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Abstract

Quasi-Monte Carlo (QMC) methods have been playing an important role for high-dimensional problems
in computational finance. Several techniques, such as the Brownian bridge (BB) and the principal component
analysis, are often used in QMC as possible ways to improve the performance of QMC. This paper proposes
a new BB construction, which enjoys some interesting properties that appear useful in QMC methods. The
basic idea is to choose the new step of a Brownian path in a certain criterion such that it maximizes the
variance explained by the new variable while holding all previously chosen steps fixed. It turns out that
using this new construction, the first few variables are more “important” (in the sense of explained variance)
than those in the ordinary BB construction, while the cost of the generation is still linear in dimension.
We present empirical studies of the proposed algorithm for pricing high-dimensional Asian options and
American options, and demonstrate the usefulness of the new BB.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Monte Carlo (MC) methods are important tools for approximating high-dimensional integrals
in computational finance [6]. If N is the number of function evaluations, then MC has an error of
size O(N−1/2), which is independent of the dimension. However, this convergence is very slow.
Recently, alternative approaches, namely quasi-MC (QMC) methods, are widely used in pricing
complex financial instruments. The basic idea of QMC is to use more uniformly distributed points
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instead of random points. Let Id(f ) = ∫
[0,1)d

f (x) dx and QN,d(f ) = 1
N

∑N
i=1 f (xi ) with the

points x1, . . . , xN ∈ [0, 1)d , the Koksma–Hlawka inequality yields that

|Id(f ) − QN,d(f )|�D∗
NV (f ),

where D∗
N is the star discrepancy of the point set {x1, . . . , xN } and V (f ) is the variation of f in

the sense of Hardy–Krause (see [15]).
Based on the Koksma–Hlawka inequality, the theoretical error bound of QMC is of size

O(N−1 logd N). This convergence is asymptotically better than O(N−1/2) of MC. For high-
dimensional problems, the advantage of QMC may be lost since the quantity N−1 logd N is
smaller than N−1/2 only for extremely large N. However, many papers have shown great success
of QMC for high-dimensional integrals arising in finance (see [3,16,20]).

One possible answer to this success is the concept of effective dimensions introduced in [4].
It is found that the effective dimensions of financial problems are generally small (see [4,25]).
Another explanation for the success of QMC is given in [21], where it is shown that QMC may
be especially suitable for functions in appropriate weighted function spaces. The superiority of
QMC for some isotropic integrals is illustrated in [17,18].

QMC is applied in finance as a method to evaluate the expectation of a function of a random
path generated by a stochastic process. For a continuous time process, this expectation is often
expressed as a Feynman–Kac type integral over Brownian motion. In the numerical simulation,
QMC (or MC) approximates the continuous process by means of discretizing it into small time
steps and simulating the randomness with low discrepancy (or independent uniform random)
points. The dimension can be large when the number of time steps is large. To speed up QMC, one
may use variance reduction techniques borrowed from MC and dimension reduction techniques
specially designed for QMC. Some strategies for dimension reduction are proposed, including
the ordinary Brownian bridge (BB) (see [4,13,14]), the principal component analysis (PCA) (see
[1]), the partial PCA (see [2]) and the linear transformation method (see [7]). These techniques
may enjoy an advantage in a number of interesting cases. A special feature of most QMC point
sets is their superior uniformity of the initial coordinates and of the low-dimensional projections
(especially the one-dimensional projections). It is believed that these techniques may concentrate
the variance of the function on the first few variables such that the better quality of the initial
coordinates and the low-dimensional projections of QMC point sets can be fully used.

Each technique mentioned above has its own feature. The good performance of BB in pricing
of financial derivatives is explained by the fact that BB uses the best coordinates of QMC points
to determine most of the structure of a Brownian path. However, BB may be relatively less
efficient compared with some other techniques. PCA outperforms BB in some examples, but the
computational cost of PCA is larger than that of BB (see [1]). Linear transformation method
takes into account the knowledge about the payoff functions, but it is required to solve complex
optimization problems and is not easy to implement.

Motivated by the success of BB and PCA in some financial problems, in this paper we propose
a new BB (NBB) construction, which enjoys some interesting properties and shares similar ideas
to BB and PCA. Both BB and PCA can be considered as methods of variable transformation. It
is desirable to find an optimal variable transformation such that it minimizes the actual error of
QMC integration for a given QMC point set and a given class of functions, but this problem is
complicated and we leave it as a future research topic. In this paper, we take a more convenient
optimization criterion such that the approach picks the new step of a discrete time Brownian motion
optimally (in the sense of explained variance) among all permutation-based constructions.
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We recall that a permutation-based construction concerns generating the values of a Brownian
motion according to a specified permutation of (1, . . . , d)T and needs only O(d) operations.
Our new method is based on the evidence that in a permutation-based construction, the variance
explained by the ith (i = 1, 2, . . . , d) variable is totally determined by the first i components of the
permutation (i.e., we need not know all d components of the permutation). It will be discussed in
detail in Section 3. This feature enables us to find certain feasible generation order of a Brownian
motion by a step-by-step procedure to maximize the variance explained by the new variable at
each step. That is, we find the first step such that the variance explained by the first variable is
maximized, then we fixed the first step, and find the next step, and so on. NBB is a permutation-
based construction, therefore it can be implemented recursively and needs only O(d) operations
for each path.

This paper is organized as follows. In Section 2, we review various constructions of Brownian
motions. In Section 3, we propose a step-by-step procedure to find NBB and illustrate its advantage
over ordinary BB by comparing the cumulative explained variances. In Section 4, we apply
NBB to problems of pricing Asian options and American–Burmuda–Asian options and show the
usefulness of NBB. In Section 5, we make the conclusions and discuss some limitations of NBB.

2. Constructions of a discrete time Brownian motion

In many applications, it is required to generate Brownian motions (see Section 4 for exam-
ples). Assume that {Bt , 0� t �T } is a standard one-dimensional Brownian motion. We are
interested in simulating the values of Bt1 , . . . , Btd at d discrete times, where 0 = t0 < t1 <

· · · < td = T and Bt0 = 0. For simplicity, we assume that tj − tj−1 = �t = T/d, j =
1, 2, . . . , d, and denote Bi = Bti in the following. Let B = (B1, . . . , Bd)T , then B ∼ N(0, �),
where N(0, �) is a multivariate normal distribution with mean vector 0 and covariance matrix
given by

� = (min(ti , tj ))
d
i,j=1 =

⎛⎜⎜⎜⎜⎜⎝
t1 t1 . . . t1

t1 t2 . . . t2

...
...

. . .
...

t1 t2 . . . td

⎞⎟⎟⎟⎟⎟⎠ .

According to the linear transformation property, if A is a d ×d matrix and Z = (Z1, . . . , Zd)T ∼
N(0, Id×d), where Id×d is the d × d identity matrix, then AZ ∼ N(0, AAT ). Thus, the vector
B = (B1, . . . , Bd)T can be generated as

⎛⎜⎜⎝
B1

...

Bd

⎞⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎝
a11 a12 . . . a1d

a21 a22 . . . a2d

...
...

. . .
...

ad1 ad2 . . . add

⎞⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎝

Z1

...

Zd

⎞⎟⎟⎠ = c1Z1 + · · · + cdZd, (1)

where (aij )d×d := A is a d × d matrix satisfying AAT = �, and cj is the j th column of
A, and (Z1, . . . , Zd)T ∼ N(0, Id×d). For 1�j �d , we call cj = (a1j , a2j , . . . , adj )

T in the
construction (1) the coefficient vector of (B1, B2, . . . , Bd)T with respect to Zj .
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There are many decomposition matrices A satisfying AAT = �. Several constructions of a
discrete time Brownian motion are known in literature.

• The standard construction generates the Brownian motion sequentially by (given B0 = 0)

Bk = Bk−1 + √
�t Zk, k = 1, . . . , d, (2)

where Zk are independent standard normal variables. The corresponding decomposition
matrix is

ASTD = √
�t

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0

1 1 0 . . . 0

1 1 1 . . . 0

...
...

