Oscillation criteria for first-order impulsive differential equations with positive and negative coefficients ${ }^{2 / \gamma}$

Jianhua Shen ${ }^{\text {a, b, },}$, Ziran Zou ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, College of Huaihua, Huaihua, Hunan 418008, PR China
${ }^{\mathrm{b}}$ Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, PR China

Received 21 April 2007; received in revised form 9 June 2007

Abstract

Some sufficient conditions are obtained for oscillation of all solutions of the first-order impulsive differential equation with positive and negative coefficients $$
\begin{aligned} & {[x(t)-R(t) x(t-r)]^{\prime}+P(t) x(t-\tau)-Q(t) x(t-\sigma)=0, \quad \tau \geqslant \sigma>0, t \geqslant t_{0},} \\ & x\left(t_{k}^{+}\right)=I_{k}\left(x\left(t_{k}\right)\right), \quad k=1,2, \ldots . \end{aligned}
$$

Our results improve the known results in the literature.
© 2007 Elsevier B.V. All rights reserved.

MSC: 34K15; 34C10
Keywords: Positive and negative coefficients; Differential equations; Oscillation solution; Impulsive

1. Introduction

It is well known that the theory of impulsive differential equations is being recognized to be not only richer than the corresponding theory of differential equations without impulses but also provides a more adequate mathematical model for numerous processes and phenomena studied in physics, biology, engineering, etc. [4,8]. However, the theory of impulsive functional differential equations is developing comparatively slowly due to numerous theoretical and technical difficulties caused by their peculiarities. In particular, to the best of our knowledge, there is little in the way of results for the oscillation of impulsive delay differential equations of neutral type despite the extensive development of the oscillatory and nonoscillatory properties of neutral differential equations without impulses (for example, see [5,6,2,3,7,9-12]). In this paper, we consider the oscillation of all solutions of the following impulsive neutral delay

[^0]differential equations with positive and negative coefficients,
\[

$$
\begin{align*}
& {[x(t)-R(t) x(t-r)]^{\prime}+P(t) x(t-\tau)-Q(t) x(t-\sigma)=0, \quad \tau \geqslant \sigma>0, t \geqslant t_{0},} \tag{1.1}\\
& x\left(t_{k}^{+}\right)=I_{k}\left(x\left(t_{k}\right)\right), \quad k=1,2, \ldots, \tag{1.2}
\end{align*}
$$
\]

where
(A_{1}) $r>0, \tau \geqslant \sigma>0,0<t_{0}<t_{1}<\cdots<t_{k} \rightarrow \infty$ as $k \rightarrow \infty$;
$\left(\mathrm{A}_{2}\right) R \in P C\left(\left[t_{0}, \infty\right), R^{+}\right), P, Q \in C\left(\left[t_{0}, \infty\right), R^{+}\right), H(t)=P(t)-Q(t-\tau+\sigma) \geqslant 0$ and $H(t) \not \equiv 0$ on $\left(t_{k-1}, t_{k}\right](k \geqslant 1)$, where $R^{+}=[0, \infty), P C(I, X)=\left\{g: I \rightarrow X: g(t)\right.$ is continuous for $t \in I$ and $t \neq t_{k}, g\left(t_{k}^{+}\right)$ and $g\left(t_{k}^{-}\right)=\lim _{t \rightarrow t_{k}^{-}} g(t)$ exist with $\left.g\left(t_{k}^{-}\right)=g\left(t_{k}\right)(k=1,2, \ldots)\right\}$;
$\left(\mathrm{A}_{3}\right) I_{k}(x)$ is continuous and there exist positive number b_{k} such that $b_{k} \leqslant I_{k}(x) / x \leqslant 1$ for $k=1,2, \ldots$.
When $I_{k}(x)=x$ for $k=1,2, \ldots,(1.1)$ and (1.2) reduce to the first-order neutral delay differential equations with positive and negative coefficients

$$
\begin{equation*}
[x(t)-R(t) x(t-r)]^{\prime}+P(t) x(t-\tau)-Q(t) x(t-\sigma)=0 . \tag{1.3}
\end{equation*}
$$

There are many good results on the oscillation of (1.3), see for example [2,3,7,9,10], but all of them consider the three cases when $W(t) \equiv 1, W(t) \leqslant 1, W(t) \geqslant 1$, where

$$
\begin{equation*}
W(t)=R(t)+\int_{t-\tau+\sigma}^{t} Q(s) \mathrm{d} s . \tag{1.4}
\end{equation*}
$$

In this paper, we introduce the function

$$
\begin{equation*}
W_{s}(t)=R(t)+\int_{t-s}^{t} Q(u) \mathrm{d} u+\int_{t}^{t-s+\tau-\sigma} P(u) \mathrm{d} u, \tag{1.5}
\end{equation*}
$$

where $s \in[0, \tau-\sigma]$. Note that when $s=\tau-\sigma$, (1.5) becomes

$$
W_{\tau-\sigma}(t)=W(t) .
$$

We establish oscillation criteria for (1.1) and (1.2). Our results improve the known results in the literature. With Eqs. (1.1) and (1.2), one associates an initial condition of the form

$$
\begin{equation*}
x_{t_{0}}=\phi(s), \quad s \in[-\rho, 0], \tag{1.6}
\end{equation*}
$$

