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Abstract

Some sufficient conditions are obtained for oscillation of all solutions of the first-order impulsive differential equation with positive
and negative coefficients

[x(t) − R(t)x(t − r)]′ + P(t)x(t − �) − Q(t)x(t − �) = 0, ��� > 0, t � t0,

x(t+
k

) = Ik(x(tk)), k = 1, 2, . . . .

Our results improve the known results in the literature.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

It is well known that the theory of impulsive differential equations is being recognized to be not only richer than
the corresponding theory of differential equations without impulses but also provides a more adequate mathematical
model for numerous processes and phenomena studied in physics, biology, engineering, etc. [4,8]. However, the theory
of impulsive functional differential equations is developing comparatively slowly due to numerous theoretical and
technical difficulties caused by their peculiarities. In particular, to the best of our knowledge, there is little in the way
of results for the oscillation of impulsive delay differential equations of neutral type despite the extensive development
of the oscillatory and nonoscillatory properties of neutral differential equations without impulses (for example, see
[5,6,2,3,7,9–12]). In this paper, we consider the oscillation of all solutions of the following impulsive neutral delay
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differential equations with positive and negative coefficients,

[x(t) − R(t)x(t − r)]′ + P(t)x(t − �) − Q(t)x(t − �) = 0, ��� > 0, t � t0, (1.1)

x(t+k ) = Ik(x(tk)), k = 1, 2, . . . , (1.2)

where
(A1) r > 0, ��� > 0, 0 < t0 < t1 < · · · < tk → ∞ as k → ∞;
(A2) R ∈ PC([t0, ∞), R+), P, Q ∈ C([t0, ∞), R+), H(t) = P(t) − Q(t − � + �)�0 and H(t) /≡ 0 on

(tk−1, tk](k�1), where R+ = [0, ∞), PC(I, X) = {g: I → X: g(t) is continuous for t ∈ I and t �= tk, g(t+k )

and g(t−k ) = limt→t−k
g(t) exist with g(t−k ) = g(tk) (k = 1, 2, . . .)};

(A3) Ik(x) is continuous and there exist positive number bk such that bk �Ik(x)/x�1 for k = 1, 2, . . . .
When Ik(x) = x for k = 1, 2, . . . , (1.1) and (1.2) reduce to the first-order neutral delay differential equations with

positive and negative coefficients

[x(t) − R(t)x(t − r)]′ + P(t)x(t − �) − Q(t)x(t − �) = 0. (1.3)

There are many good results on the oscillation of (1.3), see for example [2,3,7,9,10], but all of them consider the
three cases when W(t) ≡ 1, W(t)�1, W(t)�1, where

W(t) = R(t) +
∫ t

t−�+�
Q(s) ds. (1.4)

In this paper, we introduce the function

Ws(t) = R(t) +
∫ t

t−s

Q(u) du +
∫ t−s+�−�

t

P (u) du, (1.5)

where s ∈ [0, � − �]. Note that when s = � − �, (1.5) becomes

W�−�(t) = W(t).

We establish oscillation criteria for (1.1) and (1.2). Our results improve the known results in the literature. With Eqs.
(1.1) and (1.2), one associates an initial condition of the form

xt0 = �(s), s ∈ [−�, 0], (1.6)

where xt0 = x(t0 + s) for −��s�0 and �(·) ∈ C([−�, 0], R).
A function x(t) is said to be a solution of Eqs. (1.1) and (1.2) satisfying the initial value condition (1.6) if
(i) x(t) = �(t − t0) for t0 − �� t � t0, x(t) is continuous for t � t0 and t �= tk (k = 1, 2, . . .);
(ii) x(t) − R(t)x(t − r) is continuously differentiable for t > t0, t �= tk , t �= tk + �, t �= tk + �, t �= tk + r , and

satisfies (1.1);
(iii) x(t+k ) and x(t−k ) exist with x(t−k ) = x(tk) and satisfy (1.2).
As is customary, a solution of Eqs. (1.1) and (1.2) is said to be nonoscillatory if it is eventually positive or eventually

negative, otherwise, it will be called oscillatory.
Throughout all of our paper, we always assume that (A1).(A3) hold and let � = max{r, �}, � = min{r, �}.