...
. . .

...

1 1 1 . . . 1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

which is the Cholesky decomposition of �.
• The ordinary BB (see [4,13,14]) first generates the final valueBd , then sampleB�d/2� conditional

on the values of Bd and B0, and proceed by progressively filling in intermediate values. Here,
�x� denotes the greatest integer less than or equal to x. BB uses the first several coordinates of
the low-discrepancy points to determine the general shape of the Brownian path, and the last
few coordinates influence only the fine detail of the path. In particular, if d is a power of 2, then
BB generates the Brownian motion as

Bd = √
T Z1,

Bd/2 = 1
2 (B0 + Bd) +√

T/4Z2,

Bd/4 = 1
2 (B0 + Bd/2) +√

T/8Z3,

...

Bd−1 = 1
2 (Bd−2 + Bd) +√

T/2d Zd, (3)

where Zj are independent standard normal variables. BB construction corresponds to replacing
the matrix ASTD in the standard construction by certain matrix ABB satisfying ABB(ABB)T = �.
For example, when d = 8,

ABB = √
T

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/8 1/8
√

2/8 0 1/4 0 0 0

1/4 1/4
√

2/4 0 0 0 0 0

3/8 3/8
√

2/8 0 0 1/4 0 0

1/2 1/2 0 0 0 0 0 0

5/8 3/8 0
√

2/8 0 0 1/4 0

3/4 1/4 0
√

2/4 0 0 0 0

7/8 1/8 0
√

2/8 0 0 0 1/4

1 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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• The PCA construction (see [1]) chooses the corresponding decomposition matrix APCA as

APCA = (
√

�1�1, . . . ,
√

�d�d),

where �1 ��2 � · · · ��d are the eigenvalues of � in decreasing order, and �1, . . . , �d are the
corresponding unit-length column eigenvectors. After obtaining the matrix APCA, PCA gener-
ates (B1, . . . , Bd)T by a full matrix product

(B1, . . . , Bd)T = APCAZ, Z ∼ N(0, Id×d). (4)

PCA maximizes the variance explained by Z1, . . . , Zk for all k = 1, . . . , n sequentially, and
is optimal in the sense of explained variance (see next section).

Note that the values of B1, . . . , Bd can be generated in any specified order, provided that at each
step we generate the sample from the correct conditional distribution given the values already
known. In other words, the values of Bi can be constructed in any permuted order B�(1), . . . , B�(d),
where � = {�(1), . . . , �(d)} is an arbitrary permutation of {1, . . . , d}. We call all such construc-
tions the permutation-based constructions. The standard construction corresponds to �(i) = i,
i = 1, . . . , d. The BB construction (with d a power of 2) corresponds to �(1) = d, �(2) = d/2,
�(3) = d/4, �(4) = 3d/4, . . ., �(d) = d − 1. Note that PCA does not belong to the class of
permutation-based constructions because in PCA construction the values of Bi are not generated
in any specified order.

3. An NBB construction

In the class of permutation-based constructions, it is natural to ask if we can find an “optimal”
construction in some sense, or if we can find an “optimal” permutation �∗. We need the following
concept.

Definition 1. For a given i, 1� i�d , the variance explained by the ith variable in the construction
(1) is the ratio ‖ci‖2/

∑d
j=1 ‖cj‖2, where ‖ · ‖ is the L2-norm of a vector.

For BB and PCA, although the total variance is the same as in the standard construction, the
variance associated with each Zi in construction (1) is different (see [1]). It has been rearranged
such that more parts of the total variance are explained by the first few variables. Because the
initial coordinates of most QMC points have superior uniformity compared with latter ones, this
rearrangement would be useful in QMC.

Our purpose is to find an optimal permutation in the class of permutation-based construc-
tions. We choose the explained variance as the optimization criterion, and this choice is mainly
for two reasons: first, the criterion is the same to that of PCA; second, it will make
the optimization problem easier to be solved. The chosen order should maximize the vari-
ance explained by the new variables. Totally, there are d! permutations for {1, . . . , d} (or d!
different discretizations in the class of permutation-based constructions). Theorem 1 in
Section 3.1 shows that c1 is only determined by �(1). The proofs of theorems in Section 3.2
conclude that for a given i = 2, . . . , d, when the first i − 1 components of the permutation (i.e.,
�(1), . . . , �(i − 1)) are fixed, ci in construction (1) is totally determined by �(i). Therefore,
we can write the squared norm of the ith column of the decomposition matrix A as ‖ci‖2

�(i).
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Note that

‖A‖F := ‖c1‖2
�(1) + · · · + ‖cd‖2

�(d) = trace(AAT ) = trace(�) = T (1 + d)

2
,

which is a constant when d is fixed. Thus in the first step we find �∗(1) ∈ {1, . . . , d} such that

‖c1‖2
�∗(1) = max

�(1)∈{1,...,d}
‖c1‖2

�(1). (5)

When �∗(1) is determined, we find �∗(2) ∈ {1, . . . , d}\{�∗(1)} such that

‖c2‖2
�∗(2) = max

�(2)∈{1,...,d}\{�∗(1)}
‖c2‖2

�(2)

... (6)

We continue this procedure until all the components of the permutation �∗ = {�∗(1), . . . ,

�∗(d)} are determined. Once the optimal permutation is determined, we can generate B1, . . . , Bd

recursively by O(d) operations.
Note that the optimization problems do not intend to minimize the integration error for a given

class of functions, and it does not take into account the knowledge of the integrands. We will
return to this in conclusion section.

The following conditional formula of multivariate normal distribution is important in our
analysis.

Lemma 1 (Conditional formula [6] Glasserman). Suppose the partitioned vector (B[1], B[2])
(where each B[i] may itself be a vector) is multivariate normal with(

B[1]
B[2]

)
∼ N

((
�[1]
�[2]

)
,

(
�[11] �[12]
�[21] �[22]

))
and suppose �[22] has full rank. Then

(B[1]|B[2] = b) ∼ N(�[1] + �[12]�−1
[22](b − �[2]), �[11] − �[12]�−1

[22]�[21]). (7)

3.1. Determination of the optimal first step �∗(1)

Given B0 = 0, the standard construction generates B1 as its first step, while BB generates Bd as
its first step. In this subsection, we want to decide which point among B1, . . . , Bd deserves to be
generated first. That is, we study how to find the optimal first component �∗(1) of the permutation
�∗ such that the variance explained by the first variable Z1 in construction (1) is maximized. For
convenience, we assume T = 1 in the following part of this section.

Theorem 1. In a permutation-based construction of the Brownian motion B1, . . . , Bd , the opti-
mal first step �∗(1) is the integer nearest to (6d + 3)/8.

In particular, if d = 2n (n�2), then the optimal first step is �∗(1) = 3d/4, and the correspond-
ing squared norm of the first column of the decomposition matrix A is ( 9

4d2 + 9
4d + 1)/(6d).

Proof. Assume that the first generated point is Bi , i.e. �(1) = i, for some i with 1� i�d. Then
we have

Bi = B0 + √
ti − t0Z1 = √

tiZ1, Z1 ∼ N(0, 1).
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Given the value of Bi = √
ti Z1, according to Lemma 1, the conditional expectation of

(B1, . . . , Bd)T is

E((B1, . . . , Bi−1, Bi, . . . , Bd)T |Bi) = 0 + t−1
i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1

...

ti−1

ti

...

ti

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Bi = 1√

ti

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1

...

ti−1

ti

...

ti

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Z1. (8)

On the other hand, we can write (B1, . . . , Bd)T in the form as in construction (1). Since
(Z1, . . . , Zd)T ∼ N(0, Id×d) and Bi = √

ti Z1 = ai,1Z1, we obtain the conditional expec-
tation in terms of the elements of the decomposition matrix A

E((B1, . . . , Bi−1, Bi, . . . , Bd)T |Bi) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1

...

ai−1,1

ai,1

...

ad,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Z1. (9)

Comparing the coefficients in (8) and (9) leads to⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1,1

...

ai−1,1

ai,1

...

ad,1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 1√

ti

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1

...

ti−1

ti

...

ti

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (10)

Therefore, when �(1) = i, the first column of the decomposition matrix A is

1√
ti

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1

...

ti−1

ti

...

ti

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (11)
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Note that tj = j�t , so the squared norm of the first column is

‖c1‖2
�(1) = �t

i

⎡⎣ i∑
j=1

j2 + (d − i)i2

⎤⎦
= �t

6
[(i + 1)(2i + 1) + 6i(d − i)]

= 1

6d
[−4i2 + (6d + 3)i + 1], (12)

which achieves its maximum value when i = (6d + 3)/8. Since i should be an integer and the
quantity in (12) is quadratic, the optimal first step �∗(1) is the integer nearest to (6d + 3)/8.

