
Deriving Safety Cases for the Formal Safety

Certification of Automatically Generated

Code

Nurlida Basir 1

ECS, Southampton University
Southampton, SO17 1BJ, UK

Ewen Denney 2

USRA/RIACS, NASA Ames Research Center
Mountain View, CA 94035, USA

Bernd Fischer 3

ECS, Southampton University
Southampton, SO17 1BJ, UK

Abstract

We present an approach to systematically derive safety cases for automatically generated code from infor-
mation collected during a formal, Hoare-style safety certification of the code. This safety case makes explicit
the formal and informal reasoning principles, and reveals the top-level assumptions and external dependen-
cies that must be taken into account; however, the evidence still comes from the formal safety proofs. It
uses a generic goal-based argument that is instantiated with respect to the certified safety property (i.e.,
safety claims) and the program. This will be combined with a complementary safety case that argues the
safety of the framework itself, in particular the correctness of the Hoare rules with respect to the safety
property and the trustworthiness of the certification system and its individual components.

Keywords: Automated code generation, Hoare logic, formal code certification, safety case, Goal
Structuring Notation.

1 Email: nb206r@ecs.soton.ac.uk . Supported by the IPTA Academic Training Scheme of the Ministry
of Higher Education of the Malaysian Government.
2 Email: Ewen.W.Denney@nasa.gov . Supported by NASA under awards NCC2-1426 and NNA07BB97C.
3 Email: b.fischer@ecs.soton.ac.uk .

Electronic Notes in Theoretical Computer Science 238 (2009) 19–26

1571-0661 © 2009 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2009.09.003
Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82793625?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:nb206r@ecs.soton.ac.uk
mailto:Ewen.W.Denney@nasa.gov
mailto:b.fischer@ecs.soton.ac.uk
http://www.elsevier.com/locate/entcs
http://creativecommons.org/licenses/by-nc-nd/3.0/

1 Introduction

Model-based design and automated code generation have become popular, but sub-

stantial obstacles remain to their more widespread adoption in safety-critical do-

mains: since code generators are typically not qualified, there is no guarantee that

their output is safe, and consequently the generated code still needs to be fully tested

and certified. Here, formal methods such as formal software safety certification [3]

can be used to demonstrate the required safety and integrity of the generated code,

providing formal proofs as explicit evidence or certificates for the assurance claims.

However, several problems remain. For automatically generated code it is particu-

larly difficult to relate the proofs to the code; moreover, the proofs are the final stage

of a complex process and typically contain many details. This complicates an intu-

itive understanding of the assurance claims provided by the proofs. The complexity

of the tools used can lead to unforeseen interactions and thus causes additional

concerns about the trustworthiness of the assurance claims. Hence, it is important

to make explicit which claims are actually proven, and on which assumptions and

reasoning principles both the claims and the proofs rest.

Here, we address this problem and present an approach currently under devel-

opment to systematically (and ultimately automatically) derive safety cases from

information collected during the formal certification phase, in particular the con-

struction of the necessary logical annotations. The purpose of these safety cases is

to provide a “structured reading guide” for the program and the safety proofs that

will allow users to understand the safety claims without having to understand all

the technical details of the formal machinery. We use a generic, multi-tiered safety

case that is instantiated with respect to a given safety property and program. Its

upper tier simply instantiates the notion of safety and the formal definitions for the

given safety property while its two lower tiers argue the safety of the program as

governed by the property. The lower tiers are constructed individually to reflect

the program structure. This can be done systematically because their argument

structure directly follows the course the annotation construction takes through the

program. Our approach is thus independent of the given safety property and pro-

gram, and consequently also independent of the underlying code generator. These

three tiers together constitute a single safety case that justifies the safety of the

program. This paper discusses the structure of this safety case. It will eventually

be complemented by an additional safety case that justifies the trustworthiness of

the certification tool and framework itself. This will argue the safety of the un-

derlying safety logic (the language semantics and the safety policy) with respect to

the safety property (i.e., safety claims), as well as other components such as the

theorem prover.