2. Main results

Lemma 2.1. Assume that h1 ∈ C([a, b], R+), h2 ∈ PC([a, b], R+), then

h2(�̄)

∫ b

a

h1(t) dt �
∫ b

a

h1(t)h2(t) dt �h2(�)

∫ b

a

h1(t) dt ,

where a��, �̄�b.
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Proof. Suppose ci ∈ [a, b] and h2(t) is not continuous at the points ci , i = 1, 2, . . . , k, then

∫ b

a

h1(t)h2(t) dt =
∫ c1

a

h1(t)h2(t) dt +
∫ c2

c1

h1(t)h2(t) dt + · · · +
∫ b

ck

h1(t)h2(t) dt

= h2(�1)

∫ c1

a

h1(t) dt + · · · + h2(�k+1)

∫ b

ck

h1(t) dt .

Let h2(�) = max1� i �k+1{h2(�i )} and h2(�̄) = min1� i �k+1{h2(�i )}, clearly a��, �̄�b and

h2(�̄)

∫ b

a

h1(t) dt �
∫ b

a

h1(t)h2(t) dt �h2(�)

∫ b

a

h1(t) dt .

The proof is complete. �

Lemma 2.2. Assume that the following two conditions hold:
(l1) there exists a real number s ∈ [0, � − �] such that

Ws(t)�1 for t � t0; (2.1)

(l2) b0 = 1, 0 < bk �1 for k = 1, 2, . . . and{
R(t+k )�R(tk) for tk − r �= tki

, ki < k,

bkR(t+k )�R(tk) for tk − r = tki
, ki < k,

where bk = bki
when tk − r = tki

(ki < k).
Let

w(t) = x(t) − R(t)x(t − r) −
∫ t

t−s

Q(u)x(u − �) du −
∫ t−s+�−�

t

P (u)x(u − �) du, (2.2)

then
(i) if x(t) is a solution of (1.1) and (1.2) such that x(t) > 0 for t � t0, then

w(t) > 0 for large t ;

(ii) if x(t) is a solution of (1.1) and (1.2) such that x(t) < 0 for t � t0, then

w(t) < 0 for large t .

Proof. (i) Let l = min{k�0: tk > t0 + �}, from (1.1) and (2.2) we have

w′(t) = −H(t − s + � − �)x(t − s − �)�0, tk < t � tk+1, k = l, l + 1, . . . . (2.3)

From (2.2), we have

w(t+k ) = x(t+k ) − R(t+k )x((tk − r)+) −
∫ tk

tk−s

Q(u)x(u − �) du −
∫ tk−s+�−�

tk

P (u)x(u − �) du. (2.4)

In view of 0 < bk �1 and condition (l2), when tk − r = tki
(ki < k), then

R(t+k )x((tk − r)+)�R(t+k )bki
x(tk − r) = bkR(t+k )x(tk − r)�R(tk)x(tk − r), (2.5)

when tk − r �= tki
(ki < k), then

R(t+k )x((tk − r)+)�R(tk)x(tk − r). (2.6)
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So from (2.4)–(2.6) we have

w(t+k ) = Ik(x(tk)) − R(t+k )x((tk − r)+) −
∫ tk

tk−s

Q(u)x(u − �) du −
∫ tk−s+�−�

tk

P (u)x(u − �) du

�x(tk) − R(tk)x(tk − r) −
∫ tk

tk−s

Q(u)x(u − �) du −
∫ tk−s+�−�

tk

P (u)x(u − �) du = w(tk). (2.7)