In particular, if d = 2n (n�2), then �∗(1) = 3d/4. Putting i = 3d/4 into (12), we get

‖c1‖2
�∗(1) = 1

6d

(
9

4
d2 + 9

4
d + 1

)
. �

The variances explained by the first variable in NBB, BB and the standard constructions of
the Brownian motion are different. Assume that d = 2n (n�2). We write cNBB

1 , cBB
1 and cSTD

1
as the corresponding first columns of the decomposition matrices for NBB, BB and the standard
constructions. We compare the effects of �(1) in different constructions.

• NBB generates B3d/4 in the first step. Putting i = 3d/4 into (11) and (12), we have

cNBB
1 =

√
4

3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/d

2/d

...(
3

4
d − 1

)/
d

3/4

3/4
...

3/4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and the squared norm of cNBB
1 is

‖cNBB
1 ‖2 = 1

6d

(
9

4
d2 + 9

4
d + 1

)
.

• The ordinary BB generates Bd in the first step. Putting i = d into (11) and (12), we have

cBB
1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1/d

2/d

...

(d − 1)/d

1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,
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and the squared norm of cBB
1 is

‖cBB
1 ‖2 = 1

6d
(2d2 + 3d + 1).

• The standard construction generates B1 in the first step. Putting i = 1 into (11) and (12), we
have

cSTD
1 =

⎛⎜⎜⎜⎝
1/

√
d

1/
√

d
...

1/
√

d

⎞⎟⎟⎟⎠ ,

and the squared norm of cSTD
1 is

‖cSTD
1 ‖2 = 1.

The limiting explained variances of the first variable in different constructions are (as d trends to
infinity)

lim
d→∞

‖cNBB
1 ‖2

‖A‖2
F

= lim
d→∞

9

24
d + 9

24
+ 1

6d
d + 1

2

= 3

4
, (13)

lim
d→∞

‖cBB
1 ‖2

‖A‖2
F

= lim
d→∞

1

3
d + 1

2
+ 1

6d
d + 1

2

= 2

3
, (14)

lim
d→∞

‖cSTD
1 ‖2

‖A‖2
F

= lim
d→∞

1
d+1

2

= 0. (15)

Comparing (13) and (14), we conclude that

lim
d→∞

‖cNBB
1 ‖2 − ‖cBB

1 ‖2

‖A‖2
F

= 1

12
. (16)

We see that in NBB, the first variable explains more variance than it does in BB as d → ∞.
Summarizing the results above, we have the following.

Corollary 1. For NBB, BB and the standard constructions of the Brownian motion, the limiting
variances explained by the first variable are given by (13)–(15), respectively, as d → ∞.

3.2. The generations of the subsequent points

After �∗(1) has been determined and the point B�∗(1) has been generated, we need to deter-
mine the values of �∗(2), �∗(3), . . . , �∗(d) and to generate B�∗(2), B�∗(3), . . . , B�∗(d). Take the
determination of �∗(2) for example. We want to choose the value of �∗(2) such that it maximizes
the variance explained by the second variable Z2 in construction (1). We face two types of situa-
tions, that is, we may generate B�(2) just conditional on the past value B�∗(1) (in this case, �(2) ∈
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{�∗(1) + 1, . . . , d}), or we may generate B�(2) conditional on the past and the future values
B0, B�∗(1) (in this case, �(2) ∈ {1, . . . , �∗(1)−1}). In the first situation, we need to know among
B�∗(1)+1, . . . , Bd , which step is the “ local optimal” conditional on the value of B�∗(1). In the
second situation, we also need to know among B1, . . . , B�∗(1)−1, which step is the “ local optimal”
conditional on the values of B0 and B�∗(1). When the local optimal steps in both situations are
determined, we choose the one with the larger squared norm as the value of �∗(2). This procedure
maximizes the variance explained by the variable Z2.

Similarly, in the generations of the subsequent points we always face two kinds of situations:

Situation 1. The past value Bq (for some q with 0�q �d − 1) has been sampled, while
Bq+1, . . . , Bd are unknown.

Situation 2. The past value Bq1 and the future value Bq2 (for some q1, q2 with 0�q1 < q2 �d)
have been sampled, while Bq1+1, . . . , Bq2−1 are unknown.

In each situation, we need to find the local optimal step in the sense of explained variance.
Note that the case of Theorem 1 belongs to Situation 1 since we only know the past value B0. In
Theorem 2, we study the local optimal step in Situation 1 in a general case.

Theorem 2. In a permutation-based construction of the Brownian motion B1, . . . , Bd , assume
that Bq has been sampled (for some q with 0�q �d − 1), while Bq+1, . . . , Bd have not yet been
generated. Among Bq+1, . . . , Bd (conditional on the past value Bq ), the local optimal new step
q∗ is the integer nearest to (6d + 2q + 3)/8.

Proof. Assume that the desirable optimal step is i with i ∈ {q + 1, . . . , d}, conditional only on
the past value Bq . Then we generate Bi as

Bi = Bq +√
ti − tqz, z ∼ N(0, 1). (17)

Given the values of Bq and Bi , according to Lemma 1, the conditional expectation of
(B1, . . . , Bd)T is

E((B1, . . . , Bq, Bq+1, . . . , Bi, Bi+1, . . . , Bd)T |(Bq, Bi)
T )

= 0 +

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

t1 t1

...
...

tq tq

tq tq+1

...
...

tq ti−1

tq ti

...
...

tq ti

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
tq tq

tq ti

)−1 (
Bq

Bi

)
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= 1

ti − tq

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(ti − t1)Bq

...

(ti − tq)Bq

(ti − tq+1)Bq + (tq+1 − tq)Bi

...

(ti − ti−1)Bq + (ti−1 − tq)Bi

(ti − tq)Bi

...

(ti − tq)Bi

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(ti − t1)/(ti − tq)

...

(ti − tq−1)/(ti − tq)

1
...

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Bq + 1√

ti − tq

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
...

0

tq+1 − tq
...

ti−1 − tq

ti − tq
...

ti − tq

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

z.

Similarly as in the proof of Theorem 1, we can conclude that the coefficient vector of (B1, . . . , Bd)T

in construction (1) with respect to z is

1√
ti − tq

(0, . . . , 0︸ ︷︷ ︸
q

, tq+1 − tq , . . . , ti−1 − tq , ti − tq , . . . , ti − tq︸ ︷︷ ︸
d−i+1

)T . (18)

Note that tj = j�t , so the corresponding column of the decomposition matrixA in the construction
(1) is √

�t/(i − q)(0, . . . , 0︸ ︷︷ ︸
q

, 1, 2, . . . , i − 1 − q, i − q, . . . , i − q︸ ︷︷ ︸
d−i+1

)T . (19)

Then the corresponding squared norm is

�t

i − q

⎡⎣i−q∑
j=1

j2 + (d − i)(i − q)2

⎤⎦
= �t

6
[(i − q + 1)(2i − 2q + 1) + 6(d − i)(i − q)]

= 1

6d
[−4i2 + (6d + 2q + 3)i + 2q2 − (3 + 6d)q + 1], (20)
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which achieves its maximum value when i = (6d + 2q + 3)/8. Since i ∈ {q + 1, . . . , d} should
be an integer and the quantity in (20) is quadratic, the local optimal step q∗, conditional on the
past value Bq , is the integer nearest to (6d + 2q + 3)/8. �

Remark 1. In Theorem 2, since i ∈ {q + 1, . . . , d}, the quantity in (20) has its minimum value
when i = q + 1, which corresponds to the standard construction of a Brownian motion. This
means that the standard construction may be the least efficient one (in the sense of explained
variance) in the class of permutation-based constructions.

