi - 0, 

and so we have 

~&W - T,(bS) = T*(8) T,(S) = T,(q(jg rjTj) - 0. 

But since T,& admits lcR as a retract, this contradicts Corollary 1.6. 

Remarks. (i) Suppose that the exact sequence (9) and the values of L 
are in GY, where g is an Abelian subcategory of @ (that is, g is an Abelian 
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category and the inclusion functor is exact). Then the conclusion of Lemma 1.7 
is clearly true with h.d., B replaced by h.d., B. 

(ii) In the present paper we shall always have n = 1. It will not be 
until [lo] that we shall have n > 1 (and in that case we shall have each kj = 1). 

Let p be an object in the small categoryn, and suppose that GY has coproducts 
indexed over horn sets [p, 41 for each Q E 17. (In particular, this will always be 
true if each of these sets is finite.) Then the Kan construction [S] provides 
us with a coadjoint S, : Ol+ O/F for the evaluation functor T, . Explicitly, 
if in general we denote the coproduct of I copies of an object A by ‘A, and 
if ui : A + IA denotes the coproduct injection corresponding to i E I, then 
S,, is given as follows: 

S,(A), = [p-Q]A for AEGZ, qEn 

S,(A)(x) u,J = u,1, for x E [q, dl and Y E [A 41 

S,(j), = [PJ?f for f: A-tA’inGl. 

If the coproducts in QI are exact, then S, is an exact functor. 

PROPOSITION I .8. Let T : 02 + B and S : .!3 + GY be exact functors, and 
suppose that S is simultaneously an adjoint and a coadjoint for T. If A E 02, then 

h.d., ST(A) < h.d., T(A) < h.d., A, (10) 

and consequently if A is a retract of ST(A), then the inequalities are equalities 
in (10). On the other hand, if T is faithful, then the existence of a single object A 

such that 

h.d., T(A) < h.d.a A (11) 

implies that 

gl.dim. GZ = co. 

Proof. The inequalities (10) follow from two applications of Corollary 1.2. 
To prove the final assertion, we shall exhibit an object A’ E GZ such that 

h.d., A’ = 1 + h.d., A (12) 

and such that 

h.d., T(A’) < h.d.b A’. (13) 

The result will then follow by iteration. 
From (6) [with S as adjoint] we have a coretraction (split monomorphism) 

T(A) + TST(A). Therefore since T is faithful, we obtain an exact sequence 

0 - A -+ ST(A) + A’ - 0 (14) 
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which splits on application of T. Using (10) and (11) we see that 

h.d., ST(A) < h.d., A, (15) 

and consequently (12) follows from (14). Now using the fact that T(A’) is 
a retract of TST(A) and applying (12), (15), and Corollary 1.2, we obtain 

h.d., T(A’) < h.d., TST(A) < h.d., ST(A) < h.d.@ A < h.d., A’. 

This proves (13). 

2. FREE MONOIDS 

Throughout the remainder of the paper, 17 will denote a monoid, or in 
other words a category with one object. We shall use the membership 
notation x E II to denote that x is a morphism in II. An object of CP will be 
called a II-object in a. Thus a n-object is an object A E GZ together with 
a family of endomorphisms {x : A + A}zcn (observe the abuse of notation) 
satisfying the usual functorial properties. The evaluation (forgetful) functor 
T : CP + G? has a coadjoint S : a ---f GP if GZ has coproducts indexed over II. 
The value of S at A will sometimes be denoted by A(II), and as before we 
shall let 1c, : A --f A(Ii’) denote the coproduct injection in G! corresponding 
to x E 17. If 1 is the identity element of n, then we shall simply write u in 
place of zcr . The action of x on A(II) will be denoted by X. Thus X is given by 

for all y E 17. 
xu, = uzv 

If A is a n-object, then there is a unique morphism of n-objects 01: A(D) - c d 
satisfying 01u = lA . Explicitly, 01 is given by 

a!u, = x:A-+A. 

(Actually 01 is just the morphism 4 of Section 1.) 
Let{xi}i,lb e a amil f y f 1 o e ements of 17, and let I’ be the subset of I consisting 

of those i such that xi has a two-sided inverse x7’ in n (or, in other words, 
such that xi is an automorphism in J7). We shall say that II is generated by 
the given family if each x E II can be written (not necessarily uniquely) in 
the form 

x = xpp *** “7; a (1) 

where nk is a positive or negative integer if & E I’, and is a positive integer if 
ik E I - I’. By contraction we may assume that no two consecutive subscripts 
in (1) are equal. Using this convention, if each x in 17 can be written uniquely 
in the form (l), then we shall say that II is a partially-free monoid of type (I, I’). 
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When I’ is empty, 17 is just a free monoid in the ordinary sense, and when 
I’ = I, 17 is a free group. 

