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The search for the heavy charged Higgs (mH± > mtop) has been mainly based on the off-shell top 
pair production process. However, resonance production in s-channel single top events is an important 
channel to search for this particle. In a previous work, it was shown that this process, i.e., qq′ → H+ →
tb̄ + h.c., can lead to comparable results to what is already obtained from LHC searches. What was 
obtained was, however, based on diagonal Yukawa couplings between incoming quarks assuming cs̄ as 
the main incoming pair due to the CKM matrix element being close to unity. The aim of this paper is to 
show that off-diagonal couplings, like cb̄, may lead to substantial contributions to the cross section, even 
if the corresponding CKM matrix element is two orders of magnitude smaller. For this reason, the cross 
section is calculated for each initial state including all diagonal and off-diagonal terms, and all is finally 
added together to get the total cross section which is observed to be ∼ 2.7 times larger than what is 
obtained from cs̄ initial state. Results are eventually reflected into 95% C.L. exclusion and 5σ discovery 
contours at different integrated luminosities of LHC. A reasonable coverage of the parameter space is 
obtained by the 95% C.L. exclusion contour.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The search for the charged Higgs boson within Supersymmet-
ric Standard Model (MSSM) at the Large Hadron Collider (LHC) 
is currently extending the excluded area in the parameter space 
(mH± , tan β) with no evidence of the particle in the low mass area 
(mH± < mtop). Here, tanβ is the ratio of vacuum expectation val-
ues of the two Higgs doublets.

The current main limits on the mass of the charged Higgs come 
from LEP II direct and indirect searches which, all together, set 
a lower limit on the charged Higgs mass as mH± > 125 GeV [1,2]. 
The Tevatron searches by the D0 [3–6] and CDF Collaborations 
[7–10] exclude high tan β values, however, they are confirmed and 
extended by current LHC results [11–16].

There are also stringent constraints on the charged Higgs mass 
from flavor physics studies. A study of recently completed BaBar 
data analysis [17] based on b → sγ excludes mH± < 380 GeV inde-
pendent of tan β [18]. The LHC searches are nevertheless important 
and will provide, in case, an independent confirmation of the ex-
clusion regions from flavor bounds. Therefore in this paper, we rely 
on the direct search results from LHC which exclude tan β > 50 in 
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the heavy charged Higgs area, i.e., mH± > 200 GeV [14]. The pre-
sented results, however, are extended to mH± = 400 GeV which is 
beyond the current flavor physics limits.

The ongoing analyses at LHC focus on gb̄ → t H− process to 
search for the heavy charged Higgs. However, single top events 
have also been proved to be a significant source of the charged 
Higgs in both low and high mass regions. The light charged Higgs 
may be produced in a t-channel single top production through the 
top quark decay [19]. The heavy charged Higgs is, however, pro-
duced directly through the s-channel single top production with 
the signature of such events being the kinematic differences from 
pure Standard Model (SM) events [20]. The analysis performed 
in [20] has led to promising results comparable to what has been 
obtained from the analysis of gb̄ → t H− process at LHC [21–24].

The aim of this paper is to show that there is still room to im-
prove the signal sensitivity in s-channel single top analysis [20]. 
An analysis of the parton distribution functions (PDFs) inside the 
incoming protons shows that heavy quark PDF (c and b quarks) 
is not negligible and can lead to sizable contribution to the rate 
of incoming partons in the interaction. On the other hand the 
vertex coupling in a process like cb̄ → H+ is proportional to the 
b-quark mass at high tan β while the corresponding diagonal cou-
pling which appears at cs̄ → H+ interaction is proportional to the 
s-quark mass. One should of course take into account the CKM 
 under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
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Fig. 1. The signal production process. The hermitian conjugate of the above process 
is included throughout the paper in all calculations even if not explicitly stated.

matrix element suppression in the former, however, as will be 
shown, the suppression is not strong enough to decrease the rate 
dramatically. In fact it turns out that cb̄ initiated process has a 
larger cross section than that initiated from cs̄.

In what follows, details of the s-channel single top cross section 
calculation are presented, with a list of quark masses and CKM ma-
trix element values used in the analysis. All possible initial states 
are included in the calculation and a total cross section is obtained 
as the sum of diagonal and off-diagonal couplings between incom-
ing quarks and compared with what is obtained from the main 
diagonal coupling cs̄. In order to visualize the results, event se-
lection efficiencies from [20] are used and updated contours are 
presented for a 5σ discovery or 95% C.L. exclusion.

2. Cross section of heavy charged Higgs production in single top 
events

In this section a description of cross section calculation based 
on Yukawa couplings is presented. The analysis is based on 
MSSM, mh-max scenario [2] with the following parameters: M2 =
200 GeV, Mg̃ = 800 GeV, μ = 200 GeV and MSUSY = 1 TeV. In or-
der to be more specific, the Feynman diagram under study is 
illustrated in Fig. 1. The final evaluation and parameter depen-
dence of the cross section is obtained using CompHEP [25,26]. To 
this end, vertex couplings (to be described in the next subsection) 
are implemented in CompHEP and the cross section is calculated 
using Monte Carlo approach requiring a statistical error less than 
a percent.

