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Background:While there is increasing evidence of altered brain connectivity in autism, the degree and direction
of these alterations in connectivity and their uniqueness to autism has not been established. The aim of the
present study was to compare connectivity in children with autism to that of typically developing controls and
children with developmental delay without autism.
Methods:We assessed EEG spectral power, coherence, phase lag, Pearson and partial correlations, and epileptiform
activity during the awake, slowwave sleep, and REM sleep states in 137 children aged 2 to 6 yearswith autism (n=
87), developmental delay without autism (n = 21), or typical development (n = 29).
Findings:We found that brain connectivity, as measured by coherence, phase lag, and Pearson and partial correla-
tions distinguished children with autism from both neurotypical and developmentally delayed children. In general,
children with autism had increased coherence which was most prominent during slow wave sleep.
Interpretation: Functional connectivity is distinctly different in children with autism compared to samples with
typical development and developmental delay without autism. Differences in connectivity in autism are state and
region related. In this study, children with autism were characterized by a dynamically evolving pattern of altered
connectivity.

Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Autism Spectrum Disorder (ASD) is a group of complex neuro-
developmental disorders, characterized by deficits in social communica-
tion and interaction and restricted, repetitive, and stereotyped patterns
of behavior. The symptoms are present from early childhood and are
impairing to everyday functioning. Individuals with ASD have co-
occurring intellectual disability, language disorder, and epilepsy at
higher rates than the general population. A singular pathophysiological
mechanism is unlikely to be responsible for the autistic phenotype.
While genetics play an important role in ASD (Risch et al., 1999;
Anney et al., 2010; Hallmayer et al., 2011; Pinto et al., 2014; Gaugler
et al., 2014), environmental and other non-genetic factors can contrib-
ute to the development of autistic symptomatology (Hallmayer et al.,
2011). A perplexing question is how such a disparate group of etiologies
can result in a recognizably consistent phenotype of often devastating
impairments in social communication and behavior.
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Several sources document that the brains of individuals with ASD
exhibit aberrant functional connectivity (Belmonte et al., 2004; Uddin
et al., 2013; Kana et al., 2011; Casanova and Trippe, 2009; Muller et al.,
2011; Dinstein et al., 2011), defined as the “temporal correlations
between remote neurophysiological events,” (Friston, 2011) using
MRI techniques (Pina-Camacho et al., 2012; Cheng et al., 2010). Many
neuroimaging studies, using both functional MRI (fMRI) and diffusion
tensor imaging (DTI) done during both task-specific (Koshino et al.,
2005; Koshino et al., 2008; Just et al., 2007; Kana et al., 2006) and
resting-state (idle) conditions (Cherkassky et al., 2006; Weng et al.,
2010), have shown that individuals with ASD have reduced long-
range (distant) brain connectivity when compared to people with
neurotypical development. A separate set of studies have shown
reduced short-range (local) connectivity (Kana et al., 2011; Koshino
et al., 2005; Koshino et al., 2008; Just et al., 2007). Yet results from
other studies have demonstrated increases in connectivity, both long-
range (Cheng et al., 2010; Ben Bashat et al., 2007; Supekar et al., 2013)
and short-range (Weng et al., 2010; Anderson et al., 2011; Khan et al.,
2013; Lewis et al., 2013; Keown et al., 2013).

While MRI studies may offer anatomical insight about connectivity
in autism, they lack temporal resolution. EEG and magnetoencephalog-
raphy (MEG) studies provide a means of evaluating this parameter of
ense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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functional connectivity. These coherence studies generally analyze the
phase shift and amplitude ratio between two signals over time where
consistency of the relationship, on a frequency by frequency basis, is
interpreted as high coherence or evidence for functional connectivity.
A number of studies have compared EEG coherence findings between
ASD and typically developing control populations (Cantor et al., 1986;
Murias et al., 2007; Coben et al., 2008; Lazarev et al., 2010; Isler et al.,
2010; Barttfeld et al., 2011; Leveille et al., 2010; Duffy and Als, 2012).
Similar to the MRI studies, there have been mixed results with some
children with ASD demonstrating reduced coherences (Khan et al.,
2013; Coben et al., 2008), while others have shown increases in coher-
ences (Murias et al., 2007; Orekhova et al., 2014; Dominguez et al.,
2013) or mixed patterns (Barttfeld et al., 2011; Leveille et al., 2010;
Duffy and Als, 2012).