Eqs. (2.3) and (2.7) imply w(t) is nonincreasing on [tl , ∞). We firstly claim w(tk)�0 for k = l, l + 1, . . . . Otherwise,
suppose that there exists some k� l such that w(tk)=−� < 0. From (2.3) and (2.7) w(t)� −� < 0 for t � tk . We claim
that x(t) is bounded. Otherwise, there exists a sequence of points {sn}∞n=1 such that sn → ∞, x(s+

n ) → ∞ as n → ∞
and

x(s+
n ) = max{x(t): tk � t �sn}, n = 1, 2, . . . ,

where x(s+
n ) = x(sn) if sn is not an impulsive point. From (2.1) and (2.2), we have

x(s+
n ) = − � + R(s+

n )x(s+
n − r) +

∫ sn

sn−s

Q(u)x(u − �) du +
∫ sn−s+�−�

sn

P (u)x(u − �) du

� − � +
(

R(s+
n )x(s+

n − r) +
∫ sn

sn−s

Q(u) du +
∫ sn−s+�−�

sn

P (u) du

)
x(s+

n )

� − � + x(s+
n ).

It means ��0, which is a contradiction. Thus, x(t) is bounded. From (2.2) we have

x(t)� − � + R(t)x(t − r) +
∫ t

t−s

Q(u)x(u − �) du +
∫ t−s+�−�

t

P (u)x(u − �) du.

From Lemma 2.1 we have

x(tk + n�)� − � + R(tk + n�)x(tk + n� − r) +
∫ tk+n�

tk+n�−s

Q(u)x(u − �) du

+
∫ tk+n�−s+�−�

tk+n�
P(u)x(u − �) du

� − � + R(tk + n�)x(tk + n� − r) + x(tk + n� − � − �1)

∫ tk+n�

tk+n�−s

Q(u) du

+ x(tk + n� − � + �2)

∫ tk+n�−s+�−�

tk+n�
P(u) du,

where 0��1 �s, 0��2 �� − � − s. Set

x(L1) = max{x(tk + n� − r), x(tk + n� − � − �1), x(tk + n� − � + �2)},
clearly, tk + (n − 1)��L1 � tk + n� − �, then

x(tk + n�)� − � +
(

R(tk + n�) +
∫ tk+n�

tk+n�−s

Q(u) du +
∫ tk+n�−s+�−�

tk+n�
P(u) du

)
x(L1)

� − � + x(L1).

Similarly,

x(L1)� − � + x(L2),

where tk + (n − 2)��L1 − ��L2 �L1 − �� tk + n� − 2�, which means

x(tk + n�)� − 2� + x(L2).
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In general, one can easily prove that

x(tk + n�)� − n� + x(Ln), (2.8)

where, tk �Ln � tk + n(� − �) for n = 1, 2, . . . .
Because x(t) is bounded, from (2.8), we have

x(tk + n�)� − n� + x(Ln) → −∞ (n → ∞),

which is a contradiction for x(t) > 0, t � t0. Then w(tk)�0 for k = l, l + 1, . . . .
To prove w(t) > 0 for t > tl , we firstly prove that w(tk) > 0. If it is not true, then there exists some k̄� l such that

w(tk̄) = 0, thus from (2.3) and (2.7), we obtain

w(tk̄+1)�w(t+
k̄

) −
∫ tk̄+1

tk̄

H (t − s + � − �)x(t − s − �) dt

�w(tk̄) −
∫ tk̄+1

tk̄

H (t − s + � − �)x(t − s − �) dt < 0.

This contradiction shows that w(tk) > 0 for k = l, l + 1, . . . . Therefore, from (2.3) we have

w(t)�w(tk+1) > 0, t ∈ (tk, tk+1].
So,

w(t) > 0 for t � tl .