2.1. Yukawa coupling Lagrangian

The charged Higgs interaction with leptons and quarks can be 
formulated with the following Lagrangian:

L =
√

2
√

2G F H+[
V U D(mU cotβŪ P L D

+ mD tanβŪ P R D) + ml tanβν̄ P Rl
]

(1)

where P L (P R ) are left (right) hand projection operators, V U D is 
the CKM matrix element, and an implicit sum over U (up type 
quarks) and D (down type quarks) is assumed. The last term is 
not under consideration here, but the first two terms describe 
charged Higgs interaction with quarks. The interaction, as is seen 
from Eq. (1), is sensitive to the quark masses as well as the CKM 
matrix elements. This Lagrangian can be used to calculate a parton 
level cross section, however, in real proton–proton interactions, an-
other issue is how likely a parton of a given type comes out of the 
proton and takes part in the interaction. This effect is described by 
the parton distribution function used in the analysis. Fig. 2 shows 
typical distributions of the partons in a proton at a negative four 
momentum transfer set to Q = 250 GeV (a charged Higgs with 
mH± = 250 GeV). As is seen from Fig. 2 heavy quarks (even the 
b-quark) can still be visible although with a much smaller prob-
ability than valence quarks and gluons. A b-quark may appear 
directly or through a gluon splitting and its contribution to the 
Fig. 2. The parton distribution functions at Q = 250 GeV, using CTEQ 6.6.

Table 1
Quark masses according to PDG 2012 [27]. The 
light quark masses are evaluated in the MS
scheme at a scale μ ∼ 2 GeV. The cross section 
is almost insensitive to the light quarks. The c-
and b-quark masses are the running masses in 
the MS scheme. These values are used as input 
for running to the proper scale of the interac-
tion which is taken as the charged Higgs mass.

Quark flavor Mass [GeV]

u 0.0023
d 0.0048
s 0.095
c 1.275
b 4.18
t 173

Table 2
CKM quark-mixing matrix elements according 
to PDG 2012 [27].

CKM matrix element Value

V ud 0.97
V us 0.22
V ub 0.004
V cd 0.23
V cs 1.00
V cb 0.04

Yukawa coupling is proportional to its mass at high tan β . There-
fore it may not be surprising that a cb̄ initial state makes a larger 
contribution than diagonal cs̄ term in spite of the strong CKM sup-
pression.

2.2. Quark masses and CKM quark-mixing matrix elements

For our calculations, we use Particle Data Group (pdg) data [27]
for quark masses as well as the CKM matrix elements as listed in 
Tables 1 and 2 respectively. The CKM elements listed in Table 2 are 
those related to the initial state quarks (incoming partons). The fi-
nal state is set to a pair of top and bottom quarks. Therefore the 
only CKM matrix element for the final state is Vtb which is as-
sumed to be unity (the recent CMS measurement at 7 TeV implies 
Vtb = 1.14 ± 0.22).

It should be noted that the presented quark masses in Table 1
are used for performing their running to the proper scale of the in-
teraction which is the charged Higgs mass. The running process is 
performed by FeynHiggs 2.8.3 [28] which is linked to CompHEP for 
cross section calculation. This process is repeated for each charged 
Higgs mass hypothesis and is done for all quarks involved in the 
parton level interaction.
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Fig. 3. Charged Higgs total width at different tanβ .

As an example, using FeynHiggs, the following quark masses 
are obtained at the scale of mH± = 200 GeV: mc = 0.57 GeV, 
ms = 0.05 GeV, mb = 2.63 GeV, mt = 169 GeV. These values result 
in Γcs = 2.43 × 10−3 GeV, Γtb = 0.56 GeV with tan β = 50, where 
Γcs (Γtb) is charged Higgs decay rate to a pair of cs̄ (tb̄). Using 
a tree level calculation based on the Yukawa coupling Lagrangian 
Eq. (1), the partial rate of the charged Higgs decay to quark pairs 
is obtained as in Eq. (2),

ΓH±→U D̄ = 3
√

2G F V U D

8π
mH±

(
1 − m2

U

m2
H±

)2[
m2

U cot2 β

+ m2
D tan2 β

]
(2)

where U and D denote up-type and down-type quarks. Inserting 
quark masses mentioned above in Eq. (2) the following partial de-
cay rates are obtained: Γcs = 2.45 × 10−3 GeV, Γtb = 0.55 GeV. 
These values are based on quark masses at the charged Higgs 
mass scale and are in reasonable agreement with FeynHiggs re-
sults which are used by CompHEP for cross section calculation.

2.3. Cross section calculation

The main approach for cross section calculation in this paper is 
based on using CompHEP. The charged Higgs total width is calcu-
lated for several charged Higgs mass and tan β values using Feyn-
Higgs. Results are shown in Fig. 3 and used by CompHEP for cal-
culating cross sections. The integration over parton level cross sec-
tions is performed in CompHEP using CTEQ 6.6 parton distribution 
function (PDF) to obtain the cross section at real proton–proton 
interactions at LHC nominal center of mass energy 

√
s = 14 TeV.