While it is not known why there are discrepancies in both the MRI
and electrophysiology studies, the great variability in cohorts studied,
age of subjects, state examined, patient number, and approach to data
analysis likely all contribute to the lack of consensus. Another pressing
question is whether the changes in connectivity identified in ASD are
unique to the disorder or simply a reflection of impaired development.
Here, we studied brain connectivity using electrophysiology data from
a large cohort of children that had typical development (TYP), develop-
mental delay (DD), or ASD during the awake, slow wave sleep (SWS),
and rapid eye movement (REM) sleep state.

2. Methods

2.1. Study Design and Participants

The study sample consisted of participants in an NIH natural history
study of ASD approved by the National Institutes of Health Combined Neu-
rosciences Institutional Review Board. The total study sample consisted of
201 children aged 2 to 6 years with ASD (n = 106), DD (n = 25), and
TYP (n= 70); EEG was obtained from 137 (68%) children (see Fig. 1).

Consentwas obtained from the parent or guardian of each participant.
Recruitment for the ASDgroupwas based on parental concern about ASD.
Children were enrolled in the ASD group if they met the DSM-IV-TR
(American Psychiatric Association, 2000) criteria for autistic disorder
based on research-reliable administrations of the Autism Diagnostic
Interview-Revised (ADI-R; or a Toddler version) (Rutter et al., 2003),
Fig. 1. Patient disposition and sample characteristics. ASD = autism spectrum disorder. DD=
opmental quotient. VDQ = verbal developmental quotient. Sample sizes for ADOS CSS are ASD
the Autism Diagnostic Observation Schedule (ADOS) (Lord et al.,
2000), and clinical judgment. Cognitive ability was assessed using a de-
velopmental quotient (ratio IQ) from either the Mullen Scales of Early
Learning (Mullen, 1995) or the Differential Abilities Scales (Elliott,
2007), depending on the child's level of function. Children in the DD
groupwere specifically recruited to serve as an IQ-matched comparison
group, and were targeted based on history of language, cognitive, or
general developmental delay. Children were enrolled in the DD group
if developmental quotient scores were more than 1·5 standard devia-
tions below the populationmean and if ASDwas ruled out through clin-
ical assessment and administration of the ADI-R and ADOS. TYP controls
were enrolled if there was no history of developmental delay, no mem-
bers of the immediate family were diagnosed with ASD, full-scale IQ
was no more than 1·5 standard deviations below the population mean,
and if ADOS and clinical assessment revealed no concerns about ASD.

Digital EEGs were recorded during the fully awake, drowsy, and
sleep states using the 10–20 System of Electrode placement (Fig. 2).
Ten minute segments of awake, SWS, and REM sleep were selected for
analysis. Sections were selected in which artifact was minimal. Portions
of recordswith suppression bursts or ictal eventswere excluded.Wake-
fulnesswas assessed by evaluation of eye blinks and technologist obser-
vations. If therewas a concern about possible drowsiness, the epochwas
not evaluated. Studieswere excluded if therewas insufficient alert awake
recording, excessive artifact or technical difficulties with the recording.
The final number of interpretable EEGs for each state is listed in Fig. 1.

2.2. Procedures

Analysis was performed masked to participant diagnosis using
Neuroguide software (Applied Neuroscience, Inc., St. Petersburg, Florida)
using a linked-ear montage. Please see supplementary materials for
derivations of frequencies, amplitude asymmetries, EEG spectral analysis
and coherences and functional connectivity.

2.3. Statistical Analyses

2.3.1. Empirically Derived Subgroups Based on Functional Connectivity
This set of analyses was performed in the R programming language

(Team, 2015). To assess functional connectivity, we computed voltage
correlations and partial correlations between each electrode pair for
non-ASD developmental disorder. TYP = typically developing. NVDQ= nonverbal devel-
= 86, DD = 20, TYP = 20.



Fig. 2. Electrode placement.
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each recording session. For each session, the complete set of correla-
tions/partial correlations forms a matrix that can be conceptualized as
a network between probe pairs. To investigate the differences between
the ASD and the TYP and DD groups, all networks were combined into a
single matrix (the data matrix) as follows: correlation matrices of one
type, either partial or Pearson, were linearized by converting the top tri-
angle to a vector. These vectors were concatenated into a single matrix
inwhich each column represents a single network derived from a patient
recording session, and each row holds the correlation for a single pair of
electrodes over all patients and sessions.We performed hierarchical clus-
tering on the data matrix to determine the intrinsic groupings of net-
works within the study population.