The proof of (ii) is similar and thus is omitted.
The proof is complete. �

Lemma 2.3. Assume that (l2) holds and w(t) is defined by (2.2). Suppose there exists a real number s ∈ [0, � − �]
such that

Ws(t) = R(t) +
∫ t

t−s

Q(u) du +
∫ t−s+�−�

t

P (u) du�1 for t � t0. (2.9)

Further assume that the second-order impulsive differential inequality⎧⎪⎨
⎪⎩

y′′(t) + 1

�
H(t − s + � − �)y(t)�0, t � t0, t �= tk,

y(t+k ) = y(tk), k = 1, 2, . . . ,

y′(t+k )�y′(tk), k = 1, 2, . . .

(2.10)

has no eventually positive solution. Then
(i) if x(t) is a solution of (1.1) and (1.2) such that x(t) > 0 for t � t0, then

w(t) < 0 for large t ;

(ii) if x(t) is a solution of (1.1) and (1.2) such that x(t) < 0 for t � t0, then

w(t) > 0 for large t .

Proof. (i) From the proof of Lemma 2.2, w(t) is nonincreasing for t � tl , where l = min{k > 0, tk � t0 + �}. Suppose
that (i) is not true, without loss of generality we assume w(t)�0 for t � tl . Set M = 2−1 min{x(t): tl − �� t � tl}, then
M > 0 and x(t) > M for tl − �� t � tl . We claim that

x(t) > M, t ∈ (tl, tl+1]. (2.11)
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If (2.11) does not hold, then there exists a t∗ ∈ (tl, tl+1] such that x(t∗) = M and x(t) > M for tl − �� t < t∗. From
(2.2) we have

M = x(t∗) = w(t∗) + R(t∗)x(t∗ − r) +
∫ t∗

t∗−s

Q(u)x(u − �) du +
∫ t∗−s+�−�

t∗
P(u)x(u − �) du

>

(
R(t∗) +

∫ t∗

t∗−s

Q(u) du +
∫ t∗−s+�−�

t∗
P(u) du

)
M �M ,

which is a contradiction. So (2.11) holds. Noting that w(t+l+1)�0 and (2.5), (2.6), we have

x(t+l+1) = w(t+l+1) + R(t+l+1)x((tl+1 − r)+) +
∫ tl+1

tl+1−s

Q(u)x(u − �) du +
∫ tl+1−s+�−�

tl+1

P(u)x(u − �) du

�R(tl+1)x(tl+1 − r) +
∫ tl+1

tl+1−s

Q(u)x(u − �) du +
∫ tl+1−s+�−�

tl+1

P(u)x(u − �) du

>

(
R(tl+1) +

∫ tl+1

tl+1−s

Q(u) du +
∫ tl+1−s+�−�

tl+1

P(u) du

)
M �M .

Repeating the above argument, by induction, we obtain

x(t) > M, t � tl − �. (2.12)

Because w(t)�0 and w(t) is nonincreasing, limt→∞w(t) exists. Let limt→∞w(t) = a. There are two possible cases.
Case I: a = 0. Let T1 > tl be such that w(t)�M/2 for t �T1. Then for any t̄ > T1, we have

�−1
∫ t+�

t̄

w(v) dv�M < x(t), t ∈ [t̄ , t̄ + �].

Case II: a > 0. Then w(t)�a for t � tl . From (2.2) and (2.11), we get

x(t)�a + R(t)x(t − r) +
∫ t

t−s

Q(u)x(u − �) du +
∫ t−s+�−�

t

P (u)x(u − �) du

> a +
(

R(t) +
∫ t

t−s

Q(u) du +
∫ t−s+�−�

t

P (u) du

)
M �a + M, t � tl .

By induction, it is easy to see that x(t)�na + M , for t � tl + (n − 1)�, and so limt→∞x(t) = ∞, which implies that
there exists a T > T1 such that

�−1
∫ t+�

T

w(v) dv�2w(T ) < x(t), t ∈ [T , T + �].

Combining Cases I and II we see that

x(t) > �−1
∫ t+�

T

w(v) dv, t ∈ [T , T + �].