Suppose that Ii’ is generated by (x~}~~~. Given a n-object A, let 

ui : ApI) --, ‘(Api-)) 

denote the coproduct injections. For each i E I, let Pi : A(n) + A(n) be the 
unique morphism of U-objects such that 

/3p = 24,; - UX( , 

Then the pi are the coordinates of a morphism 

p : ‘(A(q) -+ A(I7). 
Explicitly, ,K is given by 

/3lJ$L, = U,,$ - upi . 

For each i E I and x E I7 we have 

cgxJ,u, = cud,,‘ - cLU&x~ = xxi - xX( = 0. 

Consequently $? = 0. In the following we shall adopt the notation 

if x is given by (1). 

LEMMA 2.1. If l7 is generated by {xijisl and A is any n-object, then 

‘(A(n)) % A(U) % A -+ 0 (2) 

is an exact sequence in G2?. If furthermore, II is partially free of type (I, I’), then 
the sequence 

0 -+ l(A(17)) % A(n) S A + 0 

is exact in W and splits in GK 

(3) 

Proof. For each x E 17, choose a representation for x in the form (I), and 
define in CY a morphism 

0 : A(l7) -+ ‘(A(n)) 
by the rule 

Here e(j), which depends on k as well as j, is given by 

c(j) = j if nK > 0 

=-I -j if nk < 0. 
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The definition (4) comes from the desire to have 0 such that PS + U(Y = 1, 
and indeed, by composing each side of the latter equality with the coproduct 
injections u, , it is straightforward to verify that this is the case. Combining 
this with the relations a/3 = 0 and LYU = 1, we obtain the exactness of (2). 

Now assuming that each x has a unique representation in the form (I), 
the remainder of the lemma is equivalent to showing that ($3 = 1. This is 
done by composing each side with the coproduct injections 

and treating separately the four cases p f it , p = i, and nt > 0, p = i, and 
n, = -1,~ = i, and n, < -1. 

LEMMA 2.2. Let II be a partially-free monoid and suppose that d has exact 
coproducts indexed over Il. If A is any II-object in Ot, then 

Consequently, 

h.d.n A < 1 + h.d.@ A. 

gkdim. CF’ < 1 + gl.dim. LX 

(5) 

Proof. The assumption on coproducts guarantees simultaneously that 
the coadjoint S is exact, and that the coproducts in GI (and hence in GF’) 
indexed overIare exact. Consequently, using Corollary 1.4 andProposition 1.2 
we obtain 

h.d.,‘(A(lI)) = h.d., A(n) = h-d.@ A. 

Hence if h.d.= A > 1 + h.d., A, then in the exact sequence for Ext 
relative to the short exact sequence (3), we would have a nonzero term 
flanked by two zero terms. This contradiction proves the lemma. 

We shall now invoke Lemma 1.7 to exhibit objects for which equality 
holds in (5). We first remark that if II is a partially-free monoid of type (I, I’), 
then a n-object in @is had by taking an object A in GY, and randomly assigning 
automorphisms xi : A -+ A for i E I’, and endomorphisms xi : A - A for 
i E I - I’. This remark enables us to define a functor 

by taking a family {ci}iel where ci is a unit in C(a) if xi is in I’ and ci is an 
arbitrary element of C(a) otherwise, and converting an object A E 02 into 
a II-object by defining xi = ci for all i. Consider the exact sequence 
in G?I 

O--+A-%A@AAA-0 (6) 
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where ua denotes the second coproduct injection and p, denotes the first 
projection. Convert A @ A into a D-object by choosing any s E I, taking 
xi = ci for i f S, and X, = c, - u,p, . Then (6) may be regarded as an 
exact sequence 

O+L(A)J+A @A+L(A)+O (7) 
in GP, and we have 

T(S) = u2 = (cs - (cs - uzp,))ul = (cs - x,)241 . 

Therefore by Lemma 1.7 (with n = 1, I’ = c, - X, , and 7 = ur) we obtain 

h.d.,L(A) 3 1 + h.d., A (8) 

providing A is not zero. Combining (8) and Lemma 2.2, we now obtain 

gl.dim. GP = 1 + gl.dim. OZ (9) 

for any nontrivial O? with exact coproducts over II. Now if GZ has exact 
products instead of coproducts over II, then Eq. (9) applies to the dual 
category GY*. Hence, using the general relations 

gl. dim. a* = gl. dim. a, (a*)* = (a*)n*, 

and also the fact that II* is partially free if Ii’ is, we have 

gl. dim. GP = gl. dim.(@)* = gl. dim. O!*n* 

= 1 + gl. dim. a* = 1 + gl. dim. CY. 

Thus we have proved the following theorem. 

THEOREM 2.3. Let II be a partially-free monoid and suppose that GY is 
a nontrivial Abelian category with exact products or coproducts indexed by Il. 
Then 

gl.dim. 6P = 1 + gl.dim. a. 