To further investigate the ability of correlation networks to classify
children with autism and to extract defining structural features from
these networks, we used support vector machines (SVM) to find a hy-
perplane separating two classes of points in high-dimensional space.
Once the best separating hyperplane was found, support vectors were
used to calculate a vector “w” perpendicular to the separating hyper-
plane. To determine the success of the SVM model in classifying the
data, we divided the data set into a training set and a testing set. We
used 50% of patients in the training set and 50% in the testing set. We
randomly assigned patients to either the training or testing set 100
times and asked how well the model classifies patients in the testing
set (two-fold cross-validation). The stratification of the patient groups
(ASD, DD, and TYP) was preserved in the training and testing groups.
To find differences between the classes that persist over all training
and testing sessions, we averaged “w” across all iterations. We kept
only values that were consistently positive or negative across all 100
trials. All others were fixed at zero.

Two-fold cross-validation allows us to measure both the accuracy
and robustness of the SVM. Accuracy is the fraction of correct classifica-
tions in the testing data and measures how well the model generalizes
to unseen data. We trained and tested on both halves of the data used
and we average the accuracies for both halves. Robustness is defined
as the Pearson correlation between the “w” vectors for the models
trained on each half of the data. Robustness measures how similar the
models are that are trained on different halves of the data.

2.3.2. Other Analyses
The remainder of the analyses consisted of between-group compari-

son of all electrophysiological measures (power [absolute, relative, and
ratios], spectral coherence/Pearson correlations, phase lag, and amplitude
asymmetry). Coherence values were subjected to Fisher-transformation
for statistical analysis. A series of general linear models, controlling for
mean-centered age, was used to evaluate differences between the ASD
and DD and the ASD and TYP groups. SAS/STAT Version 9·3 was used
for all analyses. The SAS/STATMULTTEST procedurewas used to calculate
false discovery rate (FDR (Benjamini and Hochberg, 1995)) adjusted p-
values. Given the exploratory nature of these analyses, we do not use a
strict cutoff for statistical significance.

2.4. Funding

This research was supported by the National Institute of Mental
Health Intramural Research Program.

3. Results

3.1. Coherence and Phase lag

Althoughmanydifferences between theASD andDD andTYPgroups
were observed in mean coherence (see Figs. 5-10 for uncorrected p-
values), a few remained after FDR-correction (Fig. 3, Supplementary
Tables S1 and S2). Most striking was the increased coherence observed
in ASD relative to TYP, almost exclusively during SWS, concentrated in
the frontal–parietal pairs. No differences in coherence were observed
between ASD and TYP during the awake state. Few differences in coher-
ence between ASD and DD remained following correction, in any state.
See Fig. 3

Following FDR correction, differences in phase lag between ASD and
TYP (ASD b TYP)were observed almost exclusively during SWS,most no-
tably in long-distance pairs (Fig. 4; see Supplementary Tables). Differ-
ences between ASD and DD (ASD b DD) were more common, but the
pattern was diffuse across states, bands, and electrode locations.

3.2. Spectral Power

No differences were seen in FFT absolute or relative power or power
ratios between the children with ASD and DD or TYP. No consistent
differences were seen in amplitude asymmetry between the ASD and
TYP or ASD and DD groups in any of the states.

3.3. Epileptiform Activity

The rate of subjects with interictal spikes did not differ among groups;
nine (10%) ASD, two (10%) DD, and two (7%) of the TYP group. Table 1
lists the type of epileptiform activity observed in the three groups.

3.4. Pearson and Partial Voltage Correlations

The hierarchial clustering algorithm failed to differentiate the three
groups of patients and was discarded. However, using the support vec-
tor machines (SVM) model, the ASD children clearly separated from
both the TYP and DD groups using both Pearson and partial correlations
with a high degree of accuracy (Fig. 11). Two-fold cross-validation was
used to test the accuracy and robustness of the SVM model. For SVM
models trained on random halves of the cohort, the median testing
accuracy was greater than 0.75, indicating that the models captured
structure that generalized to the rest of the cohort. For random guessing
using the proportions of ASD, DD, and TYP subjects, the expected accu-
racy was 0.52 for the ASD vs. TYP comparison and 0.69 for the ASD vs.
DD. The null expected accuracy of the ASD vs. DD comparison was
high due to the imbalance of study populations. The SVMmodel, how-
ever, improved over random guessing in all cases and achieves greater
than 0.8 median testing accuracy for the partial correlations (Fig. 11b).
Using either Pearson or partial correlations, the robustness of the model
was low indicating that while group differences were observed in mean