where $x_{t_{0}}=x\left(t_{0}+s\right)$ for $-\rho \leqslant s \leqslant 0$ and $\phi(\cdot) \in C([-\rho, 0], R)$.
A function $x(t)$ is said to be a solution of Eqs. (1.1) and (1.2) satisfying the initial value condition (1.6) if
(i) $x(t)=\phi\left(t-t_{0}\right)$ for $t_{0}-\rho \leqslant t \leqslant t_{0}, x(t)$ is continuous for $t \geqslant t_{0}$ and $t \neq t_{k}(k=1,2, \ldots)$;
(ii) $x(t)-R(t) x(t-r)$ is continuously differentiable for $t>t_{0}, t \neq t_{k}, t \neq t_{k}+\tau, t \neq t_{k}+\sigma, t \neq t_{k}+r$, and satisfies (1.1);
(iii) $x\left(t_{k}^{+}\right)$and $x\left(t_{k}^{-}\right)$exist with $x\left(t_{k}^{-}\right)=x\left(t_{k}\right)$ and satisfy (1.2).

As is customary, a solution of Eqs. (1.1) and (1.2) is said to be nonoscillatory if it is eventually positive or eventually negative, otherwise, it will be called oscillatory.

Throughout all of our paper, we always assume that $\left(A_{1}\right)-\left(A_{3}\right)$ hold and let $\rho=\max \{r, \tau\}, \delta=\min \{r, \sigma\}$.

2. Main results

Lemma 2.1. Assume that $h_{1} \in C\left([a, b], R^{+}\right), h_{2} \in P C\left([a, b], R^{+}\right)$, then

$$
h_{2}(\bar{\xi}) \int_{a}^{b} h_{1}(t) \mathrm{d} t \leqslant \int_{a}^{b} h_{1}(t) h_{2}(t) \mathrm{d} t \leqslant h_{2}(\xi) \int_{a}^{b} h_{1}(t) \mathrm{d} t
$$

where $a \leqslant \xi, \bar{\xi} \leqslant b$.

Proof. Suppose $c_{i} \in[a, b]$ and $h_{2}(t)$ is not continuous at the points $c_{i}, i=1,2, \ldots, k$, then

$$
\begin{aligned}
\int_{a}^{b} h_{1}(t) h_{2}(t) \mathrm{d} t & =\int_{a}^{c_{1}} h_{1}(t) h_{2}(t) \mathrm{d} t+\int_{c_{1}}^{c_{2}} h_{1}(t) h_{2}(t) \mathrm{d} t+\cdots+\int_{c_{k}}^{b} h_{1}(t) h_{2}(t) \mathrm{d} t \\
& =h_{2}\left(\xi_{1}\right) \int_{a}^{c_{1}} h_{1}(t) \mathrm{d} t+\cdots+h_{2}\left(\xi_{k+1}\right) \int_{c_{k}}^{b} h_{1}(t) \mathrm{d} t .
\end{aligned}
$$

Let $h_{2}(\xi)=\max _{1 \leqslant i \leqslant k+1}\left\{h_{2}\left(\xi_{i}\right)\right\}$ and $h_{2}(\bar{\xi})=\min _{1 \leqslant i \leqslant k+1}\left\{h_{2}\left(\xi_{i}\right)\right\}$, clearly $a \leqslant \xi, \bar{\xi} \leqslant b$ and

$$
h_{2}(\bar{\xi}) \int_{a}^{b} h_{1}(t) \mathrm{d} t \leqslant \int_{a}^{b} h_{1}(t) h_{2}(t) \mathrm{d} t \leqslant h_{2}(\xi) \int_{a}^{b} h_{1}(t) \mathrm{d} t
$$

The proof is complete.
Lemma 2.2. Assume that the following two conditions hold:
$\left(l_{1}\right)$ there exists a real number $s \in[0, \tau-\sigma]$ such that

$$
\begin{equation*}
W_{s}(t) \leqslant 1 \quad \text { for } t \geqslant t_{0} ; \tag{2.1}
\end{equation*}
$$

$\left(l_{2}\right) b_{0}=1,0<b_{k} \leqslant 1$ for $k=1,2, \ldots$ and

$$
\left\{\begin{array}{lll}
R\left(t_{k}^{+}\right) \geqslant R\left(t_{k}\right) & \text { for } t_{k}-r \neq t_{k_{i}}, & k_{i}<k, \\
b_{k} R\left(t_{k}^{+}\right) \geqslant R\left(t_{k}\right) & \text { for } t_{k}-r=t_{k_{i}}, & k_{i}<k,
\end{array}\right.
$$

where $b_{k}=b_{k_{i}}$ when $t_{k}-r=t_{k_{i}}\left(k_{i}<k\right)$.
Let

$$
\begin{equation*}
w(t)=x(t)-R(t) x(t-r)-\int_{t-s}^{t} Q(u) x(u-\sigma) \mathrm{d} u-\int_{t}^{t-s+\tau-\sigma} P(u) x(u-\tau) \mathrm{d} u, \tag{2.2}
\end{equation*}
$$

then
(i) if $x(t)$ is a solution of (1.1) and (1.2) such that $x(t)>0$ for $t \geqslant t_{0}$, then

$$
w(t)>0 \quad \text { for large } t ;
$$

(ii) if $x(t)$ is a solution of (1.1) and (1.2) such that $x(t)<0$ for $t \geqslant t_{0}$, then

$$
w(t)<0 \quad \text { for large } t .
$$

Proof. (i) Let $l=\min \left\{k \geqslant 0: t_{k}>t_{0}+\rho\right\}$, from (1.1) and (2.2) we have

$$
\begin{equation*}
w^{\prime}(t)=-H(t-s+\tau-\sigma) x(t-s-\sigma) \leqslant 0, \quad t_{k}<t \leqslant t_{k+1}, k=l, l+1, \ldots \tag{2.3}
\end{equation*}
$$