Using the isomorphism of functor categories 

and induction on n, we obtain 

COROLLARY 2.4. If II is the direct product of n partially-free monoids and d 
has exact products or coproducts over II, then 

gl.dim. an = n + gl.dim. 13. 
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Remark. Corollary 2.4 is valid even if n is infinite. For in this case we can 
take for any positive integer k a submonoid flk which is the direct product 
of k partially-free monoids, together with obvious functors F : GP -+ @‘k 
and G:GPk-+CP such that FG is the identity functor on 6Pk. Using 
Corollaries 1.6 and 2.4, we then see that gl.dim. GP’ > k + gldim. 02. 

If GY is the category of left R-modules, then 0?’ is the category of left 
modules over the monoid ring R(U). This gives us 

COROLLARY 2.5. The global dimension of any free ring over R is 
1 + gl.dim. R. 

COROLLARY 2.6. The global dimension of the polynomial ring in n variables 
over R is n + gldim. R. 

COROLLARY 2.7. If II is a free group, then 

gl.dim. R(D) = 1 + gl.dim. R. 

COROLLARY 2.8. If II is a free Abelian group of rank n, then 

gldim. R(n) =I n + gl.dim. R. 

Corollary 2.6 was first proved by Eilenberg, Rosenberg, and Zelinsky [6]. 
It generalizes the Hilbert syzygy theorem, in which the notion of global 
dimension finds its origin (1890). Corollary 2.5 was first proved by 
Hochschild [7], and Corollary 2.8 was first proved by Balcerzyk [I]. 

It follows from Lemma 2.2 that any free group 17 is cohomologically 
trivial; that is, that h.d.n Z < 1, where Z is the group of integers with trivial 
n-operators. The converse is a well-known open question. (For recent 
developments concerning this question see [J].) One could ask the more 
general question. If n is a cancellative monoid such that h.d., 2 < 1, is n 
partially free? To see that the cancellative condition is necessary, consider 
the monoid n whose elements are symbols xmyn, m and n being nonnegative 
integers, and whose multiplication is given by the rule 

(xmyn)(x7ys) = xm+‘ys if r > 0, 

= x’nyn+s if r = 0. 

Then xOy” is a two-sided identity, and it is easily verified that multiplication 
is associative. We construct an exact sequence 

0 - z(n) &k Z(D) y-&-t z - 0, 
Y u 
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thereby showing that h.d.n Z < 1. The morphisms OL and u are as usual. 
We take /3 to be the unique morphism of Z(IT)-modules such that 
,!I( 1) = X - 1, and we define y as the unique morphism (of Abelian groups) 
satisfying 

y(XmY%) = 1 + x + *** + xr” - x”zyn. 

Then the relations olu = 1, /3~ + ua = 1, $3 = 1, and c& = 0 are readily 
verified. 

3. GROUPS 

Let R be a ring. A left R-object structure on an object A E G? is a ring 
homomorphism R ---t Enda (A). The category of left R-objects in G! is 
denoted by R@. We define GKR = R*OZ, where R* is the opposite ring. If B 
denotes the category of Abelian groups, then BR is just the category of right 
R-modules. 

Remark. A left R-object in G! may be viewed as an additive, covariant 
functor into @from the ring R viewed as an additive category with one object. 
For this reason, a better notation for the covariant functor category GY 
(n any small category) would be %. 

If the Abelian category G? has arbitrary coproducts, then a unique colimit 
preserving bifunctor @R : gR x RGY + a can be constructed so as to have 
R @R A = A as left R-objects for each A E R@ If R is right Noetherian, 
then the coproduct assumption on GY may be waived if we replace gR by the 
category of all finitely generated right R-modules. (For a systematic account 
of all forms of tensor products of R-modules and R-objects, see [II, Section 31.) 

Now suppose that R is commutative, and that M and A are n-objects in 
gR and RU, respectively. In this case we shall consider M OR A as a U-object 
in 02 with x E l7 acting by x @ x. In the case where M is R(n), we have 
R(W@RA =A&% with x acting as the endomorphism 8 : A(17) + A(I7) 
given by 

AC, = U,~. 

This U-structure on A(l7) is isomorphic to the usual one via the morphism 
v : A(L7) + A(D) given by pz+, = uy y. 

LEMMA 3.1. Let R be commutative, and suppose that P is a projective left 
R(U)-module. If A and C are U-objects in R6Y and Gsd respectively such that 
Ext”(A, C) = 0, and if 02 has exact coproducts, the-n Ex@(P @R A, C) = 0. 

Proof. Since P is a retract of a free R(U)-module, using Corollary 1.3 
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we see that it suffices to consider the case where P = R(n). But then 
R(n) OR A = A(D), and so the result follows from Lemma 1.1. 