Fig. 3.Heatmap of FDR-adjusted p-values for comparison of coherence in ASD versus DD (Panel A) and ASD versus TYP (Panel B). Pairs are alternately numbered; number corresponds to
order in Supplementary Tables S1 and S2. Pairs are grouped by region: Fp = Frontopolar, F = frontal, T = temporal, C = central, and O = occipital.
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functional connectivity, individual patient differences within each group
were high.

4. Discussion

Our study reports on a cohort of young childrenwith ASDwho show
evidence of altered functional connectivity as measured by several
patterns of oscillatory activity. In comparison to the TYP subjects, the
children with ASD had increased coherence at multiple electrode pairs
and at multiple bandwidths, and phase lag was reduced in comparison
to both DD and TYP. Consistent with these observed differences in the
crude comparisons at each pair and bandwidth, the supervised learning
modelwas successful in separating the three groups on the basis of both
Pearson and partial correlations. However, the robustness of the model
was low, reflecting the high degree of individual differenceswithin each
group.

Whereas EEG coherence is a measure of the consistency of phase
differences over space and computes “phase synchrony” or “phase stabil-
ity” between spatially distant generators, phase lag represents the phase
difference between EEG signals. On a frequency-by-frequency basis, EEG
spectral coherence represents the consistency of the phase difference
between two EEG signals when compared over time whereas phase lag
measures the actual differences in phase. In practice, high coherence
values are taken as a measure of strong connectivity between the brain
regions that produce the compared EEG signals (Srinivasan et al., 2007).

As in this study, decreased EEG phase lag is often associated with
high coherence indicating that in children with ASD there are highly
coherent networks with an unvarying relationship among phases in
different brain regions, but also a network with a remarkably high and
rigid coupling of phase across brain regions. While on average, the
brains of the children with ASD appeared to be overly coherent, there
were a few regions with reduced coherences when compared to the
other groups of children. The most marked differences between the
ASD cohort and the other groups were observed during SWS sleep,
with minimal differences between groups recorded during the wake
state.

The role of sleep in the proper maturation of the developing brain is
an area of current intense interest, with the contribution of state-
specific processes to synaptic refinement just beginning to be under-
stood. The vast majority of ASD coherence studies are not performed
during sleep, and taken as a whole, show very mixed results. Some of
the waking evaluations used EEG or magnetoencephalography (Coben
et al., 2008) and demonstrated reduced coherences (Khan et al., 2013;
Coben et al., 2008), with other studies reporting increases (Murias
et al., 2007; Orekhova et al., 2014;Dominguez et al., 2013) ormixed pat-
terns (Barttfeld et al., 2011; Duffy and Als, 2012). In the MRI literature,
the consistent pattern emerging across several studies is that while
intrinsic functional connectivity in adolescents and adults with autism
is generally reduced compared with age-matched controls, functional
connectivity in younger children with ASD appears to be increased
(Uddin et al., 2013; Nomi and Uddin, 2015). Kitzbichler et al. took an
elegant approach to the apparent discrepancies of over-connectivity
versus under-connectivity in a study of ASD versus control (ages 6–21
years), examiningbothMEG andMRI in the resting state in each subject.
The authors concluded that the true relationship is more complicated
with the major differences beingmediated by both region and frequen-
cy examined (Kitzbichler et al., 2015). Our current study adds to the
complexity surrounding the search for electrophysiologic biomarker
signatures of aberrant neurodevelopment by positing that in addition
to age, bandwidth and region, brain state matters enormously to any
measurements of differences in coherence in the developing brain.
Sleep is a protected time for brain maturation and changes that are
detected only during sleep may provide an early window affording
valuable information about the rapid and dynamic changes that must
take place to build normal functional relationships. The two major fac-
tors that drove the nature of connectivity abnormalities in ASD were
the mediating frequency band and whether the network included fron-
tal nodes. These factors determined whether clustering and integration
were increased or decreased in cortical resting state networks in ASD.

