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Obesity is increasingly prevalent, strongly associated with nonalcoholic liver disease, and a risk factor
for numerous cancers. Here, we describe the liver-related consequences of long-term diet-induced
obesity. Mice were exposed to an extended obesity model comprising a diet high in trans-fats and
fructose corn syrup concurrent with a sedentary lifestyle. Livers were assessed histologically using the
nonalcoholic fatty liver disease (NAFLD) activity score (Kleiner system). Mice in the American Lifestyle-
Induced Obesity Syndrome (ALIOS) model developed features of early nonalcoholic steatohepatitis at 6
months (mean NAFLD activity score Z 2.4) and features of more advanced nonalcoholic steatohepatitis
at 12 months, including liver inflammation and bridging fibrosis (mean NAFLD activity score Z 5.0).
Hepatic expression of lipid metabolism and insulin signaling genes were increased in ALIOS mice
compared with normal chow-fed mice. Progressive activation of the mouse hepatic stem cell niche in
response to ALIOS correlated with steatosis, fibrosis, and inflammation. Hepatocellular neoplasms were
observed in 6 of 10 ALIOS mice after 12 months. Tumors displayed cytological atypia, absence of biliary
epithelia, loss of reticulin, alteration of normal perivenular glutamine synthetase staining (absent or
diffuse), and variable a-fetoprotein expression. Notably, perivascular tumor cells expressed hepatic
stem cell markers. These studies indicate an adipogenic lifestyle alone is sufficient for the development
of nonalcoholic steatohepatitis, hepatic stem cell activation, and hepatocarcinogenesis in wild-type
mice. (Am J Pathol 2014, 184: 1550e1561; http://dx.doi.org/10.1016/j.ajpath.2014.01.034)
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Nonalcoholic fatty liver disease (NAFLD) represents one of
the commonest causes of liver disease in the Western world,1

ranging in severity from steatosis to nonalcoholic steatohe-
patitis (NASH) and cirrhosis.2 Although simple steatosis
alone is relatively benign, the presence of steatohepatitis
greatly increases the risk of progression to cirrhosis, with its
concomitant risk of developing hepatocellular carcinoma
(HCC)3 and death.4 Moreover, an evolving body of literature
implicates obesity with the development of cancer,5 including
HCC.6 Notably, although obesity is closely associated with
NAFLD, not all patients are obese, and severe NASH may
develop in nonobese patients,2 indicating that the interaction
of factors contributing to NAFLD pathogenesis is not fully
understood. A need therefore exists for murine models that
stigative Pathology.

.

accurately reflect the causative factors underpinning clinical
NASH to allow for the investigation of these factors that
contribute to its development and progression to cancer.
Current rodent models of fatty liver disease rely on strains

that carry spontaneous mutations (ob/ob7, db/db8), genetic
manipulations,9 or formulated diets (methionine and choline
deficient diet,10 high-fat diet11), yet none of these models
accurately reproduce the broad range of factors that contribute
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Diet-Induced NASH and HCC in Mice
to the histological spectrum of human NAFLD and its sequel.
More recently, combinatorial use of diets with high pro-
portions of fat, trans-fatty acids, oxidized lipoproteins,12 or
high-fructose drinking water13 have resulted in patterns of
liver injury closer to that observed in NASH, although aspects
such as significant fibrogenesis and carcinogenesis are still
lacking. Tetri et al14 added a sedentary lifestyle to a diet rich in
trans-fatty acids and high-fructose corn syrup for a 16-week
period and found that mice developed glucose intolerance
and hepatic steatosis and inflammation. Here, we report the
effects of a prolonged version (12 months) of the American
Lifestyle-Induced Obesity Syndrome (ALIOS) model that
more accurately represents the extended pathogenesis of
NASH seen clinically.

Material and Methods

Animal Treatment

Male C57BL/6 � 129 mice aged 6 to 8 weeks were housed in
accordance with animal care protocols at the University of
Birmingham, UK.Micewere maintained on a 12:12 hour light-
dark schedule at 22�C,with up to fourmice per cage. Individual
animals were weighed weekly. ALIOS mice were fed a trans-
fat custom diet (TD.06303; Harlan Teklad, Madison, WI) as
previously reported.14 Control mice were fed a standard chow
diet with normal drinking water. Food and drink was provided
ad libitum to all animals. A total of 20 mice received an ALIOS
diet, of which 10 were sacrificed after 6 months and 10 at 12
months. Nineteen control mice received a normal chow (NC)
diet for identical time periods with 10 sacrificed after 6 months
and 9 sacrificed after 12months. Tenmice were sacrificed aged
6 to 8 weeks for baseline measurements and histological as-
sessments. Mice were sacrificed by cervical dislocation under
terminal general anesthesia with the use of isoflurane.