Let l∗ = min{k� l: tk > T + �}, we claim that

x(t) > �−1
∫ t+�

T

w(v) dv, t ∈ [T + �, tl∗ ]. (2.13)

Otherwise, there exists a t∗ ∈ (T + �, tl∗ ] such that

x(t∗) = �−1
∫ t∗+�

T

w(v) dv and x(t) > �−1
∫ t+�

T

w(v) dv, t ∈ (T + �, t∗).
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Then, from (2.2), we have

�−1
∫ t∗+�

T

w(v) dv = x(t∗) = w(t∗) + R(t∗)x(t∗ − r) +
∫ t∗

t∗−s

Q(u)x(u − �) du

+
∫ t∗−s+�−�

t∗
P(u)x(u − �) du

> �−1
∫ t∗+�

t∗
w(v) dv + �−1R(t∗)

∫ t∗−r+�

T

w(v) dv + �−1
∫ t∗

t∗−s

Q(u)

∫ u−�+�

T

w(v) dv du

+ �−1
∫ t∗−s+�−�

t∗
P(u)

∫ u−�+�

T

w(v) dv du

��−1
∫ t∗+�

t∗
w(v) dv + �−1R(t∗)

∫ t∗

T

w(v) dv + �−1
∫ t∗

t∗−s

Q(u)

∫ t∗−s−�+�

T

w(v) dv du

+ �−1
∫ t∗−s+�−�

t∗
P(u)

∫ t∗−�+�

T

w(v) dv du

��−1
∫ t∗+�

t∗
w(v) dv + �−1R(t∗)

∫ t∗

T

w(v) dv + �−1
∫ t∗

t∗−s

Q(u)

∫ t∗

T

w(v) dv du

+ �−1
∫ t∗−s+�−�

t∗
P(u)

∫ t∗

T

w(v) dv du

= �−1
∫ t∗+�

t∗
w(v) dv + �−1

∫ t∗

T

w(v) dv

×
(

R(t∗) +
∫ t∗

t∗−s

Q(u) du +
∫ t∗−s+�−�

t∗
P(u) du

)

��−1
∫ t∗+�

t∗
w(v) dv + �−1

∫ t∗

T

w(v) dv = �−1
∫ t∗+�

T

w(v) dv.

This contradiction shows (2.13) holding. Similarly, from condition (l2), (2.2) and (2.13) we have

x(t+l∗ ) = w(t+l∗ ) + R(t+l∗ )x((tl∗ − r)+) +
∫ tl∗

tl∗−s

Q(u)x(u − �) du +
∫ tl∗−s+�−�

tl∗
P(u)x(u − �) du

�w(t+l∗ ) + R(tl∗)x(tl∗ − r) +
∫ tl∗

tl∗−s

Q(u)x(u − �) du +
∫ tl∗−s+�−�

tl∗
P(u)x(u − �) du

> �−1
∫ tl∗+�

tl∗
w(v) dv + �−1

∫ tl∗

T

w(v) dv

= �−1
∫ tl∗+�

T

w(v) dv.

Repeating the above procedure, by induction, we can see that

x(t) > �−1
∫ t+�

T

w(v) dv, t �T . (2.14)

Thus, by (2.2), (2.3), we have

w′(t)� − H(t − s + � − �)x(t − s − �)

� −H(t − s + � − �)

�

∫ t−s−�+�

T

w(v) dv

� −H(t − s + � − �)

�

∫ t

T

w(v) dv,
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where t �T + � and t �= tk . Set

y(t) = �−1
∫ t

T

w(v) dv.

Then y(t+k )=y(tk), y′(t+k )=�−1w(t+k )��−1w(tk)=y′(tk) for k= l, l+1, . . . . Thus y(t) > 0, y′(t+k ) > 0 for t > T +�
and y(t) satisfies (2.10), which contradicts the assumption that (2.10) has no eventually positive solution. So w(t) is
eventually negative. The proof of (i) is complete.