Theorem 1 is a special case of Theorem 2 with q = 0. In the case of d = 2n, according to
Theorem 1, it is optimal to generate B3d/4 first. When B3d/4 is sampled, while B3d/4+1, . . . , Bd

have not yet been generated (this corresponds to q = 3d/4 in Theorem 2), there are d ′ = d/4
points after B3d/4 that are unknown. According to Theorem 2, the local optimal new step among
B3d/4+1, . . . , Bd conditional on the past value B3d/4 is q∗ = 15d/16 = q+3d ′/4, or equivalently

q∗ − q = 3d ′/4. By deduction, if q has the form 4j−1−1
4j−1 d for some j (j = 1, . . . , �log4 2n�),

then the local optimal new step among Bq+1, . . . , Bd conditional on the past value Bq is q∗ =
4j − 1

4j
d = q + 3(d − q)/4, or equivalently q∗ − q = 3

4
(d − q).

So when the past value B3d/4 is sampled, the local optimal new step among
B3d/4+1, . . . , Bd is

3
4d + 3

4 (d − 3
4d) = 15

16d.

When the past value B15d/16 is sampled, the local optimal new step among B15d/16+1, . . . , Bd is

15
16d + 3

4 (d − 15
16d) = 63

64d,

and so on. Summarizing these, we have the following principle which indicates how to choose
the local optimal step in Situation 1 when d = 2n.

Corollary 2 ( 3
4 -Rule). For the case in Theorem 2, assume that d = 2n and q has the form

4j−1−1
4j−1 d for some j (j = 1, . . . , �log4 2n�). Then among Bq+1, . . . , Bd (conditional on the past

value Bq ), the local optimal new step is q∗ = 4j −1
4j d = q + 3(d − q)/4, and the squared norm

of the corresponding column of the decomposition matrix A is ( 36
42j d2 + 9

4j d + 1)/(6d).

Now we turn to Situation 2. We study which step is the local optimal if we know both the past
and the future values.

Theorem 3. In a permutation-based construction of the Brownian motion B1, . . . , Bd , assume
thatBq1 andBq2 have been sampled (for someq1, q2 with 0�q1 < q2 �d), whileBq1+1, . . . , Bq2−1
have not yet been generated. Among Bq1+1, . . . , Bq2−1 (conditional on the past and the future
values Bq1 , Bq2 ), the optimal new step is the integer nearest to (q1 + q2)/2.

In particular, if (q1 + q2)/2 is an integer, then the local optimal new step is (q1 + q2)/2, and
the squared norm of the corresponding column of the decomposition matrix A is [(q2 − q1)

2/2 +
1]/(6d). If (q1 + q2)/2 is not an integer, then the local optimal new step is (q1 + q2 − 1)/2 or
(q1 + q2 + 1)/2, and the corresponding squared norm is [(q2 − q1)

2/2 + 1/2]/(6d).
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Proof. Assume that the desired optimal step is i with i ∈ {q1 + 1, . . . , q2 − 1}, conditional on
the past and the future values Bq1 , Bq2 . According to Lemma 1, we have

Bi = q2 − i

q2 − q1
Bq1 + i − q1

q2 − q1
Bq2 +

√
(tq2 − ti )(ti − tq1)

tq2 − tq1

z, z ∼ N(0, 1). (21)

When Bi is fixed, using a similar approach as in the proof of Theorem 2, we can conclude that
the coefficient vector of (B1, . . . , Bd)T in construction (1) with respect to z is

(0, . . . , 0︸ ︷︷ ︸
q1

, �1(tq1+1 − tq1), �1(tq1+2 − tq1), . . . , �1(ti − tq1),

�2(tq2−1 − ti ), . . . , �2(ti+1 − ti ), 0, . . . , 0︸ ︷︷ ︸
d−q2+1

)T , (22)

where �1 = 1

ti − tq1

√
(tq2 −ti )(ti−tq1 )

tq2 −tq1
and �2 = 1

tq2 −ti

√
(tq2 −ti )(ti−tq1 )

tq2 −tq1
.

Note that tj = j�t , so the corresponding column of the decomposition matrix A in construction
(1) is

(0, . . . , 0︸ ︷︷ ︸
q1

, �1, 2�1, . . . , (i − q1)�1, (q2 − i − 1)�2, . . . , 2�2, �2, 0, . . . , 0︸ ︷︷ ︸
d−q2+1

)T , (23)

where �1 =
√

(q2−i)�t
(i−q1)(q2−q1)

and �2 =
√

(i−q1)�t
(q2−i)(q2−q1)

. Then the corresponding squared norm is

�2
1

i−q1∑
j=1

j2 + �2
2

q2−1−i∑
j=1

j2 = �t

6(q2 − q1)
[(q2 − i)(i − q1 + 1)(2i − 2q1 + 1)

+(i − q1)(q2 − i − 1)(2q2 − 2i − 1)]
= 1

6d
[−2i2 + 2(q2 + q1)i + (1 − 2q1q2)], (24)

which achieves its maximum value when i = (q1 + q2)/2. Since i ∈ {q1 + 1, . . . , q2 − 1} should
be an integer and the quantity in (24) is quadratic, the local optimal new step, conditional on the
past and the future values Bq1 , Bq2 , is the integer nearest to (q1 + q2)/2.

In particular, if (q1 +q2)/2 is an integer, then the local optimal new step is (q1 +q2)/2. Putting
i = (q1 +q2)/2 into (24), we get that the corresponding squared norm is [(q2 −q1)

2/2+1]/(6d).
If (q1+q2)/2 is not an integer, then the local optimal new step is (q1+q2−1)/2 or (q1+q2+1)/2,
and we get that the corresponding squared norm is [(q2 − q1)

2/2 + 1/2]/(6d). �

Remark 2. According to the proof of Theorem 3, if the local optimal new step is (q1 + q2)/2,
the squared norm of the corresponding column only depends on the value of q2 − q1. If the local
optimal new step is (q1 + q2 − 1)/2 or (q1 + q2 + 1)/2, then the squared norm of the column
is [(q1 − q2)

2/2 + 1/2]/(6d), which only depends on the value of q2 − q1. Furthermore, if we
have another pair of q̂1, q̂2 as prescribed in Theorem 3 satisfying q̂2 − q̂1 = (q2 −q1)+ 1, where
(̂q1 + q̂2)/2 is not an integer while (q1 + q2)/2 is an integer, we have

1

6d

[
1

2
(̂q2 − q̂1)

2 + 1

2

]
>

1

6d

[
1

2
(q1 − q2)

2 + 1

]
. (25)

Therefore, among all possible pairs of q1, q2 prescribed in Situation 2, the local optimal new step
in the largest time interval [tq1 , tq2 ] (with the largest value of q2 − q1) has the priority.
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Remark 3. Theorem 3 and Remark 2 explain ordinary BB from a perspective of optimization
problems. Actually, when B0 is given and the end point Bd is already generated, subsequent values
of ordinary BB are set at the successive midpoint, i.e., Bd/2, Bd/4, B3d/4, . . . . Since always at
least one past value and one future value exist after Bd is generated, this kind of selection always
maximizes the variance explained by the new variable according to Theorem 3 and Remark 2.
We point out that in ordinary BB, only the choice of Bd as the first step does not maximize the
variance explained by Z1 (see Section 3.1).

Remark 4. Theorem 3 and Remark 2 may explain why ordinary BB usually performs better than
the “ golden section BB construction” in [8], which is built by using the golden section sequence
for running through the time interval after Bd is generated as the first step.