From (2.2), we have

$$
\begin{equation*}
w\left(t_{k}^{+}\right)=x\left(t_{k}^{+}\right)-R\left(t_{k}^{+}\right) x\left(\left(t_{k}-r\right)^{+}\right)-\int_{t_{k}-s}^{t_{k}} Q(u) x(u-\sigma) \mathrm{d} u-\int_{t_{k}}^{t_{k}-s+\tau-\sigma} P(u) x(u-\tau) \mathrm{d} u . \tag{2.4}
\end{equation*}
$$

In view of $0<b_{k} \leqslant 1$ and condition $\left(l_{2}\right)$, when $t_{k}-r=t_{k_{i}}\left(k_{i}<k\right)$, then

$$
\begin{equation*}
R\left(t_{k}^{+}\right) x\left(\left(t_{k}-r\right)^{+}\right) \geqslant R\left(t_{k}^{+}\right) b_{k_{i}} x\left(t_{k}-r\right)=b_{k} R\left(t_{k}^{+}\right) x\left(t_{k}-r\right) \geqslant R\left(t_{k}\right) x\left(t_{k}-r\right), \tag{2.5}
\end{equation*}
$$

when $t_{k}-r \neq t_{k_{i}}\left(k_{i}<k\right)$, then

$$
\begin{equation*}
R\left(t_{k}^{+}\right) x\left(\left(t_{k}-r\right)^{+}\right) \geqslant R\left(t_{k}\right) x\left(t_{k}-r\right) . \tag{2.6}
\end{equation*}
$$

So from (2.4)-(2.6) we have

$$
\begin{align*}
w\left(t_{k}^{+}\right) & =I_{k}\left(x\left(t_{k}\right)\right)-R\left(t_{k}^{+}\right) x\left(\left(t_{k}-r\right)^{+}\right)-\int_{t_{k}-s}^{t_{k}} Q(u) x(u-\sigma) \mathrm{d} u-\int_{t_{k}}^{t_{k}-s+\tau-\sigma} P(u) x(u-\tau) \mathrm{d} u \\
& \leqslant x\left(t_{k}\right)-R\left(t_{k}\right) x\left(t_{k}-r\right)-\int_{t_{k}-s}^{t_{k}} Q(u) x(u-\sigma) \mathrm{d} u-\int_{t_{k}}^{t_{k}-s+\tau-\sigma} P(u) x(u-\tau) \mathrm{d} u=w\left(t_{k}\right) . \tag{2.7}
\end{align*}
$$

Eqs. (2.3) and (2.7) imply $w(t)$ is nonincreasing on $[t, \infty)$. We firstly claim $w\left(t_{k}\right) \geqslant 0$ for $k=l, l+1, \ldots$ Otherwise, suppose that there exists some $k \geqslant l$ such that $w\left(t_{k}\right)=-\mu<0$. From (2.3) and (2.7) $w(t) \leqslant-\mu<0$ for $t \geqslant t_{k}$. We claim that $x(t)$ is bounded. Otherwise, there exists a sequence of points $\left\{s_{n}\right\}_{n=1}^{\infty}$ such that $s_{n} \rightarrow \infty, x\left(s_{n}^{+}\right) \rightarrow \infty$ as $n \rightarrow \infty$ and

$$
x\left(s_{n}^{+}\right)=\max \left\{x(t): t_{k} \leqslant t \leqslant s_{n}\right\}, \quad n=1,2, \ldots,
$$

where $x\left(s_{n}^{+}\right)=x\left(s_{n}\right)$ if s_{n} is not an impulsive point. From (2.1) and (2.2), we have

$$
\begin{aligned}
x\left(s_{n}^{+}\right) & =-\mu+R\left(s_{n}^{+}\right) x\left(s_{n}^{+}-r\right)+\int_{s_{n}-s}^{s_{n}} Q(u) x(u-\sigma) \mathrm{d} u+\int_{s_{n}}^{s_{n}-s+\tau-\sigma} P(u) x(u-\tau) \mathrm{d} u \\
& \leqslant-\mu+\left(R\left(s_{n}^{+}\right) x\left(s_{n}^{+}-r\right)+\int_{s_{n}-s}^{s_{n}} Q(u) \mathrm{d} u+\int_{s_{n}}^{s_{n}-s+\tau-\sigma} P(u) \mathrm{d} u\right) x\left(s_{n}^{+}\right) \\
& \leqslant-\mu+x\left(s_{n}^{+}\right) .
\end{aligned}
$$

It means $\mu \leqslant 0$, which is a contradiction. Thus, $x(t)$ is bounded. From (2.2) we have

$$
x(t) \leqslant-\mu+R(t) x(t-r)+\int_{t-s}^{t} Q(u) x(u-\sigma) \mathrm{d} u+\int_{t}^{t-s+\tau-\sigma} P(u) x(u-\tau) \mathrm{d} u .
$$