We believe that the combined safety case (i.e., for the program being certified,

as well as the safety logic and the certification system) will clearly communicate the

safety claims, key safety requirements, and evidence required to trust the generated

code. We expect that this will alleviate distrust in code generators, which remains

a problem for their use in safety-critical applications.

This paper describes work still in progress. So far we have developed the overall

N. Basir et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 19–2620

structure of the generic program safety case and manually instantiated it for sev-

eral examples, using only information logged during annotation construction. We

expect that this process can be automated easily and that it will furthermore be

straightforward to integrate with existing tools to construct safety cases such as

Adelard’s ASCE tool [1].

2 Formal Software Safety Certification

The purpose of software safety certification is to demonstrate that a program meets

its high-level requirements and remains safe in the presence of known hazards. For-

mal software safety certification uses formal techniques based on program logics to

show that the software does not violate certain conditions during its execution. A

safety property is an exact characterization of these conditions, based on the opera-

tional semantics of the programming language. Each safety property thus describes

a class of hazards. A safety policy is a set of Hoare rules designed to show that safe

programs satisfy the safety property of interest. In our framework, the rules are

formalized using the usual Hoare triples extended with a “shadow” environment

which records safety information related to the corresponding program variables,

and a safety predicate that is added to the computed verification conditions (VCs)

[3]. However, here we focus on the information provided by constructing the an-

notations, and leave the details of constructing (i.e., applying the Hoare rules) and

proving (i.e., calling a theorem prover) the VCs to the complementary safety case.

Formal software safety certification follows the same technical approach as pro-

gram verification. A VC generator (VCG) traverses the code backwards and applies

the Hoare rules to produce VCs, starting with any requirements on output variables.

If all VCs are proven by an automated theorem prover (ATP), we can conclude that

the program is safe wrt. the safety property.

Our example below uses initialization safety but our framework can handle a

variety other safety properties including absence of out-of-bounds array accesses

[3]; we expect that other properties handled by proof-carrying code such as null

pointer dereferences [7] can be formalized easily. However, we are not restricted

to showing exception freedom but can also encode domain-specific properties such

as matrix symmetry or coordinate frame consistency (which requires significant

proofs involving matrix algebra and functional correctness), whose violation will

not immediately cause a run-time exception but still renders the code unsafe.

3 Annotation Inference

In order to achieve a fully automated verification, a program logic requires annota-

tions (i.e., pre- and post-conditions, and loop invariants) at key program locations.

The purpose of annotation inference [5,6] is to construct these annotations auto-

matically, by analyzing the program structure. In our case, the annotations must

formalize all pertinent information that is necessary for the ATP to prove that all

potentially unsafe locations are in fact safe. If the program is safe, this information

N. Basir et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 19–26 21

will be established or “defined” at some location (which we thus call a definition)

and maintained along all control-flow paths to all the potentially unsafe locations,

where it is used. The idea of the annotation inference algorithm, therefore, is to

“get the information from definitions to uses”, i.e., to find the endpoints of all such

generalized def -use-chains, to construct the formulae used in the annotations, and

to annotate the program along the paths.

The annotation inference algorithm itself is generic, and parametrized with re-

spect to a library of coding patterns that depend on the safety policy and the code

generator. The patterns characterize the notions of definitions and uses that are spe-

cific to the given safety property. For example, for initialization safety, definitions

correspond to variable initializations while uses are statements which read a vari-

able, whereas for array bounds safety, definitions are the array declarations (where

the shadow variables get their values from the declared bounds), while uses are

statements which access an array variable. The inferred annotations are thus highly

dependent on the actual program and the properties being proven. For example, for

the initialization property, an invariant on a for-loop might express that an array

has been initialized up to the loop index (∀j ≤ i · Ainit[j]). The VCG will turn this

annotation into three VCs, corresponding to establishing the invariant on loop entry,

preservation of the invariant by the loop body, and implication by the “exit form”

of the invariant (over the loop bounds) of the loop post-condition. For other safety

properties, the annotations can be seen as encapsulating the safety requirements

directly. In the case of the symmetry policy, a postcondition ∀i, j ·M [i, j] = M [j, i]

expresses the symmetry of M . Again, this will be converted into VCs and checked

by the prover. However, it is the def -use-dependencies, rather than the annotations

or the VCs, which govern the overall structure of both the safety argument and the

safety case.