Remark 5. The proofs of Theorems 2 and 3 imply that in a permutation-based construction,
the variance explained by the ith (i = 1, 2, . . . , d) variable is totally determined by the first i
components of the permutation (i.e., we need not know all d components of the permutation).
This fact enables us to determine the next step optimally by the information up to now.

3.3. Optimal generation order of the Brownian motion

Theorems 2 and 3 indicate how to choose the local optimal steps in Situations 1 and 2, re-
spectively. In this subsection, we focus on finding the optimal generation order of the Brownian
motion when d = 2n (n�2). The principle is that the new step should maximize the variance
explained by the new variable.

We still take the determination of �∗(2) for example. We first assume that B3d/4 is generated as
suggested in Theorem 1. If we generate the next new step conditional only on the past value B3d/4,
according to Corollary 2 (with q = 3d/4), the local optimal new step among B3d/4+1, . . . , Bd

would be the step 15d/16. The squared norm of the corresponding column for this step is ( 9
64d2 +

9
16d + 1)/(6d). Alternatively, if we generate the next new step conditional on the past and the
future values B0, B3d/4, according to Theorem 3 (with q1 = 0 and q2 = 3d/4), the local optimal
new step among B1, . . . , B3d/4−1 would be the step 3d/8. The squared norm of the corresponding
column for this step is ( 9

32d2 + 1)/(6d). Now we determine the value of �∗(2) between these two
local optimal choices. Since (9d2)/32 > (9d2)/64+ (9d)/16, we choose the value of �∗(2) to be
3d/8, i.e., we generate B3d/8 as the second step. Sequent steps are determined in a similar way.

When d = 2n, we can find a more convenient rule to determine the superiority of these local
optimal choices. We denote

�j = 1

6d

(
36

42j
d2 + 9

4j
d + 1

)
, (26)

Rj,1 = 1

6d

(
18

42j
d2 + 1

)
, (27)

Rj,2 = 1

6d

(
72

42j
d2 + 1

)
, (28)

then for a fixed integer j (j = 1, . . . , �log4 d�), we have Rj,1 < �j < Rj,2. The meanings
of these quantities will be clear soon. As we discussed above, we face two types of situations.
Situation 1 corresponds to the case where the past value Bq has been sampled, where q has the

form 4j−1−1
4j−1 d for some j (j = 2, . . . , �log4 d�), while Bq+1, . . . , Bd are unknown; Situation 2
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corresponds to the case where the past value Bq1 and the future value Bq2 have been sampled,
while Bq1+1, . . . , Bq2−1 are unknown. The generations of all values of B1, . . . , Bd consist of two
stages.

Stage 1: In Stage 1, at least one pair of q1, q2 prescribed in Situation 2 satisfies that (q1 +q2)/2
is an integer.

We first generate B3d/4 as suggested in Theorem 1. In the generations of the subsequent points,
we determine the priority of several local optimal choices as follows by comparing the length of
time intervals.

For Situation 1, according to Corollary 2, the local optimal new step among Bq+1, . . . , Bd would

be q∗ = 4j − 1

4j
d for some j (j = 2, . . . , �log4 d�), and the squared norm of the corresponding

column for the point Bq∗ is �j . The time interval [tq , tq∗ ] has a length of 3/4j .
For Situation 2, according to Theorem 3, the local optimal new step among Bq1+1, . . . , Bq2−1

would be (q1 + q2)/2. If the length of time interval [tq1 , t(q1+q2)/2] is t(q1+q2)/2 − tq1 = 3/4j

(which is the same length as for Situation 1), then the squared norm of the corresponding column
for the point B(q1+q2)/2 is Rj,1, which is smaller than �j . Thus in this case, we would choose q∗
in Situation 1 as the next new step of the Brownian motion. While, if t(q1+q2)/2 − tq1 = 2 × 3/4j

(which is twice the length as for Situation 1), then the squared norm of the corresponding column
for the point B(q1+q2)/2 is Rj,2, which is larger than �j . Thus in this case, we would choose
(q1 + q2)/2 in Situation 2 as the next new step of the Brownian motion.

In other words, if the length of the time interval [tq , tq∗ ] in Situation 1 is the same as the length
of the time interval [tq1 , t(q1+q2)/2] in Situation 2, then the step q∗ in Situation 1 has the priority.
While if the length of the time interval [tq , tq∗ ] in Situation 1 is half of the length of the time
intervals [tq1 , t(q1+q2)/2] in Situation 2, then the step (q1 + q2)/2 in Situation 2 has the priority.

For example, afterB3d/4 is generated as the first step, the length of the time interval [t3d/4, t15d/16]
in Situation 1 is half of the length of the time interval [t0, t3d/8] in Situation 2, so B3d/8 has the
priority to B15d/16. Next, the length of the time interval [t3d/4, t15d/16] in Situation 1 is the same
to the length of the time intervals [t0, t3d/16] and [t3d/8, t9d/16] in Situation 2, so B15d/16 is
generated as the third step.

Generally, after generating B3d/4, we sample the subsequent points in the middle of one of the
largest time intervals, whose two endpoints have been sampled, until the length of the largest time
intervals are reduced into 2 × 3/4j for some j (j = 2, . . . , �log4 d�). Then we generate the point
B4j − 1

4j
d

and continue the division process above.

Stage 2: Stage 1 will continue until for all pairs of q1, q2 prescribed in Situation 2, (q1 +q2)/2
is not an integer. It is easy to see that when this comes true, the remaining points that need to be
generated are

Bi, 1� i�d with i not being a multiple of 3,

i.e., the following points that are not in the parentheses:

(B0), B1, B2, (B3), B4, B5, (B6), . . . , (Bd−4), Bd−3, Bd−2, (Bd−1), Bd, (29)

for n being even, or

(B0), B1, B2, (B3), B4, B5, (B6), . . . , (Bd−3), Bd−4, Bd−3, (Bd−2), Bd−1, Bd, (30)

for n being odd.



124 J. Lin, X. Wang / Journal of Complexity 24 (2008) 109–133

Note that B0 = 0, and other points in the parentheses are generated in Stage 1. The difference
between (29) and (30) is at the tails, namely there is only one unknown point Bd after the generated
point Bd−1 in (29), while there are two unknown points Bd−1 and Bd after the generated point
Bd−2 in (30).

If n is even, to generate the points in (29), according to Remark 2 we only need to compare
the situation of generating the new point conditional on the past value Bd−1 (this corresponds to
Situation 1), and the situation of generating the new point conditional on the past and the future
values B0, B3 (this corresponds to Situation 2). For the former one, according to Theorem 2 (or
a straight calculation), the squared norm of the corresponding column for the point Bd is 1/d.
While for the latter one, according to Theorem 3, the squared norm of the corresponding column
for the point B1 (or the point B2) is 5/(6d), which is smaller than 1/d. Therefore, in (29) we
first sample Bd conditional on the value of Bd−1. Note that after Bd is sampled we only need
to consider Situation 2, then Theorem 3 and Remark 2 determine the generation order of the
remaining points in (29).

Similarly, if n is odd, it can also be found that Bd should be sampled first in (30), and the other
points are generated in the same way as above.

Now we know clearly about the optimal generation order of a discrete time Brownian motion
B1, . . . , B2n . For example:

• for n = 3, we generate the Brownian motion as follows (given B0 = 0):

B1 B2 B3 B4 B5 B6 B7 B8
4 7 2 5 8 1 6 3

The numbers in the second line are the generation order of the Brownian path. B6, B3
are generated in Stage 1, while B8, B1, B4, B2, B5, B7 are generated in Stage 2. The optimal
permutation �∗ is {6, 3, 8, 1, 4, 7, 2, 5}.

• for n = 4, we generate the Brownian motion as follows (given B0 = 0):

B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 B12 B13 B14 B15 B16
7 12 4 8 13 2 9 14 5 10 15 1 11 16 3 6

The numbers in the second line are the generation order of the Brownian path. B12, B6, B15, B3,
B9 are generated in Stage 1, while the other points are generated in Stage 2. The optimal permu-
tation �∗ is {12, 6, 15, 3, 9, 16, 1, 4, 7, 10, 13, 2, 5, 8, 11, 14}.