From Lemma 2.1 we have

$$
\begin{aligned}
x\left(t_{k}+n \rho\right) \leqslant & -\mu+R\left(t_{k}+n \rho\right) x\left(t_{k}+n \rho-r\right)+\int_{t_{k}+n \rho-s}^{t_{k}+n \rho} Q(u) x(u-\sigma) \mathrm{d} u \\
& +\int_{t_{k}+n \rho}^{t_{k}+n \rho-s+\tau-\sigma} P(u) x(u-\tau) \mathrm{d} u \\
\leqslant & -\mu+R\left(t_{k}+n \rho\right) x\left(t_{k}+n \rho-r\right)+x\left(t_{k}+n \rho-\sigma-\xi_{1}\right) \int_{t_{k}+n \rho-s}^{t_{k}+n \rho} Q(u) \mathrm{d} u \\
& +x\left(t_{k}+n \rho-\tau+\xi_{2}\right) \int_{t_{k}+n \rho}^{t_{k}+n \rho-s+\tau-\sigma} P(u) \mathrm{d} u,
\end{aligned}
$$

where $0 \leqslant \xi_{1} \leqslant s, 0 \leqslant \xi_{2} \leqslant \tau-\sigma-s$. Set

$$
x\left(L_{1}\right)=\max \left\{x\left(t_{k}+n \rho-r\right), x\left(t_{k}+n \rho-\sigma-\xi_{1}\right), x\left(t_{k}+n \rho-\tau+\xi_{2}\right)\right\}
$$

clearly, $t_{k}+(n-1) \rho \leqslant L_{1} \leqslant t_{k}+n \rho-\delta$, then

$$
\begin{aligned}
x\left(t_{k}+n \rho\right) & \leqslant-\mu+\left(R\left(t_{k}+n \rho\right)+\int_{t_{k}+n \rho-s}^{t_{k}+n \rho} Q(u) \mathrm{d} u+\int_{t_{k}+n \rho}^{t_{k}+n \rho-s+\tau-\sigma} P(u) \mathrm{d} u\right) x\left(L_{1}\right) \\
& \leqslant-\mu+x\left(L_{1}\right) .
\end{aligned}
$$

Similarly,

$$
x\left(L_{1}\right) \leqslant-\mu+x\left(L_{2}\right),
$$

where $t_{k}+(n-2) \rho \leqslant L_{1}-\rho \leqslant L_{2} \leqslant L_{1}-\rho \leqslant t_{k}+n \rho-2 \delta$, which means

$$
x\left(t_{k}+n \rho\right) \leqslant-2 \mu+x\left(L_{2}\right) .
$$

In general, one can easily prove that

$$
\begin{equation*}
x\left(t_{k}+n \rho\right) \leqslant-n \mu+x\left(L_{n}\right), \tag{2.8}
\end{equation*}
$$

where, $t_{k} \leqslant L_{n} \leqslant t_{k}+n(\rho-\delta)$ for $n=1,2, \ldots$.
Because $x(t)$ is bounded, from (2.8), we have

$$
x\left(t_{k}+n \rho\right) \leqslant-n \mu+x\left(L_{n}\right) \rightarrow-\infty \quad(n \rightarrow \infty),
$$

which is a contradiction for $x(t)>0, t \geqslant t_{0}$. Then $w\left(t_{k}\right) \geqslant 0$ for $k=l, l+1, \ldots$.
To prove $w(t)>0$ for $t>t_{l}$, we firstly prove that $w\left(t_{k}\right)>0$. If it is not true, then there exists some $\bar{k} \geqslant l$ such that $w\left(t_{\bar{k}}\right)=0$, thus from (2.3) and (2.7), we obtain

$$
\begin{aligned}
w\left(t_{\bar{k}+1}\right) & \leqslant w\left(t_{\bar{k}}^{+}\right)-\int_{t_{\bar{k}}}^{t_{\bar{k}+1}} H(t-s+\tau-\sigma) x(t-s-\sigma) \mathrm{d} t \\
& \leqslant w\left(t_{\bar{k}}\right)-\int_{t_{\bar{k}}}^{t_{\bar{k}+1}} H(t-s+\tau-\sigma) x(t-s-\sigma) \mathrm{d} t<0
\end{aligned}
$$

This contradiction shows that $w\left(t_{k}\right)>0$ for $k=l, l+1, \ldots$ Therefore, from (2.3) we have

$$
w(t) \geqslant w\left(t_{k+1}\right)>0, \quad t \in\left(t_{k}, t_{k+1}\right] .
$$

So,

$$
w(t)>0 \quad \text { for } t \geqslant t_{l} .
$$

The proof of (ii) is similar and thus is omitted.
The proof is complete.
Lemma 2.3. Assume that $\left(l_{2}\right)$ holds and $w(t)$ is defined by (2.2). Suppose there exists a real number $s \in[0, \tau-\sigma]$ such that

$$
\begin{equation*}
W_{s}(t)=R(t)+\int_{t-s}^{t} Q(u) \mathrm{d} u+\int_{t}^{t-s+\tau-\sigma} P(u) \mathrm{d} u \geqslant 1 \quad \text { for } t \geqslant t_{0} . \tag{2.9}
\end{equation*}
$$