In order to check cross section values, a second approach is also 
adopted by calculating parton level cross sections as in Eq. (3),

σ̂ = 2 j + 1

(2s1 + 1)(2s2 + 1)

16πm2
H±

ŝ

Γ (H± → cs̄)Γ (H± → tb̄)

(ŝ − m2
H±)2 + m2

H±Γ 2
total

(3)

where ŝ = xi x j s, s is the square of the center of mass energy 
(
√

s = 14 TeV) and xi and x j are proton momentum fractions car-
ried by the two incoming partons. The spin factor in Eq. (3) uses 
j = 0 for the charged Higgs spin and s1 = s2 = 1/2 for the spin 
of incoming partons. The proton–proton cross section is then ob-
tained by inserting σ̂ (Eq. (3)) in Eq. (4) which takes into account 
the parton distribution functions f (xi, Q , i),

σ =
∑∫

dxi

∫
dx j f (xi, Q , i) f (x j, Q , j)σ̂ (4)
i, j
Fig. 4. Cross section of pp → H± → tb at tanβ = 20. Contribution of different initial 
states as well as the total value is shown separately.

Fig. 5. Cross section of pp → H± → tb at tanβ = 30. Contribution of different initial 
states as well as the total value is shown separately.

In Eq. (4), i and j denote the parton flavors and Q (negative mo-
mentum transfer) is taken as the charged Higgs mass. The cross 
section calculation using Eq. (4) requires parton distribution func-
tions, f (xi, Q , i), which are accessible through LHAPDF. In our cal-
culation LHAPDF 5.8.6 [29] is used for this purpose and a code 
is written to numerically integrate over xi and x j and calculate 
the cross section. Results from CompHEP and our calculation for 
mH± = 200 GeV and tan β = 50 are σ(cs̄ → H+ → tb̄)(CompHEP) =
1.46 pb and σ(cs̄ → H+ → tb̄)(Our calculation) = 1.40 pb. Therefore 
cross sections are calculated correctly based on quark masses at 
the proper scales.

2.4. Results

In this section, results of pp → H± → tb cross section calcu-
lation are presented for different tan β values. In Figs. 4, 5 and 6
results are presented including all initial states which are shown 
in separated curves. The total cross section is the sum of all initial 
states. As is seen the cb initial state has the largest contribution 
to the total cross section for any charged Higgs mass and tan β . 
The ratio of total cross section to that of cs initial state is shown 
in Fig. 7. Results are in agreement with [30] where a discussion 
on the contribution of cb and cs initial states has been presented. 
Finally Fig. 8 compares cross sections at different tan β values in-
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Fig. 6. Cross section of pp → H± → tb at tanβ = 50. Contribution of different initial 
states as well as the total value is shown separately.

Fig. 7. Ratio of total cross section of pp → H± → tb to that of only cs initial state.

Fig. 8. Cross section comparison at different tan β .

cluding all initial states and reveals the fact that at high tan β the 
cross section grows rapidly.

3. The 95% C.L. exclusion and 5σ discovery contours

Results of [20] are based on a cross section calculation in-
cluding only cs initial state. As Fig. 7 shows, the cross section is 
Fig. 9. The 95% C.L. exclusion contour at different integrated luminosities of 30, 60 
and 100 fb−1. The regions with “LEP” and “LHC” labels refer to [2] and [14].

Fig. 10. The 5σ discovery contour at different integrated luminosities of 30, 60 and 
100 fb−1. The regions with “LEP” and “LHC” labels refer to [2] and [14].

∼ 2.7 times larger if all initial states are included. This effect is al-
most independent of the charged Higgs mass and tan β . Therefore 
using the same event selection efficiencies as in [20] and updated 
cross sections obtained in this paper, contours of 95% C.L. exclusion 
and 5σ discovery are produced using TLimit code implemented in 
ROOT [31]. Figs. 9 and 10 show the 95% C.L. exclusion and 5σ dis-
covery contours respectively. In Figs. 9 and 10, the excluded region 
obtained in [14] has been shown. Small tan β values are excluded 
by LEP [2].

4. Conclusions

The s-channel charged Higgs production was revisited with spe-
cial care on the contribution of different incoming partons in the 
interaction. The total cross section was obtained including all ini-
tial states and it was concluded that off-diagonal terms in the 
Yukawa interaction of the charged Higgs and quarks play an im-
portant role even though partially suppressed by the CKM matrix 
elements. The total cross section was obtained to be ∼ 2.7 times 
the dominant diagonal term, i.e., cs initial state. Using selection 
efficiencies from an earlier analysis, contours of exclusion and dis-
covery were updated. Results show that with this channel, almost 
all parameter space in the mass range 200 GeV < mH± < 300 GeV
can be excluded even at tan β values as low as 10. This is a result 
which has not yet been obtained using current LHC experiments 
and is worth considering in their analyses.
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