4 Deriving Safety Cases via Annotation Inference

In our work, we consider each violation of the given safety property as a hazard.

To demonstrate that this hazard can not lead to a system failure, we construct a

safety case that argues that the safety property is in fact not violated and thus

that the risk associated with this hazard is controlled or mitigated. Safety cases are

structured arguments, supported by a body of evidence, that provide a convincing

and valid case that a system is acceptably safe for a given application in a given

operating environment [2]. In our case, the high-level structure of this argument

is constructed from information collected by the annotation inference algorithm.

However, the evidence still comes from the formal safety proofs. The safety case

only makes explicit the formal and informal reasoning principles, and reveals the

top-level assumptions and external dependencies that must be taken into account.

It can thus be thought of as “structured reading guide” for the safety proofs.

Here, we provide a simplified overview of this safety case. We concentrate on

its generic structure and describe its different tiers. We further concentrate on

the program itself, leaving the remaining elements (i.e., the formal framework, the

N. Basir et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 19–2622

(no termination)

n, n’ |= x safe iff x = init

Context: Goal: Context:

Context:

Context:

Model:

Justification:

Strategy:

Model:

Justification:

Context: Goal: Goal:

Constraint:

Generated by AutoFilter from

Constraint:
intermediate represenation only

the model quaternion_ds1

Certification works on

The code is safe to execute wrt. the safe = code does not violate
given safety property during execution

safety−relevant information for variables
"shadow variables" record

"init−before−use" safety property.

correctness wrt. init−before−use policy

are safe wrt. init−before−use

init

Semantic safety definition

safety policy defined in
terms of read accesses

Formalization of safety policy is
adequate

init

Argument based on partial

safety property = requirement to
be maintained continuously by program

init−before−use = variable or

before it is read

Constraint: focus on given safety
property only

partial correctness proof only

Hoare−style program
verification using specific proof rules

proof of correctness

array element is explicitly assigned value

all read accesses to all variables

ensures safety of execution

Fig. 1. Tier I of Derived Safety Case: Explaining the Safety Notion

certification system and its individual components, and the safety proofs) of the

combined safety case for future work.

4.1 Tier I: Explaining the Safety Notion

Figure 1 shows the goal structure for the top tier of the safety case. It starts with the

top-level safety goal (i.e., the safety of the generated code with respect to the safety

property of interest) and shows how this is achieved by a formal argument based on

the partial correctness of the generated code. The argument stresses the meaning

of the Hoare-style framework, specialized to the given safety property. However,

the argument structure remains independent of the property. It uses contexts to

explain the informal interpretation of key notions like “safe” and “safety property”

and constraints to outline limitations of the approach, in particular the fact the

certification works on an intermediate representation of the source code and only

shows a single property. Hyperlinks refer to additional evidence in the form of

documents containing, for example, the model from which the source code has been

generated.

The key strategy at this tier and its model (i.e., a Hoare-style partial correctness

proof using the dedicated proof rules of the init-before-use safety policy) as well as

its limitations (i.e., no termination proof) are made explicit. The strategy reduces

showing the safety of the whole program to showing the safety of all read accesses,

which emerges as first subgoal. This is justified by the fact that the safety property

is defined in terms of variable read accesses. The subgoal is further elaborated

by a model of the semantic safety definition, which exactly defines what is meant

by “safe”, using the notion of shadow variables given as context. The strategy’s

second subgoal is to show that the safety policy adequately represents the safety

property, which is also the foundation of the strategy’s original justification (i.e.,

the claim that the proofs ensure the safe execution of the program). This subgoal

is not elaborated further in this safety case but leads to the complementary safety

case for the safety logic.

N. Basir et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 19–26 23

individually

... ...

...

... ...