Remark. If R is Noetherian and Ii’ is finite, and if P is a finitely-general 
left R(D)-module, then Lemma 3.1 is true without the coproduct assumption 
on CPG. 

PROPOSITION 3.2. Let B be a set of primes, and let II be a finite group with 
a finite Y-period q [IZ, p. 2681. Let A and C be II-objects in @ such that 
Ext”(A, C) = 0 for m < k < m + q, and suppose that pA is an isomorphism 

for each prime p E 9. Then 

Ext;;-t@(A, C) m Extrrm(A, C). 

Proof. Let R denote the ring of rational numbers with denominator 
prime to each p E 9. The assumption on A endows A with a (unique) 
R-object structure. By [ZZ, Theorem 4.11, there is an exact sequence of left 
R(n)-modules 

0 --f R + P,+ 4 .-a --z PI - P, --f R -+ 0 

where R has trivial II-operators and each Pi is finitely generated and projective. 
Since the sequence splits as R-modules, it remains exact on tensoring over 
R with A, and consequently the result follows from the remark to Lemma 3.1. 

If II is a cyclic group of order n on a generator x, then (taking B to be the 
set of all primes) a periodic resolution for R = 2 in this case is given explicitly 

bY 
o-+z~z(n)~z(17)LZ--O. 

Take I to be a one element set in the discussion following Lemma 2.2, and 
define the functor L of that discussion by taking c = 1. If A is an object of 0! 
such that nA = 0, then the automorphism 

x = 1 -uu,pl:A@A+A@A 

is such that .a+ = 1, and consequently the exact sequence (7) of Section 2 
is in @. Therefore combining Lemma 1.7 and Proposition 3.2 we obtain 

COROLLARY 3.3. Let ll be a cyclicgroup of order n, and let A be a nonzero 
object in GZ such that n4 = 0. If A is considered as a n-object with trivial 
operators, then h-d., A = a3. 

Let I7 be a subgroup of group G (not necessarily finite). Let (xJ7),,1 be 
the distinct left cosets of II in G, where for simplicity we assume that 1 
represents its coset. For each x E G and i E I we can write 

xxi = xjt (1) 
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for unique elements j E I and t E II. Suppose that QL has coproducts indexed 
over I. For A E 0%’ we define S,(A) to be the G-object ‘A where an element 
x in G operates on ‘A by the rule 

xu* = ujt, 

j and t being as in (1). If A is a n-object and A’ is a G-object, then a 
morphism 01 : IA ---f A’ of G-objects is completely determined by a 
morphism f : A + A’ of D-objects if we define 

ciui = Xif. 

It follows that Son is the coadjoint of the restriction functor T,, : 6YG + G!P. 
If the coproducts over I are exact, then it follows from Corollary 1.2 that 

gl.dim. @ < gl.dim. aG. (2) 

If n is of finite index in G (that is, if I is finite), and if A” and A are G 
and n-objects respectively, then a morphism 

/3 : A” -+ ‘A 

of G-objects is completely determined by a morphism g : A” -+ A of 
II-objects if we define 

pi/3 = gx;l 

where pi denotes the coproduct projection. Thus we see in this case that 
s Cl7 is an adjoint as well as a coadjoint for TnG . The composition $I can 
then be written 

(3) 

In particular, let A be a G-object, and take A’ = A” = A. Putting f = g = IA 
in (3) and letting n be the index of IT in G, we see that n : A ---f A admits 
a factorization through S,,(A). No w if C is another G-object and if 
Ex@(A, C) = 0, then from Corollary 1.2 we have ExtGL(&rG(A), C) = 0, 
and consequently n Ext,“(A, C) = 0. 

PROPOSITION 3.4. If G is a group of order n and ;f nA is an isomorphism, 
then 

h.d.G A = h.d.@ A 

for every G-object strvcture on A. Consequently, if n is a unit in C(R), then 
6Y” and GZ have the same global~dimension. 

On the other hand, if p is Q priqe.factor of n, ,which is not Q unit in C(aC), 
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and if A is a nonzero object of 0l such that qa = 0, then considering A as 
a G-object with trivial operators, we have 

h.d., A = co. (4) 

Proof. Taking II = 1 in the preceding discussion, the relation 
n Exto”(A, C) = 0 implies h.d.G A < h.d.A in the case where n4 is an 
isomorphism. Since the other inequality holds in any case, this gives us the 
first assertion. 

Now assuming qa = 0 with A # 0, we know by Cauchy’s group theorem 
that G has a subgroup nof order q. But by Corollary 3.3 we have h.d.n A = co. 
Hence (4) follows from (2). 

Remark 1. Proposition 3.4 generalizes the well-known fact that the group 
ring of a finite group over a field is semisimple if and only if the characteristic 
of the field does not divide the order of the group. 

