for pregnant women suffering from symptoms of significant hyperacidity and GERD. The number of patients was a limiting factor and more studies need to be done to establish the therapeutic benefits of combination antacids in pregnant population.

GASTROINTESTINAL DISORDERS - Cost Studies

PG16 A BUDGET IMPACT ANALYSIS TO ESTIMATE THE ECONOMIC IMPACT OF LACTECT FOR THE DIAGNOSIS OF HYPOLACTASIA IN SPAIN

Dorila J1, Kaskenia I2, Ramirez de Antilano A3

1Dinamarket de Barcelona, Barcelona, Spain, 2BCN Health, Barcelona, Spain, 3Ferrer Grupo, Barcelona, Spain

OBJECTIVES: To assess the economic impact of introducing LacTest®, a new drug test which determines the level of hypolactasia in patients and their associated symptoms of lactose intolerance on the Spanish market. METHODS: A budget impact model was developed using the perspective of the Spanish National Health System (NHS) with a 4-year time horizon. The model was populated with data on diagnostic tests for hypolactasia, health care resource utilization, unit costs and market shares. The potential number of diagnostic tests annually performed in Spanish hospitals was based on a study estimating the number of patients with clinical symptoms eligible for a diagnostic test during 45 Spanish hospitals in Spain. Diagnostic tests included in this study were the hydrogen breath test plus measurements of capillary blood glucose after an overload of lactose, intestinal biopsy, fecal pH test, genetic testing and LacTest®. Costs considered were diagnostic tests, laboratory tests, physician visits and time of health personnel. Direct medical annual costs per patient with each diagnostic test were considered were diagnostic tests, laboratory tests, physician visits and time of health personnel. Costs were referred using a 3% annual rate. Direct medical annual costs per patient with each diagnostic test were estimated before and after the introduction of LacTest® in order to estimate the total annual health care costs. RESULTS: The Spanish population with clinical symptoms of hypolactasia eligible for a diagnostic test was estimated to be constant at 126,420 during the next four years. Total health care costs were estimated at €81.7 million without the introduction of LacTest® and at €89.7 million after its introduction. CONCLUSIONS: The introduction of LacTest® only shows a moderate increase in the total costs for the Spanish NHS. LacTest® though, is a valuable diagnostic test with high reliability which decreases the need for repeating the test and the cause for additional costs as is the case with some of the other diagnostic tests compared in this study.

PG17 ADHERENCE TO 5-AMINOSALICYLIC ACID (5-ASA) TREATMENTS IN ULCERATIVE COLITIS (UC): A UK BUDGET IMPACT ANALYSIS

Sander A1, Neves D2, McDermott JD2, Yen L2

1Couvant, Leeds, West Yorkshire, UK, 2Couvant Market Access Services, Inc., Gaithersburg, MD, USA, 3Skelton Health Discovery, Wayne, PA, USA

OBJECTIVES: Adherence with 5-aminosalicylic acid (5-ASA) treatments has been shown to be associated with a reduction in disease relapses in UC patients. The aim of this budget impact analysis was to explore and quantify how adherence with individual 5-ASA treatments may impact direct medical costs, through non-adherence episodes, in the UK. METHODS: A 1-year decision analysis budget impact model was developed to combine data from a UK-based adherence study of 5-ASA treatments with a chart review study on UC costs by relapse episodes. The model shows a hypothetical improvement from the current utilization mix of 5-ASA treatments to the 5-ASA treatment with the highest adherence rate. The model also allows running simulations of relative changes in treatment utilization to show the associated budget impact from the perspective of the National Health Service (NHS). RESULTS: Higher adherence rates (48.3% for MMX Modifying Matrix System®, 43.4% for Mesalamine, 40.9% for Asacol H. hd., 36.6% for preparation of mesalamine and hydralazine) were associated with lower hospitalization rates (6.6%; 7.3%; 7.7%; 8.1%; 8.3%; 8.3%; and 8.5%, respectively), lower annual hospitalization costs (€330; €365; €383; €404; €414; €442; and €222, respectively), and lower other medical costs, excluding 5-ASAs (€292; €292; €296; €305; €307; €308; and €310, respectively). The model showed that a hypothetical move from the current utilization mix of 5-ASA treatments to the 5-ASA with the highest adherence rate could save the NHS approximately €292,800 annually per 1,000 UC patients. CONCLUSIONS: As non-adherence in UC is associated with costly medical resource utilization, significant cost-offsets could be achieved within the NHS by favoring the 5-ASA treatment with the highest adherence rate.