In the Appendix, we list the optimal permutation �∗ for d = 2, 4, 8, 16, 32, 64, 128, 256.

Remark 6. In this subsection, we only focused on finding the optimal generation order of a
Brownian motion when d is a power of 2. Since the conclusions of Theorems 2 and 3 are also true
for an arbitrary dimension d , the construction of NBB can be generalized to the problem with the
dimension not being a power of 2. We only need to choose the new step such that it maximizes
the variance explained by the new variable. Relations (18) and (22) are useful to get other optimal
constructions in some other criterions.

3.4. Numerical comparisons of the explained variance

In this subsection, we compare the effects of NBB and BB by comparing their cumulative
explained variances. In Table 1, we show

∑k
i=1 ‖ci‖2, the sums of squared norm of the first k

columns in (1), with d = 2n and k varying from 1 to 6 for NBB and BB, respectively. We observe
that the cumulative variances explained by the first three dimensions in NBB are larger than those
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Table 1
The sums of squared norms,

∑k
i=1 ‖cNBB

i ‖2 and
∑k

i=1 ‖cBB
i ‖2, with k = 1, . . . , 6∑k

i=1 ‖cNBB
i ‖ ∑k

i=1 ‖cBB
i ‖ limd→∞

∑k
i=1(‖cNBB

i ‖2 − ‖cBB
i ‖2)/‖A‖2

F

k = 1 ( 9
4 d2 + 9

4 d + 1)/(6d) (2d2 + 3d + 1)/(6d) 1
12

k = 2 ( 81
32 d2 + 9

4 d + 2)/(6d) ( 5
2 d2 + 3d + 2)/(6d) 1

96

k = 3 ( 171
64 d2 + 45

16 d + 3)/(6d) ( 21
8 d2 + 3d + 3)/(6d) 1

64

k = 4 ( 351
128 d2 + 45

16 d + 4)/(6d) ( 22
8 d2 + 3d + 4)/(6d) − 1

384

k = 5 ( 360
128 d2 + 45

16 d + 5)/(6d) ( 89
32 d2 + 3d + 5)/(6d) 1

96

k = 6 ( 1449
512 d2 + 45

16 d + 6)/(6d) ( 90
32 d2 + 3d + 6)/(6d) 3

512

In the fourth column we show the limits as d → ∞.

Table 2
The cumulative explained variance (%) from the first six dimensions for the standard, BB, NBB and PCA constructions
with dimension d = 64

k Standard BB NBB PCA

1 3.08 67.19 75.01 81.07
2 6.11 83.61 84.25 90.08
3 9.09 87.72 89.16 93.32
4 12.02 91.83 91.47 94.98
5 14.90 92.86 93.79 95.99
6 17.74 93.89 94.37 96.66

in BB. However, under the optimization criterion we chosen, the procedure cannot guarantee that
the sums of the squared norms of the decomposition matrix A in NBB are always larger than these
in BB (see the case for k = 4).

In Table 2, we show for d = 64 the cumulative variance explained by the first six dimensions
for the standard, BB, NBB and PCA constructions. It is clear that NBB outperforms ordinary BB
in allocating variance to the initial dimensions, but not as well as PCA. For example, when k = 1,
the variance explained by the first dimension for NBB is 75.01%, which is larger than that of BB
(67.19%) and smaller than that of PCA (81.07%).

4. Numerical examples

Now we apply NBB to problems of valuing options, including European-type options and
American-type options. For completeness, a brief review of ANOVA decomposition is given
here. Let Υ = {1, 2, . . . , d}. For u ⊆ Υ , let uc denote the complementary set of u in Υ ,
u − 	 denote the set difference {j |j ∈ u, j∈	} and |u| denote the cardinality of u. Assume that∫
[0,1)d

f 2(x) dx < ∞, then f has an ANOVA decomposition

f (x) =
∑
u⊆Υ

fu(x), (31)
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where fu(x) = ∫
[0,1)d

f (x) dxuc − ∑
	�u f	(x), and f
 = I (f ) = ∫

[0,1)d
f (x) dx. Here xuc =

(xj )j∈uc denotes the vector of variable xj whose index j is in uc. From the definition we see that
the term fu depends only on the variable xu.

Define the variance of f

�2(f ) =
∫

[0,1)d
f 2(x) dx − I 2(f ), (32)

and the variance of fu

�2
u(f ) =

∫
[0,1)d

f 2
u (x) dx for u = 
 and �2


(f ) = 0, (33)

then we have

�2(f ) =
∑
u⊆�

�2
u(f ). (34)

The quantity �2
u denotes the contribution of fu to �2, and thus �2

u/�
2 measures the relative

importance of fu in the decomposition.
For a given subset u, define Du = ∑

�⊆u �2
� and Dtot

u = ∑
�∩u=
 �2

� . The truncation dimension
of f is the smallest integer dt such that

D{1,...,dt } =
∑

	⊆{1,...,dt }
�2

	 �p �2, (35)

where 0 < p < 1. Usually we take p = 0.99. The truncation dimension reveals how many
important variables are there in the function f .

The dimension distribution in the superposition sense is a discrete probability with the mass
function

�(j) = 1

�2

∑
|u|=j

�2
u, j = 1, . . . , d. (36)

In other words, if we have a randomly chosen nonempty set U ⊆ {1, . . . , d} with Pr(U = u) =
�2

u/�
2, then Pr(|U | = j) = �(j) (see [17]). It is shown in [11] that for d �2,

d = E(|U |) = 1

�2

d∑
j=1

Dtot{j}. (37)

The quantities Du and Dtot
u can be computed by the following formulas (see [22]):

Du =
∫

f (x)f (xu, yuc) dx dyuc − I 2(f ), (38)

Dtot
u = 1

2

∫
(f (xu, xuc) − f (yu, xuc))2 dx dyu. (39)
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4.1. Asian option

First, we consider the Asian option on the discrete arithmetic average. Assume that the strike
price is K, the initial stock price is S0, and the final expiration date is T. Let St denote the price of
the stock at time t . The Black–Scholes model describes the evaluation of the stock price through
the stochastic differential equation as

dSt

St

= � dt + �̂ dBt , (40)

where Bt is a standard Brownian motion. The parameter � denotes the mean rate of return and �̂
is the volatility of the stock price. Under the risk-neutral measure, taking the rate of return to be
the same as the interest rate r , we have the solution of (40) as

St = S0 exp([r − 1
2 �̂2]t + �̂Bt).

We now can simulate the path of the stock price at equally spaced times t1, . . . , td

Sti = S0 exp([r − 1
2 �̂2]ti + �̂Bti ), i = 1, 2, . . . , d. (41)

Denote S = 1
d

∑d
i=1 Sti . The terminal payoff of an Asian call option is

max(S − K, 0),

and the value of the option at time 0, based on the risk-neutral valuation principle, is

E�[e−rT max(S − K, 0)], (42)

where E�(·) is the expectation under the risk-neutral measure P� (see [6]). We can express the
option price as an integral

Id(f ) =
∫

[0,1)d
e−rT max

(
1

d

d∑
i=1

S0 exp

[(
r − �̂2

2

)
ti

+�̂Bi(x1, . . . , xd)] − K, 0) dx. (43)

Here Bi(x1, . . . , xd) has different expressions in different constructions (see Section 2). For
example, for the standard construction, Bi = √

T/d
∑i

j=1 �−1(xj ), where �(·) is the standard
normal distribution function.