Remark 2. Eq. (4) is valid for any A E @for which qa is a monomorphism 
or an epimorphism but not both. For example, if qa is a monomorphism, 
then we have an exact sequence 

O+A%A-+ A/qA+O (5) 

where A/qA is not zero. Applying (4) to A/qA, we see from (5) that 
h.d.o A = co where A has trivial operators. In particular if GZ is the category 
of Abelian groups, then h.d.o 2 = co for all finite groups G (see [5, p. 263, 
Exercise 21). 

If G is any Abelian group, we take as our definition of the rank of G (r(G)) 
the maximum number (or co) of linearly-independent elements of G. 
Equivalently r(G) is the dimension of the vector space G &Q over the 
rationals. If G is a finitely-generated Abelian group, then G can be written 
as I7 x 7 where 7 is the torsion subgroup of G and I7 is a free Abelian group 
on r(G) generators. Combining Proposition 3.4 and Corollary 2.4 therefore 
yields 

COROLLARY 3.5. Let G be a finitely-generated Abelian group whose torsion 
subgroup has order n, and suppose that Q! has exact, countable products or 
coproducts. If n is a unit in C(a), then 

gldim. @ = r(G) + gl.dim. a. 

Otherwise gl.dim. LYG = co. 

THEOREM 3.6. Let G be an Abelian group of rank r, and suppose that 0l 
has exact products or coproducts indexed by G. Then 

r + gl.dim. 0! < gl.dim+ @. (6) 
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Furthermore let B be the set of primes p for which G has p-torsion. If p is not 
a unit in C(a) for some prime p E 8, then gl.dim. @ = co. On the other 
hand, if p is a unit in C(GY) f or all primes p E- 8, and if further G is countable, 
then 

gl.dim. 0Zo < 1 + r + gl.dim. GE (7) 

Proof. Since G has a free Abelian subgroup of rank r, the inequality (6) 
follows from (2) and Corollary 4.4. If p is not a unit in C(GZ) for some p E g, 
then since G contains a cyclic subgroup of orderp, it follows from (2) and 
Proposition 3.4 that OZG has infinite global dimension. 

Now suppose that p is a unit in C(a) for each prime p E g’, and that G 
is countable. Let R be the ring of rational numbers with denominator prime 
to each p $9. The assumption on C(a) makes 0 isomorphic to ROZ. Now G 
is the countable union of its finitely-generated subgroups, and so the group 
ring R(G) is the countable direct limit of rings of the form R(G,) where 
Gi is finitely generated with rank < r. Combining Lemma 2.2 and Propo- 
sition 3.4, we see that h.d.oi R < r where R has trivial Gi operators. Therefore 
by a theorem of Berstein [4] it follows that h.d.o R < 1 + r, and so we have 
a projective R(G)-resolution for R of the form 

0 ---t P,, --t P, -* --- -+ PI + PO + R -+ 0. (8) 

Now if A is any G-object in U, then we can tensor (8) over R with A and 
apply Lemma 3.1 to see that 

h.d.o A < 1 + r + h.d., A. 

From this we obtain the inequality (7). 
Balcerzyk [2] shows that if G is a torsion free, nonfinitely-generated 

Abelian group of rank r and R is a commutative Noetherian ring, then 

gl.dim. R(G) = 1 + r + gl.dim. R. 

He also points out that if R is replaced by R(G), then since R(G)(G) w 
R(G x G), we must have 

gl.dim. R(G)(G) = r + gl.dim. R(G). 

We shall show that this phenomenon can exist in the case of a torsion group 
as well. In fact let G = Z(p”), wherep is any prime. Then G has generators 
q , a, ,..., where (~~9 = giel for i > 2, and each nonzero element of G can 
be written uniquely in the form aI* where 0 < m < pi and (m, p) = 1. 
Let R be any ring in which p is a unit. As above, we see that h.d.o R < 1, 
where R has trivial operators. Now if R were projective as a G-module, then 
we would have G-morphisms 

R%R(G)%R 
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where 01 is as usual and arp, = la. In particular, this would mean that p # 0. 
For some K > 1 we can write 

v(l) = $r r&i. (9) 
i=O 

Since v is a G-morphism, the right side of (9) must remain unchanged on 
multiplication by any element of G. Multiplying by (rkfl , we get a 
contradiction. Hence h.d.o R = 1. In particular, if R is semisimple, this 
gives gldim. R(G) = 1. 

Question. Is the countability condition necessary in Theorem 3.6 ? More 
specifically, does there exist a ring R and an Abelian torsion group G 
(necessarily noncountable) such that 

1 + gl.dim. R < gl.dim. R(G) < co? 