...

individual variables

... ...

access occurrences of xhatmin

Goal:

Strategy: Justification:

Goal:

Justification:

Goal:

Justification:Goal:

Goal:

Strategy:

Goal:Goal:

Assumption:

Goal:

Justification:

Assumption:

all read accesses to all variables

Complete list of variables

xinit is safe

Complete list of occurrences

xhatmin is safe at location #161

are safe wrt. init−before−use

Argument over each variable

xhatmin is safe r is safe

xhatmin is safe at location #205

init
Safety condition xhatmin (3,0)=init

holds at this location

Argument over all read

Safety property defined on

xhatmin is safe at location #294

Only read accesses can
violate safety property

Safety condition is derived
by instantiation of the safety predicate
over occurrence

Soundness and complete−
ness of safety policy

Fig. 2. Tier II of Derived Safety Case: Arguing over the Variables

of variable safety

Goal:

is proven

is proven

...

......
is proven is proven

Goal: Goal:

Goal:

Assumption:

Assumption: Goal:Goal:

Strategy: Goal:

Goal:Goal:Goal:

Goal:

Strategy:

Safety condition xhatmin (3,0)=init
holds at this location

init

Complete list of
VCs

Complete list of
paths

Strategy: Argument over establishment,
maintenance, and strength of var. safety

Argument over establishment

Model:
of assignments

Model:
assignment

MatrixSeriesxhatmin is de− xhatmin is de−

VC #04

Variable safety from all paths
implies safety condition

Variable safety is maintained on Variable safety is established on
all paths to this location all paths to this location

maintained on path #1
variable safety variable safety

maintained on path #4
Goal:
fined in lines 154−159

Goal:
is proven

VC #07 VC #14

VC #30Argument over all paths

VC #17

fined at line 288

Fig. 3. Tier III of Derived Safety Case: Arguing over the Paths

4.2 Tier II: Arguing over the Variables

The second tier reduces the safety of all variables in two steps, first to the safety

of each individual variable (justified by the fact that the safety property is defined

on individual variables) and then to the safety of the individual occurrences. Note

that the number of subgoals of both strategies (see Figure 2 for the goal structure)

and the safety conditions are program-specific. This information is provided by the

annotation inference.

Both strategies are predicated on the assumption that they iterate over the

complete list of variables (resp. occurrences). Each individual occurrence then leads

to a subgoal to show that the computed safety condition is valid at the location of

the variable’s occurrence. This reduction to a formal proof obligation is justified by

the soundness and completeness of the safety policy; in addition, the specific form

of the safety condition is also justified.

N. Basir et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 19–2624

4.3 Tier III: Arguing over the Paths

The final tier (see Figure 3 for the goal structure) argues the safety of each individual

variable access, using a strategy based on establishing and maintaining appropriate

invariants. This directly reflects the course the annotation inference has taken

through the code. The first subgoal is thus to show that the variable safety is

established on all paths leading to the current location, using a formal argument

over all definition locations. Here, the model for the subgoal corresponds to the

pattern that was applied during annotation inference to identify the definition. Each

definition thus leads to a corresponding subgoal and then further to any number of

VCs, although here only a single VC emerges in both cases.

Goals that concern properties of the program (e.g., “xhatmin is defined”) are

decomposed into subgoals that comprise program-independent tasks for the prover,

i.e., VCs. The validity of the construction of the VCs depends on the soundness of

the rules of the VCG, the simplifier, and the definition of the safety policy, while

the correspondence to program locations is based on on tracing information added

by the VCG and retained during the certification process. We have omitted these

details from the safety case.

The second subgoal of the top-level strategy is to show that the established

variable safety is maintained along all paths. This proceeds accordingly. The final

subgoal is then to show that the variable safety implies the validity of the safety

condition. This can again lead to any number of VCs. If (and only if) all VCs

can be shown to hold, then the safety property holds for the entire program. The

evidence for the VCs is provided by the formal proofs; we plan to convert these into

safety cases as well.