We perform the experiments in two parts. In the first part, we empirically investigate the effect
of NBB for dimension reduction; in the second part, we compare the efficiency of NBB with other
dimension reduction techniques in practical computations. In this example, we use the following
parameters: K = 100, T = 1, �̂ = 0.2, r = 0.1. Tables 3–5 present the truncation dimension
(with p = 0.99), the first order indices (i.e., FOI := ∑d

i=1 �2{i}/�2) and the mean dimension
for the standard, BB, NBB and PCA constructions. The results show that PCA, NBB and BB
reduce the truncation dimension considerably compared with the standard construction, and in
most cases NBB is more powerful than BB in dimension reduction. Comparing the first order
indices (e.g., S0 = 90), we can see that the contribution to �2 from the first order terms in NBB is
about 89–90%, while in BB it is about 80–84%. It means that NBB allocates more variance to the
one-dimensional terms. The comparisons of mean dimension demonstrate that in all cases NBB
has lower mean dimension than BB, and in NBB the values are closer to 1. This indicates that
in NBB the underlying integrand has stronger one-dimensional structure. Note that NBB does
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Table 3
The truncation dimension, the sensitivity index of x1 and the mean dimension for valuing Asian options with the initial
stock price S0 = 90

S0 = 90 Standard BB NBB PCA

d dt FOI d dt FOI d dt FOI d dt FOI d

8 7 0.6322 1.4452 6 0.8421 1.1642 6 0.9054 1.0992 2 0.9909 1.0083
16 14 0.5860 1.5559 7 0.8243 1.1889 7 0.9009 1.1089 2 0.9903 1.0099
32 28 0.5540 1.6266 8 0.8071 1.2048 7 0.8885 1.1150 2 0.9888 1.0104
64 54 0.5443 1.6533 8 0.8078 1.1917 7 0.8943 1.1155 2 0.9902 1.0089

128 107 0.5245 1.6889 8 0.8063 1.2089 8 0.8939 1.1162 2 0.9916 1.0092

Table 4
The same as Table 3, but with the initial stock price S0 = 100

S0 = 100 Standard BB NBB PCA

d dt FOI d dt FOI d dt FOI d dt FOI d

8 7 0.8543 1.1725 5 0.9360 1.0645 5 0.9624 1.0396 2 0.9962 1.0039
16 14 0.8307 1.2066 7 0.9318 1.0725 5 0.9603 1.0419 2 0.9961 1.0042
32 27 0.8137 1.2245 7 0.9279 1.0777 5 0.9582 1.0446 2 0.9950 1.0069
64 53 0.8143 1.2380 7 0.9262 1.0786 5 0.9600 1.0378 2 0.9974 1.0047

128 105 0.8119 1.2368 7 0.9349 1.0773 6 0.9622 1.0429 2 0.9983 1.0042

not perform as well as PCA in dimension reduction, but NBB has an advantage in computational
cost.

In Tables 6 and 7, we show the sample standard deviation for MC and QMC, and the variance
reduction factors (in the parentheses). For QMC, we use the Sobol’s sequence randomized by
random digital shift, which preserves the (t, k, s)-net properties. We apply m independent ran-
domizations (m = 50 in our computations) and compute the corresponding sample mean and
sample variance, then the sample standard deviation is⎡⎣ 1

m · (m − 1)

m∑
j=1

(Ij,N − Im)2

⎤⎦1/2

, (44)

where Ij,N is the estimated value in the jth randomization and Im is the corresponding sample
mean. The variance reduction factor of one estimate with respect to crude MC estimate is the
inverse ratio of their sample variances. We see that when the dimension of the problem increases,
the corresponding sample standard deviation under the standard construction also increases, while
under BB, NBB and PCA, it is insensitive to the dimension. Furthermore, the variance reduction
factors illustrate that NBB is more efficient than BB. QMC+NBB improves QMC + BB with
variance reduction factor approximately 1.2, while the computational costs are the same. This
improvement is more clear when N is large. In the case S0 = 110, the efficiency improvement
is satisfying (QMC + NBB improves QMC + BB with variance reduction factor approximately
1.44), and this is consistent with the result of effective dimension.
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Table 5
The same as Table 3, but with the initial stock price S0 = 110

S0 = 110 Standard BB NBB PCA

d dt FOI d dt FOI d dt FOI d dt FOI d

8 7 0.9504 1.0579 5 0.9798 1.0214 5 0.9878 1.0132 2 0.9989 1.0012
16 14 0.9463 1.0644 6 0.9798 1.0225 5 0.9892 1.0129 2 0.9997 1.0013
32 26 0.9473 1.0661 6 0.9793 1.0227 5 0.9889 1.0134 2 0.9999 1.0018
64 52 0.9506 1.0739 7 0.9802 1.0236 5 0.9900 1.0126 2 1.0001 1.0014

128 104 0.9574 1.0671 7 0.9869 1.0228 5 0.9983 1.0125 2 1.0003 1.0010

Table 6
The estimated sample standard deviations and the variance reduction factors (in the parentheses) for d = 64 with 50
repetitions

N MC QMC + STD QMC + BB QMC + NBB QMC + PCA

28 4.41e − 2 2.11e − 2 (4) 7.50e − 3 (34) 7.20e − 3 (37) 6.70e − 3 (43)

S0 = 90 210 2.23e − 2 7.10e − 3 (9) 2.10e − 3 (112) 2.10e − 3 (112) 1.80e − 3 (153)

212 1.04e − 2 3.00e − 3 (12) 7.03e − 4 (218) 6.32e − 4 (270) 5.67e − 4 (336)

28 6.40e − 2 2.46e − 2 (6) 1.07e − 2 (35) 1.03e − 2 (38) 9.10e − 3 (49)

S0 = 100 210 3.80e − 2 8.60e − 3 (19) 3.20e − 3 (141) 2.60e − 3 (213) 2.30e − 3 (273)

212 1.98e − 2 2.60e − 3 (58) 9.27e − 4 (455) 8.43e − 4 (551) 7.19e − 4 (757)

28 9.15e − 2 2.90e − 2 (10) 1.48e − 2 (38) 1.39e − 2 (43) 1.30e − 2 (49)

S0 = 110 210 5.11e − 2 9.20e − 3 (31) 3.50e − 3 (213) 3.30e − 3 (239) 3.10e − 3 (271)

212 2.42e − 2 2.50e − 3 (93) 1.20e − 3 (406) 1.00e − 3 (585) 9.34e − 4 (671)

Table 7
The same as Table 6, but for d = 128

N MC QMC + STD QMC + BB QMC + NBB QMC + PCA

28 4.63e − 2 3.16e − 2 (2) 7.30e − 3 (40) 7.00e − 3 (44) 6.30e − 3 (54)

S0 = 90 210 2.52e − 2 1.76e − 2 (2) 2.60e − 3 (94) 2.30e − 3 (120) 2.10e − 3 (144)

212 1.17e − 2 7.20e − 3 (2) 6.59e − 4 (315) 5.09e − 4 (529) 5.06e − 4 (535)

28 9.04e − 2 3.73e − 2 (6) 1.00e − 2 (82) 9.30e − 3 (94) 8.70e − 3 (108)

S0 = 100 210 4.01e − 2 1.49e − 2 (7) 3.40e − 3 (139) 3.00e − 3 (178) 2.70e − 3 (220)

212 1.88e − 2 7.20e − 3 (7) 7.86e − 4 (571) 7.21e − 4 (681) 6.59e − 4 (815)

28 9.03e − 2 2.81e − 2 (10) 1.45e − 2 (39) 1.34e − 2 (45) 1.10e − 2 (67)

S0 = 110 210 5.09e − 2 1.16e − 2 (19) 3.80e − 3 (179) 3.60e − 3 (200) 3.10e − 3 (269)

212 2.46e − 2 2.8e − 3 (77) 9.62e − 4 (653) 8.72e − 4 (796) 7.83e − 4 (986)

4.2. American–Bermuda–Asian option

The valuation of American options remains one of the most challenging problems in compu-
tational finance. The computational cost of traditional valuation methods increases rapidly with
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Table 8
The estimated values of American–Bermuda–Asian options, the corresponding sample standard deviations and the variance
reduction factors (in the parentheses) for d=64 with 50 repetitions

MC QMC + STD QMC + BB QMC + NBB

A S0 Value S.D. Value S.D. Value S.D. Value S.D.