Our recent review of the literature revealed only two studies that
evaluated coherence in ASD in the sleeping brain, and together, the
studies included more adults than children. In 2010, Leveille et al.
(Leveille et al., 2010) compared coherence during REM sleep between
nine adults with ASD and 13 typically developing adults. The authors
found no differences in interhemispheric coherence patterns, however,
they did show increased intrahemispheric coherence in the left visual
cortex involving both short- and long-range connections and reductions
in coherence in the right frontal lobe. In contrast, a 2010 study by Lazar
et al. (Lazar et al., 2010) recorded 18 children and young adults with
Asperger's disorder and normal IQ and compared them to 13 children
and young adults without ASD or intellectual disability in non-REM
sleep. As Leveille's group did, this study also reported no difference in
interhemispheric coherence patterns, but reported a comparative
reduction in intrahemispheric coherence patterns in the right, fronto-
central area in those with ASD. These are very small studies and direct
comparison is made difficult by the differences in the presence or
absence of intellectual disabilities and in sleep states examined.

Functional connectivity may vary with age and therefore, any evalu-
ation of brain activity patterns as potential biomarkers must bemindful
that the developmental timing of the evaluation is likely a critical factor
in the interpretation of differences. Although there have been a few
small, longitudinal EEG studies in typical children (Kurth et al., 2013;
Tarokh et al., 2014) reporting region-specific increases in sleep coher-
ence across development, there are no longitudinal ASD coherence
studies for comparison. Such evaluationswould informondevelopmen-
tal trajectories and perhaps provide insight into the timing for optimal
intervention.We do not comment on age-related changes in coherence
or phase lag in this cross-sectional study, as our forthcoming report on
the longitudinal data from this sample will better address this question.

The evaluation of coherence during sleep as a valuable and informa-
tive exercise is undeniable. The sleep EEG not only reflects the matura-
tion of the brain (Kurth et al., 2013) but also allows for examination of
dynamic neural networks in the absence of external stimuli. In addition,
new insight into the function of sleep statesmakes it imperative thatwe
not overlook the brain's activity during sleep in neurodevelopmental
disorders. While the exact function of sleep is unknown, the strongest
evidence from human and animal experimental studies suggests that
sleep's major role is to regulate brain plasticity (Wang et al., 2011).
SWS is implicated in learning and memory throughout the lifespan
and a prevailing hypothesis has been that SWS is essential for the
consolidation of memories temporarily laid down during waking
hours. However, recent work on REM dependent neuroplasticity in
the cat visual cortex (Dumoulin et al., 2015) suggests a similar role
for REM sleep in the proper maturation of the sensory cortices in
the developing brain. Given that there are both age- and state-
dependent differential effects of sleep on neuronal responses and
processes, further evaluation of sleep coherence during critical win-
dows of neuromaturation is clearly important to our understanding
of neurodevelopmental disorders.

We also found that voltage correlation using Pearson or partial cor-
relation coefficients could distinguish groups of children with ASD
from groups of TYP and DD children. Voltage correlation is a measure
of the co-modulation of the amplitude envelopes (i.e., power) of oscilla-
tions in two brain areas and is also referred to as “power-to-power cor-
relation” or “amplitude–amplitude coupling.” It is important to note
that while both coherences and the voltage correlations provide infor-
mation about functional connectivity, they provide distinctly different
information. The voltage correlations are measures of the degree of
association between amplitudes of the EEG across sites and does not
calculate phase nor does it involve the measurement of the consistency
of phase relationships seen with coherence. The functional significance
of amplitude correlation is less clear than themechanistic interpretation



Fig. 4.Heatmap of FDR-adjusted p-values for comparison of phase lag in ASD versus DD (Panel A) and ASD versus TYP (Panel B). Pairs are alternately numbered; number corresponds to
order in Supplementary Tables S3 and S4. Pairs are grouped by region: Fp = Frontopolar, F = frontal, T = temporal, C = central, and O = occipital.
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Fig. 5.Uncorrected differences in coherence (top row) and phase lag (bottom row) betweenASD and TYP groups during slowwave sleep in the fourmajor frequencies. Red and green lines
represent p values. Red lines indicate that the ASD group has greater coherences and reduced phase lag than the TYP groupwhereas green lines indicate lower coherences or greater phase
lag compared to the TYP group. Note the marked increased in coherences and reductions in phase lag in the ASD compared to the TYP group. Coding for p values as described in Fig. 2.
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of phase coherence. However, taken together, this data indicate that
brain connectivity in ASD is distinctly different on average from children
with other developmental disabilities or typical development.