PG18 SECOND AND THIRD GENERATION FVIII TREATMENT RESOURCES CONSUMPTION BREAK-EVEN POINT: THE PASS STUDY RESULTS

Gringeri A1, Curtess PA2, Covance, Leeds, West Yorkshire, UK, 3Covance Market Access Services, Inc., Gaithersburg, MD, USA, 4Turchetti O2

1Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico/University of Milan, Milan, Italy, 2University of Milano - Bicocca, Monza, Italy, 3Scuola Superiore Sant'Anna University, Pisa, Italy, 4Curtess Foundation, Milan, Italy, 5Federico II University of Naples, Naples, Italy

OBJECTIVES: Inhibitor development is one of the most important and expensive adverse event in patients with severe hemophilia A. A different incidence between second or third generation FVIII determine different resource consumption in long-term therapy. The Pass study aimed to assess the break-even point in patients treated with ADVATE® or with another second or third generation (FVIII X), considering effects on direct medical cost attributable to different inhibitors development. METHODS: A model based on Oldenburg 2010 study population characteristic 348 non treated Patients, FVIII ≤2%, no previous inhibitor studies was developed comparing costs generated from ADVATE treatment versus “FVIII X”. We considered a time horizon of 5 years and the National Health System’s (NHS) point of view. In order to assess the validity of the break-even point estimate, a sensitivity analysis was conducted modifying the percentage of patients allocated to the different FVIII and FVIII X treatments. According to model results the overall cost during 5 years was: 243,966,787.44 € for ADVATE® treatment and 223,402,102.06 € for “FVIII X” treatment. To gain the break-even point between ADVATE® and “FVIII X”, the number of patients who should develop inhibitors was 9.68% (13.4%) in 5 years. If all patients were allocated to prophylaxis regimen, to gain the break-even point the number of patients who should develop inhibitors was 9.68% (7.8%). On the other hand for on demand treatment it should be 1.29% (0.37%). CONCLUSIONS: Considering the results of the study and the long-term trend of the literature, the Pass Study provided interesting information for decision makers in order to manage properly patient care, as an expensive adverse event in hemophilia A patients treatment. A direct comparing study is necessary to study to obtain more consistent results.

PG19 PHARMACOECONOMICAL EVALUATION OF ANTIHELICOBACTER THERAPY FOR PEPTIC ULCERS DUODENUM IN UKRAINE

Jakovenko L1, Gerasymova O2, Mishchenko O1, Bezidko N2, Kyrchenko O2

1National University of Pharmacy, Kharkiv, Ukraine, 2National University of Pharmacy, Kharkiv, Ukraine

OBJECTIVES: Sequential antihelicobacter therapy (A) is one of the ways to overcome Helicobacter pylori (H. pylori) resistance to antibiotics. The aim is to compare the effectiveness of different schemes of AT: first one: a sequential therapy (scheme 1) and traditional triple therapy (scheme 2). METHODS: Cost-effectiveness analysis was used. The schemes and their efficacy were taken from a clinical study which were conducted in a hospital in Ukraine (O.J., 2009). The budget impact model was developed comparing costs generate from ADAVATE® treatment and “FVIII X” treatment. To gain the break-even point between ADAVATE® and “FVIII X”, the number of patients who should develop inhibitors was 4.98 (1.43%) in 5 years. If all patients were allocated to prophylaxis regimen, the break-even point the number of patients who should develop inhibitors was 9.68% (1.29%). On the other hand for on demand treatment it should be 1.29% (0.37%). CONCLUSIONS: The budget impact model was developed comparing costs generate from ADAVATE® treatment and “FVIII X” treatment. To gain the break-even point between ADAVATE® and “FVIII X”, the number of patients who should develop inhibitors was 9.68% (1.29%). On the other hand for on demand treatment it should be 1.29% (0.37%). CONCLUSIONS: The budget impact model was developed comparing costs generate from ADAVATE® treatment and “FVIII X” treatment. To gain the break-even point between ADAVATE® and “FVIII X”, the number of patients who should develop inhibitors was 9.68% (1.29%). On the other hand for on demand treatment it should be 1.29% (0.37%). CONCLUSIONS: The budget impact model was developed comparing costs generate from ADAVATE® treatment and “FVIII X” treatment. To gain the break-even point between ADAVATE® and “FVIII X”, the number of patients who should develop inhibitors was 9.68% (1.29%). On the other hand for on demand treatment it should be 1.29% (0.37%). CONCLUSIONS: The budget impact model was developed comparing costs generate from ADAVATE® treatment and “FVIII X”, the number of patients who should develop inhibitors was 9.68% (1.29%). On the other hand for on demand treatment it should be 1.29% (0.37%). CONCLUSIONS: The budget impact model was developed comparing costs generate from ADAVATE® treatment and “FVIII X”, the number of patients who should develop inhibitors was 9.68% (1.29%). On the other hand for on demand treatment it should be 1.29% (0.37%). CONCLUSIONS: The budget impact model was developed comparing costs generate from ADAVATE® treatment and “FVIII X”, the number of patients who should develop inhibitors was 9.68% (1.29%). On the other hand for on demand treatment it should be 1.29% (0.37%). CONCLUSIONS: The budget impact model was developed comparing costs generate from ADAVATE® treatment and “FVIII X”, the number of patients who should develop inhibitors was 9.68% (1.29%). On the other hand for on demand treatment it should be 1.29% (0.37%).