110 110 17.2228 2.48e − 2 17.2929 6.90e − 3 (13) 17.2921 4.40e − 3 (31) 17.2926 4.60e − 3 (29)

110 100 9.7532 2.27e − 2 9.7966 5.90e − 3 (15) 9.8051 4.70e − 3 (23) 9.8111 4.00e − 3 (32)

110 90 4.2358 1.76e − 2 4.2577 5.40e − 3 (10) 4.2551 2.30e − 3 (58) 4.2585 2.00e − 3 (77)

100 110 15.7553 3.38e − 2 15.7222 7.90e − 3 (18) 15.7151 3.10e − 3 (119) 15.7214 3.00e − 3 (127)

100 100 8.6920 2.63e − 2 8.7344 4.20e − 3 (39) 8.7292 2.20e − 3 (143) 8.7308 2.30e − 3 (130)

100 90 3.7566 1.75e − 2 3.7832 4.40e − 3 (16) 3.7774 1.60e − 3 (119) 3.7789 1.40e − 3 (156)

90 110 14.5469 3.13e − 2 14.5866 7.40e − 3 (18) 14.5793 2.70e − 3 (134) 14.5807 2.30e − 3 (185)

90 100 7.9437 2.56e − 2 7.9750 6.20e − 3 (17) 7.9704 1.90e − 3 (181) 7.9694 1.80e − 3 (202)

90 90 3.3484 1.78e − 2 3.3911 5.60e − 3 (10) 3.3870 1.40e − 3 (161) 3.3881 1.10e − 3 (261)

Here A is the initial average value of the stock and the initial stock price is S0. We use �̂ = 0.2 and r = 0.06.

the number of underlying securities and other payoff-related variables. In recent years, several
simulation-based methods have been proposed to estimate American option prices (see [6]). In
this paper, we use the least-squares MC method proposed in [12].

We value a particular option considered in [12]: American–Bermuda–Asian option, which is a
call option on the average price of a stock over some time horizon, where the call option can be
exercised at any time after some initial lockout period. Define the current valuation date as time
0. We assume that the option has a final expiration date of T = 2 and that the holder may exercise
the option at any time after t = 0.25 by payment of the strike price K = 100. The underlying
average At , 0.25� t �T , is the continuous arithmetic average of the underlying stock price during
the period three months prior to the valuation date (a three-month lookback) to time t . Thus, the
cash flow from exercising the option at time t is max(0, At − K).

We use the least-squares approach to evaluate the option. The choice of the basis functions in
our tests is the set of simple powers of the state variables instead of Laguerre polynomials in [12].
We use a constant, the stock price, the average stock price, the squares of each stock price, the
product of the two, and the product of the two up to degree three.

The first step in least-square method is to generate the paths of the asset prices. BB can be used
to generate asset prices, and a significant increase in the rate of convergence can be obtained (see
[5]). In this paper, we are interested in the rate of convergence of using NBB. We fix the dimension
d = 64 and the number of paths N = 212. Table 8 illustrates the sample standard deviation for MC
and QMC, and the variance reduction factors (in parentheses). We observe that NBB is powerful
in valuing American–Bermuda–Asian options, and the variance reduction factors range from 29
to 261 for different parameters. In most cases, the sample standard deviation in NBB is smaller
than that in BB, though the superiority is not so impressive as in Asian options. We also see that
the results are impacted by options’ characteristics like A and S0. We believe that NBB may be
more efficient when the first few steps of the Brownian path are more important.

5. Conclusion

BB is a permutation-based construction of Brownian motion and is often used to speed up
QMC integration through dimension reduction. In this paper, we propose a new Brownian bridge
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(NBB) construction. We find an optimal generation order of the Brownian motion in the sense of
explained variance such that the first several dimensions are even more important than those in BB,
while the computational costs are the same. We perform two empirical experiments: valuing Asian
options and American–Bermuda–Asian options. For Asian options, we compare the truncation
dimension and the mean dimension, and find that in most cases NBB is more powerful than BB
in dimension reduction. We also show that compared with BB, the one-dimensional terms of
NBB contributes more to the variance �2. For both types of options, we find that NBB has better
performance than BB in QMC integration.

We point out that the NBB construction is based on the criterion of “explained variance”, which
is only related to the covariance matrix of the discrete Brownian motion. The advantage of this
choice is that since the optimal permutation does not depend on the integrand, NBB is easy to use
and can improve the performance of QMC in some financial problems, just as the ordinary BB
and PCA. On the other hand, this criterion also has its disadvantage. The new construction does
not take into account the function to be integrated, and it does not guarantee to give a consistent
improvement for arbitrary examples. In fact, just as ordinary BB, NBB also performs worse than
the standard method for problems studied in [19] (we did not give the results in this paper).

The possible disadvantage rises an interesting problem for future research: can we find an
optimal variable transformation such that it minimizes the error of QMC integration for a given
function or a class of functions? Or alternatively, by taking into account the knowledge of the
integrand, can we find an optimal variable transformation such that it maximizes the first order
index of the first variable or the first order indices in ANOVA decomposition? For example, though
it is not reported here, we have numerical results for some simple functions, and we find that the
construction of Brownian motion found by a similar idea has superiority over ordinary BB in
approximating Wiener path integral considered in [23].

Here we also want to discuss the feasibility of extending this approach to the multidimensional
case. It is difficult to directly generalize the NBB to case of multi-asset path dependent options.
However, by using the two-stage dimension reduction technique developed in [24], we may easily
combine NBB with other techniques in the case of multiple assets.

Appendix A.

The optimal permutation �∗ = {�(1), �(2), . . . , �(d)} for d = 2, 4, 8, 16, 32, 64, 128, 256
is given below:

d = 2 2 1

d = 4 3 4 1 2

d = 8 6 3 8 1 4 7 2 5

d = 16 12 6 15 3 9 16 1 4 7 10 13 2 5 8 11 14

d = 32 24 12 30 6 18 3 9 15 21 27 32 1 4 7 10

16 19 22 25 28 31 2 5 8 11 14 17 20 23 26 29

d = 64 48 24 60 12 36 6 18 30 42 54 63 3 9 15 21 27
33 39 45 51 57 64 1 4 7 10 13 16 19 22 25 28
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31 34 37 40 43 46 49 52 55 58 61 2 5 8 11 14
17 20 23 26 29 32 35 38 41 44 47 50 53 56 59

d = 128 96 48 120 24 72 12 36 60 84 108 126 6 18 30 42 54
66 78 90 102 114 3 9 15 21 27 33 39 45 51 57 63
69 75 81 87 93 99 105 111 117 123 128 1 4 7 10 13
16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61
64 67 70 73 76 79 82 85 88 91 94 97 100 103 106 109

112 115 118 121 124 127 2 5 8 11 14 17 20 23 26 29
32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77
80 83 86 89 92 95 98 101 104 107 110 113 116 119 122 125

d = 256 192 96 240 48 144 24 72 120 168 216 252 12 36 60 84 108
132 156 180 204 228 6 18 30 42 54 66 78 90 102 114 126
138 150 162 174 186 198 210 222 234 246 255 3 9 15 21 27

33 39 45 51 57 63 69 75 81 87 93 99 105 111 117 123
129 135 141 147 153 159 165 171 177 183 189 195 201 207 213 219
225 231 237 243 249 256 1 4 7 10 13 16 19 22 25 28

31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76
79 82 85 88 91 94 97 100 103 106 109 112 115 118 121 124

127 130 133 136 139 142 145 148 151 154 157 160 163 166 169 172
175 178 181 184 187 190 193 196 199 202 205 208 211 214 217 220
223 226 229 232 235 238 241 244 247 250 253 2 5 8 11 14

17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62
65 68 71 74 77 80 83 86 89 92 95 98 101 104 107 110

113 116 119 122 125 128 131 134 137 140 143 146 149 152 155 158
161 164 167 170 173 176 179 182 185 188 191 194 197 200 203 206
209 212 215 218 221 224 227 230 233 236 239 242 245 248 251 254
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