Let n be a subgroup of the (not necessarily Abelian) group G, and let A 
and C be G-objects. Then the restriction functor TnG induces a morphism 

i(l7, G) : Ext,“(A, C) + Ext$(A, C) 

for all n > 0. Also if x E G, then the obvious isomorphism 6’ : &5-l-+ n 
induces a functor 80 : P --f 02~~~ -I, and if A is a G-object, then x : A -+ A 
may be considered as a morphism P(A) -+ A in GPrr5-‘. Consequently if A 
and C are G-objects, then we may define morphisms 

c, : Extnn(A, C) -+ Ex&,&A, C) 

by taking c,(E) = xBO(E)x-r. Finally, if n is of finite index in G, so that Sc, 
is both a coadjoint and an adjoint for TUG , then relative to a G-object A we 
have the morphisms 

#A : ScnTnc(A) - 4 

FA : A -+ ScnTrr,(A) 

described in Section 1. This enables us to define “transfer” morphisms 

t(G, n) : Ext,lE(A, C) --+ EXt$(A, c) 

relative to G-objects A and C by taking 

t(G, W(J9 = +~SGL~%JA - 

Without further ado, we assert that all of the results obtained in 
[5, Chapter XII, Sections 8, 91 are valid if l?(G,, C) is replaced by Exto(A, C) 
throughout, and if the “products” involved are the ones defined by splicing 
exact sequences. Furthermore, the results of [.5, Chapter XII, Section 101 
are also valid if &(G, C) is replaced by ExtGn(A, C) for any 71 satisfying 
Extg(A, C) = 0. 
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4. MONIC POLYNOMIAL RELATIONS 

Let IZ be the free monoid on a single generator x, so that 0P’ is just the 
category of endomorphisms x : A -+ A in CY. If F(x) is a polynomial with 
coefficients in C(a), we let aF denote the full subcategory of QP’ consisting 
of those objects for whichF(x) = 0. If g(x) and h(x) are any two polynomials 
with coefficients in C(Q), then we haveg(x)h(x) = h(x) g(x), and consequently 
taking h(x) = x, we see that g(x) : A ---f A is a morphism in 6YF for any 
AEA~. Furthermore, it follows that if h(x)g(x) : A + A is an auto- 
morphism for some A E lZF, then g(x) : A + A is an automorphism. 

Notice that when a is the category of right R-modules, 6YF is the category 
of right modules over the polynomial ring R[x] reduced modulo the ideal 
generated by F(x). 

Suppose now that F(x) = G( f (x)), where F(x) and G(x) have coefficients 
in C(m), and f(x) is a manic polynomial given explicitly by 

f(X) = X” + n2 CjXj, Cj E C(a). (1) 
i=O 

Then we have a functor TFG : aF -+ G& which assigns to the endomorphism 
x : A + A the endomorphism f(x) : A -+ A. We construct a functor 
SGF : & ---f OZF by assigning to the endomorphism y : A -+ A the endo- 
morphism X : An -+ An defined by 

XlQ = ui+l for O<i<n---1 
n-1 

= uOY - C 5% for i=n-1. 
j=O 

Then X%,, = ui for 0 < i < n - I, and consequently we can write 

n-1 

fCx) uO = xun-l + C Cj"j 
j=o 

= uoy. 

Thenwehaveforl <i<n--1, 

f(X)Ui = f (X)XiUo = Xif(X)UO = XiUOy = Uiy* 

It follows that 

n-1 

fCx) = C %YPj 
j=O 

where the p$ are the coproduct projections, and since G( y ) : A ---f A is zero, 
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we see that F(X) = G( f (X)) : An -+ A” is zero. Thus S&A) is indeed an 
object of 6YF. 

Now consider a morphism (Y : An -+ A’, where A E G& and A’ E GZF. 
Such a morphism is determined by its coordinates ai = ocui , 0 < i < n - 1. 
Composing each side of the relation XOL = 0rX on the right with the ui , 
we see that 01 is a morphism in CZF if and only if 

Given (Ye, CQ is thus determined from the first i of these equations by 

clli = xiao . (3) 

Using (3), we then see that the last of Eq. (2) is satisfied if and only if 

%Y = f wo * In other words, we have shown that the morphisms 
01: S,,(A) -+ A’ in GYF are in one to one correspondence with the morphisms 

010 . * A + T&A’) in G& , and it follows that ScF is a coadjoint for TFG . 
Now relative to A E 6& , write 

n-1 

Then we find that 

p,X = pieI - cipnel for 1 < i < n - 1 

= yp,-, - cop,-, for i = 0. (4) 

Consider a morphism /3 : A” --t An where A E 6Yo and A” E CXF. Such a 
morphism is determined by its coordinates & = p&I , 0 < i < 71 - 1. 
Composing each side of /3x = X/? on the left with the pi and using (4), we 
see that p is a morphism in 6YF if and only if 

A-,x = Pn-2 - Gl-IA-1 
(5) 

A-2x = t%-, - L&n-, 

ax = PO - GL-I 
Pox = yA-, - co&1 * 
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Given /I,+, , /3+.i is determined from the first i - 1 of these equations 
(2 < i < n) by the rule 

In particular, setting i = 12 and composing (6) on the right with x, we see 
that if the first 7t - 1 of Eq. (5) are satisfied, then the last of Eq. (5) is 
satisfied if and only if ~$3~~~ = /3+,f(x). In other words, we have shown 
that the morphisms fl : A” + S,,(A) in OZF are in one to one correspondence 
with the morphisms /$-, : T&A”) -+ A in 0Zc , and it follows that S& is 
also an adjoint for TFG . 