Further assume that the second-order impulsive differential inequality

$$
\begin{cases}y^{\prime \prime}(t)+\frac{1}{\rho} H(t-s+\tau-\sigma) y(t) \leqslant 0, & t \geqslant t_{0}, \quad t \neq t_{k} \tag{2.10}\\ y\left(t_{k}^{+}\right)=y\left(t_{k}\right), & k=1,2, \ldots \\ y^{\prime}\left(t_{k}^{+}\right) \leqslant y^{\prime}\left(t_{k}\right), & k=1,2, \ldots\end{cases}
$$

has no eventually positive solution. Then
(i) if $x(t)$ is a solution of (1.1) and (1.2) such that $x(t)>0$ for $t \geqslant t_{0}$, then

$$
w(t)<0 \quad \text { for large } t
$$

(ii) if $x(t)$ is a solution of (1.1) and (1.2) such that $x(t)<0$ for $t \geqslant t_{0}$, then

$$
w(t)>0 \quad \text { for large } t .
$$

Proof. (i) From the proof of Lemma 2.2, $w(t)$ is nonincreasing for $t \geqslant t_{l}$, where $l=\min \left\{k>0, t_{k} \geqslant t_{0}+\rho\right\}$. Suppose that (i) is not true, without loss of generality we assume $w(t) \geqslant 0$ for $t \geqslant t_{l}$. Set $M=2^{-1} \min \left\{x(t): t_{l}-\rho \leqslant t \leqslant t_{l}\right\}$, then $M>0$ and $x(t)>M$ for $t_{l}-\rho \leqslant t \leqslant t_{l}$. We claim that

$$
\begin{equation*}
x(t)>M, \quad t \in\left(t_{l}, t_{l+1}\right] . \tag{2.11}
\end{equation*}
$$

If (2.11) does not hold, then there exists a $t^{*} \in\left(t_{l}, t_{l+1}\right.$] such that $x\left(t^{*}\right)=M$ and $x(t)>M$ for $t_{l}-\rho \leqslant t<t^{*}$. From (2.2) we have

$$
\begin{aligned}
M & =x\left(t^{*}\right)=w\left(t^{*}\right)+R\left(t^{*}\right) x\left(t^{*}-r\right)+\int_{t^{*}-s}^{t *} Q(u) x(u-\sigma) \mathrm{d} u+\int_{t^{*}}^{t^{*}-s+\tau-\sigma} P(u) x(u-\tau) \mathrm{d} u \\
& >\left(R\left(t^{*}\right)+\int_{t^{*}-s}^{t *} Q(u) \mathrm{d} u+\int_{t^{*}}^{t^{*}-s+\tau-\sigma} P(u) \mathrm{d} u\right) M \geqslant M
\end{aligned}
$$

which is a contradiction. So (2.11) holds. Noting that $w\left(t_{l+1}^{+}\right) \geqslant 0$ and (2.5), (2.6), we have

$$
\begin{aligned}
x\left(t_{l+1}^{+}\right) & =w\left(t_{l+1}^{+}\right)+R\left(t_{l+1}^{+}\right) x\left(\left(t_{l+1}-r\right)^{+}\right)+\int_{t_{l+1}-s}^{t_{l+1}} Q(u) x(u-\sigma) \mathrm{d} u+\int_{t_{l+1}}^{t_{l+1}-s+\tau-\sigma} P(u) x(u-\tau) \mathrm{d} u \\
& \geqslant R\left(t_{l+1}\right) x\left(t_{l+1}-r\right)+\int_{t_{l+1}-s}^{t_{l+1}} Q(u) x(u-\sigma) \mathrm{d} u+\int_{t_{l+1}}^{t_{l+1}-s+\tau-\sigma} P(u) x(u-\tau) \mathrm{d} u \\
& >\left(R\left(t_{l+1}\right)+\int_{t_{l+1}-s}^{t_{l+1}} Q(u) \mathrm{d} u+\int_{t_{l+1}}^{t_{l+1}-s+\tau-\sigma} P(u) \mathrm{d} u\right) M \geqslant M
\end{aligned}
$$

Repeating the above argument, by induction, we obtain

$$
\begin{equation*}
x(t)>M, \quad t \geqslant t_{l}-\rho \tag{2.12}
\end{equation*}
$$

Because $w(t) \geqslant 0$ and $w(t)$ is nonincreasing, $\lim _{t \rightarrow \infty} w(t)$ exists. Let $\lim _{t \rightarrow \infty} w(t)=a$. There are two possible cases.
Case I: $a=0$. Let $T_{1}>t_{l}$ be such that $w(t) \leqslant M / 2$ for $t \geqslant T_{1}$. Then for any $\bar{t}>T_{1}$, we have

$$
\rho^{-1} \int_{\bar{t}}^{t+\rho} w(v) \mathrm{d} v \leqslant M<x(t), \quad t \in[\bar{t}, \bar{t}+\rho]
$$

Case II: $a>0$. Then $w(t) \geqslant a$ for $t \geqslant t_{l}$. From (2.2) and (2.11), we get

$$
\begin{aligned}
x(t) & \geqslant a+R(t) x(t-r)+\int_{t-s}^{t} Q(u) x(u-\sigma) \mathrm{d} u+\int_{t}^{t-s+\tau-\sigma} P(u) x(u-\tau) \mathrm{d} u \\
& >a+\left(R(t)+\int_{t-s}^{t} Q(u) \mathrm{d} u+\int_{t}^{t-s+\tau-\sigma} P(u) \mathrm{d} u\right) M \geqslant a+M, \quad t \geqslant t_{l}
\end{aligned}
$$