(ii) The proof of (ii) is similar and thus is omitted.
The proof of Lemma 2.3 is complete. �

The following Lemma 2.4 follows from the similar arguments to that in [1, Theorem 1] by letting 	(x)=x. We omit
the details.

Lemma 2.4. Consider the impulsive differential inequality

y′′(t) + G(t)y(t)�0, t � t0, t �= tk ,

y(t+k )�y(tk), k = 1, 2, . . . ,

y′(t+k )�Cky
′(tk), k = 1, 2, . . . , (2.15)

where 0� t0 < t1 < · · · < tk → ∞ as k → ∞, G(t) ∈ PC([t0, ∞), R+) and Ck > 0. If

∞∑
i=0

∫ ti+1

ti

1

C0C1 · · · Ci

G(t) dt = ∞,

where C0 = 1. Then inequality (2.15) has no solution y(t) such that y(t) > 0 for t � t0.

Theorem 2.1. Assume that condition (l2) holds and there exist two real numbers s1, s2 ∈ [0, � − �] such that

Ws1(t) = R(t) +
∫ t

t−s1

Q(u) du +
∫ t−s1+�−�

t

P (u) du�1 (2.16)

and

Ws2(t) = R(t) +
∫ t

t−s2

Q(u) du +
∫ t−s2+�−�

t

P (u) du�1 (2.17)

for large t. Further assume that (2.10) has no eventually positive solution, then every solution of (1.1) and (1.2)
oscillates.

Proof. In fact, suppose that Eqs. (1.1) and (1.2) have an eventually positive solution, then the conditions of Theorem
2.1 and Lemma 2.2 imply eventually w(t) > 0, while Lemma 2.3 implies eventually w(t) < 0. This contradiction shows
that x(t) cannot be an eventually positive solution of (1.1) and (1.2). On the other hand, if x(t) is an eventually negative
solution of (1.1) and (1.2), then Lemma 2.2 implies eventually w(t) < 0, while Lemma 2.3 implies eventually w(t) > 0.
This contradiction shows that x(t) cannot be an eventually negative solution of (1.1) and (1.2). Therefore, every solution
of (1.1) and (1.2) oscillates. �

From Lemma 2.4 and Theorem 2.1, it is easy to see that the following Theorem 2.2 is true.

Theorem 2.2. Assume (2.16), (2.17) and (l2) hold, and that

1

�

∫ ∞

t0

H(t − s + � − �) dt = ∞. (2.18)

Then every solution of (1.1) and (1.2) oscillates.
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In fact, note that

G(t) = 1

�
H(t − s + � − �),

thus, one has

∞∑
i=0

∫ ti+1

ti

1

C0C1 · · · Ci

G(t) dt = 1

�

∫ ∞

t0

H(t − s + � − �) dt = ∞.

By Lemma 2.4 and Theorem 2.1 we see that Theorem 2.2 is true.

3. An example

Example 3.1. Consider the differential equation

[x(t) − 1
2x(t − 1

2 )]′ + ( 1
2 + t−1)x(t − 2) − ( 1

2 − t−1)x(t − 1) = 0, t �3, (3.1)

x(t+k ) = k

k + 1
x(tk), k = 4, 5, . . . , (3.2)

where tk = k, H(t) = t−1 + (t − 1)−1.
Clearly, (A1).(A4) and condition (l2) hold,

W1(t) = 1

2
+
∫ t

t−1

(
1

2
− s−1

)
ds = 1 −

∫ t

t−1
s−1 ds�1 for t �3,

W0(t) = 1

2
+
∫ t+1

t

(
1

2
+ s−1

)
ds�1 for t �3,

∫ ∞

3
H(t + � − �) dt =

∫ ∞

3
[(t + 1)−1 + t−1] dt = ∞,

∫ ∞

3
H(t) dt =

∫ ∞

3
[t−1 + (t − 1)−1] dt = ∞.

It follows that (2.16)–(2.18) hold. By Theorem 2.2, every solution of (3.1) and (3.2) oscillates.
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