Let A E 12~ , and consider A as an object of 0& via TFG . Take A’ = A” = A 
in the above, with 01~ = fins,_, = IA . Then writing 

and using (3) and (6) a straigthforward computation shows that 

~$3 =f’(x) : A + A 

wheref’(x) denotes the derivative off(x). Thus iff’(x) is an isomorphism 
on A, then A is a retract of S,(A) in 6TF. 

We remark that the only condition on 0Z needed thus far is that it be an 
additive category with finite products. 

If G(x) = x, then F(x) = f (x) and G& = @. In this case we shall write 
Tf and S, in place of TFG and SGF . Given A E 12~) consider the sequence 

O+A-zr,A(I;I)%A(17)~A--+O (7) 

where 01 and p are the unique morphisms in OZf satisfying olus = IA and 
/?u,, = u1 - uOx respectively, and 

n-1 
y = c U,(Xn-k-1 + cn-1xn-k-2 + '*- + ++I). 

k=O 

Then it is straightforward to verify that $I = 0 and fly = 0, and that y is 
a morphism in OZf . Furthermore, a contracting homotopy for (7) is given by 

where 
k-l 

fjuk = c u,,'-i 

i=O 
for k # 0 

= 0 for K = 0, 
puk = 0 for k # n - 1 

= l4 for R=n-I. 
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Consequently (7) is an exact sequence in G& , and we obtain 

LEMMA 4.1. If f (x) is any manic polynomial with coeficients in C(a) and 
A and C are any objects of GYf such that Ext&A, C) = 0 for m < k < m + 2, 
then 

Extl;Ef2(A, C) w Extjm(A, C). 

If A E 0& then by Corollary 1.2 we have 

h.d., S,(A) = h.d.a A. (8) 

On the other hand if A E C& , then again by Corollary 1.2 we can write 

h.d. T,(A) < h.d., A. (9) 

If (9) is always an equality, then combining this with (8) we obtain 

gl.dim. a2; = gl.dim. GY. 

On the other hand if (9) is a strict inequality for some A E G& , then from 
Lemma 4.1 we see that 

h.d.,A = co. 

We are now going to sharpen this result. In the sequel we shall write R 
in place of C(a). 

THEOREM 4.2. If f (x) is a nwnic polynomial with coeficients in R, and if 
there are polynomials h(x) and p(x) such that 

44f(x) + p(x)f ‘(x) = 1 (10) 

in R[x], then 

gl.dim. Q$ = gl.dim. 0Z. 

Proof. Since f (x) = 0 for all A in G& , it follows from (10) that f ‘(x) is 
always an isomorphism. Consequently A is a retract of S,(A), and so (9) is 
always an equality. 

THEOREM 4.3. Let f (x) = g(x)h(x) in R[x] where g(x) and h(x) are manic 
polynomials and degree g(x) e k > 0. Let A be a nonzero object of @for which 
there is a polynomial k(x) E R[x] such that cA = 0 for all coeficients c of 
h(x) - g(x)k(x). Then 

h.d., &(A) = 00 = h.d., S,(A). (11) 

Proof. The exact sequence of R[x] modules 

O- R[xll(dx)P * W/W>) - @llWN - 0 
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splits as a sequence of R-modules. Consequently if we tensor with A over R, 
we obtain an exact sequence in 0& 

0 + S,(A) s S,(A) -+ S,(A) + 0. (12) 

If we let zli (0 < i < k - 1) denote the coproduct injections for S,(A) and 
Us (0 < i < n - 1) those for S,(A), the morphism 6 is given by 

sq = h(X)u, , O<i<k-J. 

Also we have a morphism r : S,(A)- S,&Sl) in &(but not in @?) defined by 

TWT)i = k(X)u, ) O<i<k-1, 

and by the assumption on A it follows that g(X)? = 6. Therefore using 
Remark 1 following Lemma 1.7 (with L = S,), we obtain 

h.d., S,(A) > 1 + h.d., A. 

The first equality in (I 1) now follows from Lemma 4.1, and the second 
equality follows from the first and from the exact sequence (12). 

Remark. The tensor product involved in the proof of Theorem 4.3 is the 
functor @ RA defined on the category of free R-modules with a finite base. 
In general it is not defined on the category of all R-modules unless CPG has 
infinite coproducts. If R is not a set, then we can replace it by the subring 
generated by g(x), h(x), and k(x). 