By induction, it is easy to see that $x(t) \geqslant n a+M$, for $t \geqslant t_{l}+(n-1) \rho$, and so $\lim _{t \rightarrow \infty} x(t)=\infty$, which implies that there exists a $T>T_{1}$ such that

$$
\rho^{-1} \int_{T}^{t+\rho} w(v) \mathrm{d} v \leqslant 2 w(T)<x(t), \quad t \in[T, T+\rho]
$$

Combining Cases I and II we see that

$$
x(t)>\rho^{-1} \int_{T}^{t+\rho} w(v) \mathrm{d} v, \quad t \in[T, T+\rho]
$$

Let $l^{*}=\min \left\{k \geqslant l: t_{k}>T+\rho\right\}$, we claim that

$$
\begin{equation*}
x(t)>\rho^{-1} \int_{T}^{t+\rho} w(v) \mathrm{d} v, \quad t \in\left[T+\rho, t_{l^{*}}\right] \tag{2.13}
\end{equation*}
$$

Otherwise, there exists a $t^{*} \in\left(T+\rho, t_{l^{*}}\right]$ such that

$$
x\left(t^{*}\right)=\rho^{-1} \int_{T}^{t^{*}+\rho} w(v) \mathrm{d} v \quad \text { and } \quad x(t)>\rho^{-1} \int_{T}^{t+\rho} w(v) \mathrm{d} v, \quad t \in\left(T+\rho, t^{*}\right)
$$

Then, from (2.2), we have

$$
\begin{aligned}
\rho^{-1} \int_{T}^{t^{*}+\rho} w(v) \mathrm{d} v= & x\left(t^{*}\right)=w\left(t^{*}\right)+R\left(t^{*}\right) x\left(t^{*}-r\right)+\int_{t^{*}-s}^{t^{*}} Q(u) x(u-\sigma) \mathrm{d} u \\
& +\int_{t^{*}}^{t^{*}-s+\tau-\sigma} P(u) x(u-\tau) \mathrm{d} u \\
> & \rho^{-1} \int_{t^{*}}^{t^{*}+\rho} w(v) \mathrm{d} v+\rho^{-1} R\left(t^{*}\right) \int_{T}^{t^{*}-r+\rho} w(v) \mathrm{d} v+\rho^{-1} \int_{t^{*}-s}^{t^{*}} Q(u) \int_{T}^{u-\sigma+\rho} w(v) \mathrm{d} v \mathrm{~d} u \\
& +\rho^{-1} \int_{t^{*}}^{t^{*}-s+\tau-\sigma} P(u) \int_{T}^{u-\tau+\rho} w(v) \mathrm{d} v \mathrm{~d} u \\
\geqslant & \rho^{-1} \int_{t^{*}}^{t^{*}+\rho} w(v) \mathrm{d} v+\rho^{-1} R\left(t^{*}\right) \int_{T}^{t^{*}} w(v) \mathrm{d} v+\rho^{-1} \int_{t^{*}-s}^{t^{*}} Q(u) \int_{T}^{t^{*}-s-\sigma+\rho} w(v) \mathrm{d} v \mathrm{~d} u \\
& +\rho^{-1} \int_{t^{*}}^{t^{*}-s+\tau-\sigma} P(u) \int_{T}^{t^{*}-\tau+\rho} w(v) \mathrm{d} v \mathrm{~d} u \\
\geqslant & \rho^{-1} \int_{t^{*}}^{t^{*}+\rho} w(v) \mathrm{d} v+\rho^{-1} R\left(t^{*}\right) \int_{T}^{t^{*}} w(v) \mathrm{d} v+\rho^{-1} \int_{t^{*}-s}^{t^{*}} Q(u) \int_{T}^{t^{*}} w(v) \mathrm{d} v \mathrm{~d} u \\
& +\rho^{-1} \int_{t^{*}}^{t^{*}-s+\tau-\sigma} P(u) \int_{T}^{t^{*}} w(v) \mathrm{d} v \mathrm{~d} u \\
= & \rho^{-1} \int_{t^{*}}^{t^{*}+\rho} w(v) \mathrm{d} v+\rho^{-1} \int_{T}^{t^{*}} w(v) \mathrm{d} v \\
& \times\left(R\left(t^{*}\right)+\int_{t^{*}-s}^{t^{*}} Q(u) \mathrm{d} u+\int_{t^{*}}^{t^{*}-s+\tau-\sigma} P(u) \mathrm{d} u\right) \\
\geqslant & \rho^{-1} \int_{t^{*}}^{t^{*}+\rho} w(v) \mathrm{d} v+\rho^{-1} \int_{T}^{t^{*}} w(v) \mathrm{d} v=\rho^{-1} \int_{T}^{t^{*}+\rho} w(v) \mathrm{d} v .
\end{aligned}
$$

This contradiction shows (2.13) holding. Similarly, from condition (l_{2}), (2.2) and (2.13) we have

$$
\begin{aligned}
x\left(t_{l^{*}}^{+}\right) & =w\left(t_{l^{*}}^{+}\right)+R\left(t_{l^{*}}^{+}\right) x\left(\left(\left(l_{l^{*}}-r\right)^{+}\right)+\int_{t_{l^{*}-s}}^{t_{l^{*}}} Q(u) x(u-\sigma) \mathrm{d} u+\int_{t_{t^{*}}}^{t_{l^{*}-s}-s+\tau-\sigma} P(u) x(u-\tau) \mathrm{d} u\right. \\
& \geqslant w\left(t_{l^{*}}^{+}\right)+R\left(t_{l^{*}}\right) x\left(t_{l^{*}}-r\right)+\int_{t_{l^{*}}-s}^{t_{l^{*}}} Q(u) x(u-\sigma) \mathrm{d} u+\int_{t_{l^{*}}}^{t_{l^{*}-s+\tau-\sigma}} P(u) x(u-\tau) \mathrm{d} u \\
& >\rho^{-1} \int_{t_{l^{*}}}^{t_{t^{*}+\rho}} w(v) \mathrm{d} v+\rho^{-1} \int_{T}^{t_{t^{*}}} w(v) \mathrm{d} v \\
& =\rho^{-1} \int_{T}^{t_{t^{*}+}+\rho} w(v) \mathrm{d} v .
\end{aligned}
$$