5 Conclusions

Software development standards for safety-critical domains such as DO-178B [8] are

typically process-oriented and require that code generators are qualified for applica-

tion, often using an elaborate testing regime [9]. This time-consuming and expen-

sive process slows down generator development and application. We believe that

product-oriented assurance approaches are a viable alternative. Here, assurance is

not implied by the trust in the generator but follows from an explicitly constructed

argument for the generated code. We further believe that formal methods such as

formal software safety certification can provide the highest level of assurance of the

code’s safety and integrity, and have described an approach whereby the inference of

annotations drives both formal safety proofs and the construction of a safety case.

However, the proofs by themselves are no panacea, and it is important to make

explicit which claims are actually proven, and on which assumptions and reasoning

principles both the claim and the proof rest. We believe that purely technical

solutions such as proof checking [11] fall short of the assurance provide by our

safety case, since they do not take into account the reasoning that goes into the

construction of the VCs. In fact, we consider the safety case only as a first step

towards a fully-fledged software certificate management system [4].

N. Basir et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 19–26 25

We have described work still in progress. So far, we have developed the overall

structure of the generic program safety case and instantiated it manually. The

example shown here uses code generated by our AutoFilter system [10], but the

underlying annotation inference algorithm has also been applied to code generated

from Matlab models using Real-Time Workshop, and we expect that the same

derivation can be applied there as well. Current work involves constructing a more

comprehensive, combined safety case that covers the components of the certification

system itself (i.e., the formal framework, the inference system and its individual

components, and the safety proofs). There we rely on the fact that trust in the

complex components of the system can be reduced to trust in simpler components.

For example, the use of proof checking mitigates the risk of the automated theorem

prover.

References

[1] ASCE home page (2007), www.adelard.com/web/hnav/ASCE.

[2] Bishop, P. and R. Bloomfield, A methodology for safety case development, in: F. Redmill and
T. Anderson, editors, Industrial Perspectives of Safety-critical Systems: Proceedings of the Sixth Safety-
critical Systems Symposium (1998), pp. 194–203.

[3] Denney, E. and B. Fischer, Correctness of source-level safety policies, in: K. Araki, S. Gnesi and
D. Mandrioli, editors, Proc. FM 2003: Formal Methods, LNCS 2805 (2003), pp. 894–913.

[4] Denney, E. and B. Fischer, Software certification and software certificate management systems
(position paper), in: Proceedings of the ASE Workshop on Software Certificate Management Systems
(SoftCeMent ’05), 2005, pp. 1–5.

[5] Denney, E. and B. Fischer, Annotation inference for safety certification of automatically generated code
(extended abstract), in: S. Uchitel and S. Easterbrook, editors, Proc. 21st ASE (2006), pp. 265–268.

[6] Denney, E. and B. Fischer, A generic annotation inference algorithm for the safety certification of
automatically generated code, in: S. Jarzabek, D. C. Schmidt and T. L. Veldhuizen, editors, Proc. Conf.
Generative Programming and Component Engineering (2006), pp. 121–130.

[7] Necula, G. C., Proof-carrying code, in: Proc. 24th POPL (1997), pp. 106–19.

[8] RTCA, “Software Considerations in Airborne Systems and Equipment Certification,” RTCA, 1992.

[9] Stürmer, I. and M. Conrad, Test suite design for code generation tools, in: Proceedings of 18th IEEE
International Conference on Automated Software Engineering (2003), pp. 286–290.

[10] Whittle, J. and J. Schumann, Automating the implementation of Kalman filter algorithms, ACM
Transactions on Mathematical Software 30 (2004), pp. 434–453.

[11] Wong, W., Validation of HOL proofs by proof checking, Formal Methods in System Design: An
International Journal 14 (1999), pp. 193–212.

N. Basir et al. / Electronic Notes in Theoretical Computer Science 238 (2009) 19–2626

	Introduction
	Formal Software Safety Certification
	Annotation Inference
	Deriving Safety Cases via Annotation Inference
	Tier I: Explaining the Safety Notion
	Tier II: Arguing over the Variables
	Tier III: Arguing over the Paths

	Conclusions
	References