EXAMPLE 1. Let F be a field, and let @be the category of modules over F. 

Iff(4 EFH andf( x is separable and has no repeated factor over F, then 1 
by Theorem 4.2 we have 

gl.dim. F[x]/(f(x)) = 0. 

On the other hand, if f (x) has a repeated factor over F, then by Theorem 4.3, 

gl.dim. F[x]/(f(x)) = 00. 

This,is,just a special case of the following general fact: If R is a principal ideal 
domain and a is not a unit in R, then gl.dim. R/(a) = co or 0 depending on 
whether or not Q has a repeated factor in its prime decomposition (see [5, p. 122, 
Exercise 11). 

EXAMPLE 2. Let f (x) = X% with n > 1. Taking g(x) = x and letting A 
by any nonzero object of &Yf with x = 0, we have by Theorem 4.3, 

h.d.f A = co. 
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EXAMPLE 3. Let f (x) = xn - 1. Over the integers we can write 

(-n)(x” - 1) + x(nx”-1) = n. 

Consequently, if n is a unit in C(M), then by Theorem 4.2 we have 

gldim. CZf = gl.dim. a. 

On the other hand, if n is not a unit in C(a), then since we have over the 
integers 

xn - 1 = (x - 1) n2 xi, 
i==O 

and mod n we can write 

z xi E (X - 1) y (n - i) xi-l, 
i=l 

it follows from Theorem 4.3, taking g(x) = x - 1, that 

h.d., A = co 

where A is any nonzero object with n A = 0 and x = 1. This example also 
illustrates Proposition 3.4, since GYf in this case is the same as 6YG where G 
is a cyclic group of order n. 

EXAMPLE 4. Suppose that fl is a monoid generated by a single element x. 
If n is neither a free monoid nor a free group, let n be the first positive integer 
such that xn = x”-~ for some d satisfying 0 < d < n. Then GPG” is the same as 
GZf where f (x) = x” - xnpd. If d = n, th is reduces to Example 3. If d < n - 1, 
then taking h(x) = x, we see again by Theorem 4.3 that h.d.= A = CO where 
A f 0 and x = 0. If d = n - 1 and n - 1 is a unit in C(a), then since 
we can write 

(-?22x~-2)(x~ - x) + (nx”-1 - (n - I))(nx+l - 1) = n - 1, 

by Theorem 4.2 we obtain 

gl.dim. GFr = gl.dim. GY. 

On the other hand, if n - 1 is not a unit in C(a), then we have over the 
integers 

la-1 

xn - x = (x - 1) c xi, 
i=l 

and mod(n - 1) we can write 

12-l n-1 
z1 xi ZE (x - 1) c (n - 2) xi--l. 

f=2 
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Therefore taking g(x) = x - 1, by Theorem 4.3 we have h.d.n A = KJ, 
where A is any nonzero object with (n - 1)A = 0 and x = 1. 

Remark. Theorems 4.2 and 4.3 do not tell the whole story, since Example 1 
breaks down in the case where f ( ) x is not separable. Also if we take GY to be 
the category of Abelian groups and f(x) = x2 + 1, then the hypothesis of 
Theorem 4.2 is not satisfied. Nevertheless, since OZf in this case is just the 
category of modules over the Gaussian integers, and since the latter is a 
principal ideal domain, we have 

gl.dim. Oc, = 1 = gl.dim. GI. 

COROLLARY 4.4. Let f (x) and A be as in Theorem 4.3, and let I7 be the 
free monoid on a set of generators {xi}iol . Suppose that 9 is a full Abelian 
subcategory of IY~, and that s E I is such that f (x8) = 0 for all objects in a’. 
Suppose also that there is a farnib ci E C(a) for i f s such that 8 contains all 
objects of E satisfying xi = ci for i f s and f (x,J = 0. Then considering 
S,(A) as an object of g by taking xi = ci for i # s and x, = X, we have 

h.d., S,(A) = co. 

Proof. Let F : B + G& be the functor which forgets all the xi except x, , 
and let L : & -+ S? be the functor which extends an endomorphism x, to 
a family of endomorphisms xi by defining xi = ci for i # s. Then F and L 
are exact functors and the composition FL is the identity functor on G& . 
Therefore the result follows from Corollary 1.6 and Theorem 4.3. 

EXAMPLE 5. Let a be the Grassmann category on I generators over 0& 
or in other words the full subcategory of GP satisfying 

xi2 = 0, xixj + xjxi = 0 

for all i, j E I, li’ being the free monoid on I generators. Then taking s to be 
any member of I with .f(x) = x2 and ci = 0 for i # s, it follows from 
Corollary 4.4 that 

h.d., A = co 

where A is any nonzero object of 02 with endomorphisms xi = 0 for all i E I. 
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