Repeating the above procedure, by induction, we can see that

$$
\begin{equation*}
x(t)>\rho^{-1} \int_{T}^{t+\rho} w(v) \mathrm{d} v, \quad t \geqslant T \tag{2.14}
\end{equation*}
$$

Thus, by (2.2), (2.3), we have

$$
\begin{aligned}
w^{\prime}(t) & \leqslant-H(t-s+\tau-\sigma) x(t-s-\sigma) \\
& \leqslant \frac{-H(t-s+\tau-\sigma)}{\rho} \int_{T}^{t-s-\sigma+\rho} w(v) \mathrm{d} v \\
& \leqslant \frac{-H(t-s+\tau-\sigma)}{\rho} \int_{T}^{t} w(v) \mathrm{d} v,
\end{aligned}
$$

where $t \geqslant T+\rho$ and $t \neq t_{k}$. Set

$$
y(t)=\rho^{-1} \int_{T}^{t} w(v) \mathrm{d} v .
$$

Then $y\left(t_{k}^{+}\right)=y\left(t_{k}\right), y^{\prime}\left(t_{k}^{+}\right)=\rho^{-1} w\left(t_{k}^{+}\right) \leqslant \rho^{-1} w\left(t_{k}\right)=y^{\prime}\left(t_{k}\right)$ for $k=l, l+1, \ldots$. Thus $y(t)>0, y^{\prime}\left(t_{k}^{+}\right)>0$ for $t>T+\rho$ and $y(t)$ satisfies (2.10), which contradicts the assumption that (2.10) has no eventually positive solution. So $w(t)$ is eventually negative. The proof of (i) is complete.
(ii) The proof of (ii) is similar and thus is omitted.

The proof of Lemma 2.3 is complete.
The following Lemma 2.4 follows from the similar arguments to that in [1, Theorem 1] by letting $\varphi(x)=x$. We omit the details.

Lemma 2.4. Consider the impulsive differential inequality

$$
\begin{align*}
& y^{\prime \prime}(t)+G(t) y(t) \leqslant 0, \quad t \geqslant t_{0}, \quad t \neq t_{k}, \\
& y\left(t_{k}^{+}\right) \geqslant y\left(t_{k}\right), \quad k=1,2, \ldots, \\
& y^{\prime}\left(t_{k}^{+}\right) \leqslant C_{k} y^{\prime}\left(t_{k}\right), \quad k=1,2, \ldots, \tag{2.15}
\end{align*}
$$

where $0 \leqslant t_{0}<t_{1}<\cdots<t_{k} \rightarrow \infty$ as $k \rightarrow \infty, G(t) \in P C\left(\left[t_{0}, \infty\right), R^{+}\right)$and $C_{k}>0$. If

$$
\sum_{i=0}^{\infty} \int_{t_{i}}^{t_{i+1}} \frac{1}{C_{0} C_{1} \cdots C_{i}} G(t) \mathrm{d} t=\infty
$$

where $C_{0}=1$. Then inequality (2.15) has no solution $y(t)$ such that $y(t)>0$ for $t \geqslant t_{0}$.
Theorem 2.1. Assume that condition (l_{2}) holds and there exist two real numbers $s_{1}, s_{2} \in[0, \tau-\sigma]$ such that

$$
\begin{equation*}
W_{s_{1}}(t)=R(t)+\int_{t-s_{1}}^{t} Q(u) \mathrm{d} u+\int_{t}^{t-s_{1}+\tau-\sigma} P(u) \mathrm{d} u \leqslant 1 \tag{2.16}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{s_{2}}(t)=R(t)+\int_{t-s_{2}}^{t} Q(u) \mathrm{d} u+\int_{t}^{t-s_{2}+\tau-\sigma} P(u) \mathrm{d} u \geqslant 1 \tag{2.17}
\end{equation*}
$$

for large t. Further assume that (2.10) has no eventually positive solution, then every solution of (1.1) and (1.2) oscillates.

Proof. In fact, suppose that Eqs. (1.1) and (1.2) have an eventually positive solution, then the conditions of Theorem 2.1 and Lemma 2.2 imply eventually $w(t)>0$, while Lemma 2.3 implies eventually $w(t)<0$. This contradiction shows that $x(t)$ cannot be an eventually positive solution of (1.1) and (1.2). On the other hand, if $x(t)$ is an eventually negative solution of (1.1) and (1.2), then Lemma 2.2 implies eventually $w(t)<0$, while Lemma 2.3 implies eventually $w(t)>0$. This contradiction shows that $x(t)$ cannot be an eventually negative solution of (1.1) and (1.2). Therefore, every solution of (1.1) and (1.2) oscillates.