Finally, we note that childrenwith autism are frequently reported to
have epileptiform activity, in the formof spikes, sharpwaves, and spike-
Fig. 6. Uncorrected differences in coherence (top row) and phase lag (bottom row) between A
increased in coherences and reductions in phase lag in the ASD compared to the DD group. Co
and-wave discharges on their EEG (Hashimoto et al., 2001; Hughes and
Melyn, 2005; Parmeggiani et al., 2007; Spence and Schneider, 2009). In
this study, the rate of epileptiformactivitywas low. The low incidence of
epileptiform activity in the ASD group suggests that it was not a contrib-
uting factor in our findings.
SD and DD groups during slow wave sleep in the four major frequencies. Note the marked
ding for p values as described in Fig. 2.



Fig. 7.Uncorrected differences in coherence (top row) and phase lag (bottom row) between ASD and TYP groups during REM in the fourmajor frequencies. Note themarked increased in
coherences and reductions in phase lag in the ASD compared to the TYP group. Coding for p values as described in Fig. 2.
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5. Limitations

In this study, only the ASD and DD groups are matched on NVDQ.
Thus, we were unable to compare our TYP group to high-functioning
children with ASD. We describe observed differences in functional
Fig. 8.Uncorrected differences in coherence (top row) and phase lag (bottom row) between AS
ences in the β, α, and Θ bandwidths and reductions in phase lag in the ASD compared to the D
connectivity as measured by spontaneous electroencephalographic
discharges between this ASD cohort with ID and other developmental
groups by region and state. While we do review some of the differing
parameters in the extant literature (differences in IQ and age of partici-
pants), this is not an exhaustive review nor do we propose a unifying
D and DD groups during REM in the four major frequencies. Note the reductions in coher-
D group. Coding for p values as described in Fig. 2.



Fig. 9.Uncorrected differences in coherence (top row) and phase lag (bottom row) between ASD and TYP groups during thewaking state in the fourmajor frequencies. Note theminimal
differences between the groups at most frequencies during the awake state. Coding for p values as described in Fig. 2.
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theory of aberrant neurodevelopment from this analysis. The relationship
of functional coherence to age and behavior is still very much an open
question andwe look forward to addressing itmore fully in our forthcom-
ing analysis of the longitudinal data from this sample.
Fig. 10.Uncorrecteddifferences in coherence (top row) andphase lag (bottom row) betweenAS
in coherences and reductions in phase lag in the ASD versus the DD group at the δ and Θ frequ
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encies. Coding for p values as described in Fig. 2.



Fig. 11. Pearson and partial correlations of ASD versus TYP group (A) and ASD versus DDgroup (B). Pearson correlations are on topwhile partial correlations are on bottom. The data dem-
onstrates that there are clear differences between groups with a high degree of accuracy. The pattern is mixedwith both increased and decreased correlations between groups. A red line
means that the correlation between these two electrodes was significantly higher in the ASD than in the TYP or DD group. The blue line reflects a significantly low correlation, i.e. the ASD
group has a lower correlation that the TYP or DD group.
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Table 1
Epileptiform activity.

Awake
(spikes/min)

Drowsiness/stage
II (spikes/min)

SWS
(spikes/min)

ASD
(n = 9)

C4 spikes 0·1 8·1 10·4
O1 spikes 5·9 10·2 0·1
C3/C4 spikes 2·9 19·4 20·8
C3 spikes 11·7 13·1 8·8
T6/P4 spikes 3·0 3·0 1·7
Gen. polyspikes 2·4 3·0 2·6
C4 spikes 0·6 8·0 0·4
Bifrontal spike/wave 0·0 6·0 6·0
O2 spikes 5·7 7·3 12·3

DD
(n = 2)

T3/T5 spikes 12·5 56·0 56·0
Right spike/wave 2·1 0·7 0·2

TYP
(n = 2)

P4 spikes 3·2 2·5 0·0
C4 spikes 1·7 4·2 6·0

Note: ASD = autism spectrum disorder. DD = non-ASD developmental disorder. TYP =
typically developing.
Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx.
doi.org/10.1016/j.ebiom.2015.11.004.
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