From Lemma 2.4 and Theorem 2.1, it is easy to see that the following Theorem 2.2 is true.
Theorem 2.2. Assume (2.16), (2.17) and (l_{2}) hold, and that

$$
\begin{equation*}
\frac{1}{\rho} \int_{t_{0}}^{\infty} H(t-s+\tau-\sigma) \mathrm{d} t=\infty \tag{2.18}
\end{equation*}
$$

Then every solution of (1.1) and (1.2) oscillates.

In fact, note that

$$
G(t)=\frac{1}{\rho} H(t-s+\tau-\sigma),
$$

thus, one has

$$
\sum_{i=0}^{\infty} \int_{t_{i}}^{t_{i+1}} \frac{1}{C_{0} C_{1} \cdots C_{i}} G(t) \mathrm{d} t=\frac{1}{\rho} \int_{t_{0}}^{\infty} H(t-s+\tau-\sigma) \mathrm{d} t=\infty .
$$

By Lemma 2.4 and Theorem 2.1 we see that Theorem 2.2 is true.

3. An example

Example 3.1. Consider the differential equation

$$
\begin{align*}
& {\left[x(t)-\frac{1}{2} x\left(t-\frac{1}{2}\right)\right]^{\prime}+\left(\frac{1}{2}+t^{-1}\right) x(t-2)-\left(\frac{1}{2}-t^{-1}\right) x(t-1)=0, \quad t \geqslant 3} \tag{3.1}\\
& x\left(t_{k}^{+}\right)=\frac{k}{k+1} x\left(t_{k}\right), \quad k=4,5, \ldots \tag{3.2}
\end{align*}
$$

where $t_{k}=k, H(t)=t^{-1}+(t-1)^{-1}$.
Clearly, $\left(A_{1}\right)-\left(A_{4}\right)$ and condition $\left(l_{2}\right)$ hold,

$$
\begin{aligned}
& W_{1}(t)=\frac{1}{2}+\int_{t-1}^{t}\left(\frac{1}{2}-s^{-1}\right) \mathrm{d} s=1-\int_{t-1}^{t} s^{-1} \mathrm{~d} s \leqslant 1 \quad \text { for } t \geqslant 3, \\
& W_{0}(t)=\frac{1}{2}+\int_{t}^{t+1}\left(\frac{1}{2}+s^{-1}\right) \mathrm{d} s \geqslant 1 \quad \text { for } t \geqslant 3, \\
& \int_{3}^{\infty} H(t+\tau-\sigma) \mathrm{d} t=\int_{3}^{\infty}\left[(t+1)^{-1}+t^{-1}\right] \mathrm{d} t=\infty, \\
& \int_{3}^{\infty} H(t) \mathrm{d} t=\int_{3}^{\infty}\left[t^{-1}+(t-1)^{-1}\right] \mathrm{d} t=\infty .
\end{aligned}
$$

It follows that (2.16)-(2.18) hold. By Theorem 2.2, every solution of (3.1) and (3.2) oscillates.

Acknowledgment

The authors express their sincere thanks to the referee for valuable suggestions.

References

[1] D.D. Bainov, M.B. Dimitrova, A.B. Dishliev, Oscillation of the solutions of impulsive differential equations and inequalities with a retarded argument, Rocky Mountain J. Math. 28 (1998) 25-40.
[2] Q. Chuanxi, G. Ladas, Oscillation in differential equations with positive and negative coefficients, Canad. Math. Bull. 33 (1990) $442-450$.
[3] K. Farrell, E.A. Grove, G. Ladas, Neutral delay differential equations with positive and negative coefficients, Appl. Anal. 27 (1988) $181-197$.
[4] V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
[5] ZH.G. Luo, J.H. Shen, Oscillation for solutions of nonlinear neutral differential equations with impulses, Comput. Math. Appl. 42 (2001) 1285-1292.
[6] ZH.G. Luo, J.H. Shen, X.ZH. Liu, Oscillation criteria for a class of forced neutral equations, Dynamics Continuous, Discrete Impulsive Systems 7 (2000) 489-501.
[7] S.G. Ruan, Oscillation for first order neutral differential equations with positive and negative coefficients, Bull. Austral. Math. Soc. 43 (1991) 147-152.
[8] A.M. Samoilenko, N.A. Perestynk, Differential Equations with Impulsive Effect, Visca Skola, Kive, 1987.
[9] J.H. Shen, L. Debnath, Oscillation in neutral differential equations with positive and negative coefficients, Appl. Math. Lett. 14 (2001) 775-881.
[10] J.H. Shen, I.P. Stavroulakis, X.H. Tang, Hille type oscillation and nonoscillation criteria for neutral equations with positive and negative coefficients, Stud. Univ. Žilina 14 (2001) 45-60.
[11] J.S. Yu, Z.C. Wang, Some further results on oscillation of neutral differential equations, Bull. Austral. Math. Soc. 46 (1992) 149-157.
[12] J.S. Yu, J.R. Yan, Oscillation in first order neutral differential equations with integrally small coefficients, J. Math. Anal. Appl. 187 (1994) 361-370.

[^0]: ${ }^{2}$ Supported by the NNSF of China (no. 10571050) and the key project of Education Department of Hunan Province (no. 03A023).

 * Corresponding author. Department of Mathematics, Hunan Normal University, Changsha, Hunan 410081, PR China.

 E-mail address: jhshen2ca@ yahoo.com (J. Shen).