Intraperitoneal Glucose Tolerance Tests

Glucose tolerance was measured by intraperitoneal glucose
tolerance test 5 to 14 days before culling. Mice were fasted
for 5 hours before baseline vein glucose testing from the tail
Table 1 Characteristics of Hepatic Lesions in Mice Fed ALIOS Diet for

Lesion
number

Animal
number Lesion description Size, mm

Reticulin
fiber dep

1 1 Microscopic <1 þ
2 2 Microscopic <1 þ
3 3 Macroscopic 3 þ
4 3 Macroscopic 3 þ
5 3 Microscopic <1 þ
6 4 Microscopic <1 �
7 4 Macroscopic 6 þ
8 5 Macroscopic 5 þ
9 6 Macroscopic 10 þ
*Normal perivenular pattern is indicated by 1, diffuse up-regulation by 2, and
yPresence (þ) or absence (�).
NA, not applicable; PI-FC, proliferation index (percentage of Ki-67þ) fold chan
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vein by using a portable glucometer (Accuchek Aviva;
Roche, Basel, Switzerland) at 15-, 30-, 60-, and 120-minute
intervals after intraperitoneal injection of 1 mg/kg of a
sterile 20% dextrose solution.

Triglyceride Quantification

Total hepatic triglyceride concentrations were measured
with a triglyceride quantification kit (Biovision, Cambridge,
UK) according to the manufacturer’s instructions and read at
OD 570 nm. Triglyceride concentration was calculated with
a standard curve.

Pathology Assessments

Formalin-fixed liver sections were embedded in paraffin and
sectioned (4 mm). Sections were stained with H&E to
examine general morphology and with hematoxylin van
Gieson for fibrosis. Slides were assessed by three authors
(J.K.D., L.J.H., and G.M.R.), and a consensus interpretation
was reached by review with an experienced liver pathologist
(S.G.H.). Each section was allocated a NAFLD activity
score (NAS) through blinded assessment according to the
Kleiner scoring system. The Kleiner system generates a
composite score that is based on the degree of steatosis (0 to
3), lobular inflammation (0 to 3), and hepatocyte ballooning
(0 to 2), with a separate score for fibrosis (0 to 4).15 Gross
morphology and marker expression of hepatocellular neo-
plasms (summarized in Table 1) was assessed by S.G.H.

Immunohistochemistry

Immunohistochemistry (IHC) was performed as previously
described16 with the use of immPRESS secondary anti-
bodies (Vector Labs, Burlingame, CA). IHC detection of
13 mg/mL a-fetoprotein (AFP; Dako, Glostrup, Denmark),
1:1000 a-smooth muscle action (Abcam, Cambridge, MA),
1 mg/mL b-catenin (Santa Cruz Biotech, Santa Cruz, CA),
5 mg/mL glutamine synthetase (GS; Millipore, Billerica,
MA), 0.4 mg/mL Ki-67 (Millipore), 2 mg/mL pan-
cytokeratin (pan-CK; Dako), 1 mg/mL Sox9 (Millipore),
12 Months

letion
Glutamine
synthetase* b-caty Sox9y AFPy PI-FC

2 � � � 1.61
NA � þ � 2.05
3 � þ � 2.82
2 þ � � 17.58
2 þ � � 14.17
2 þ � � 7.89
2 � þ þ 3.42
1 � þ þ 6.8
3 � þ þ 6.96

absence by 3.

ge in tumor versus background liver.
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Figure 1 ALIOS mice develop metabolic changes and liver injury characteristic of NAFLD. A:
Combined body weight curves for co-housed NC mice (dashed line) or ALIOS diet (solid line) for 6
and 12 months. B: AUC of i.p. glucose tolerance tests. C: Liver-to-body weight ratios. D: Liver
triglyceride content. Circulating concentrations of ALT (E) and AST (F). G: Fold change in
expression levels of TNFa and Col1a1 genes in ALIOS mice at 6 and 12 months over NC mice (G).
Data are expressed as means � SEM. *P � 0.05, **P � 0.01, ***P � 0.001, and ****P � 0.0001
(Student’s t-test). ALT, alanine aminotransferase; AST, aspartate aminotransferase; AUC, area
under the curve; Col1a1, collagen, type I, a 1; TNFa, tumor necrosis factor a.
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1:1000 ubiquitin (Dako), and 40 mg/mL CK18 (Abcam) was
performed. Staining was quantified by assessing five
random nonoverlapping views per sample centered on portal
tracts at �200 magnification with the use of ImageJ soft-
ware version 10.2 (http://rsbweb.nih.gov/ij). Pan-CK stain-
ing was quantified by calculating the mean stained area with
the use of ImageJ analysis. Sox9 IHC was quantified by
counting the mean number of positive parenchymal cells
observed in five �200 fields, and Ki-67 by the mean
number of cells in five �400 fields.

RNA Analysis

Fresh liver tissue was stored in RNALater (Sigma, St. Louis,
MO) at 4�C overnight and then at�80�C. RNA isolation was
performed with the Qiagen RNEasy MiniKit (Qiagen,
Valencia, CA) according to standard protocol, and RNA
concentration was measured by spectrophotometry (Nano-
Drop Technologies, Labtech International, East Sussex, UK).
Taqman 20� gene expression singleplex real-time quantita-
tive PCR assays (Applied Biosystems, Carlsbad, CA) were
1552
used to measure mRNA expression. Results were normalized
to the RNA, 18S ribosomal 5 gene. Fold changes were
calculated with transformation (fold increase Z 2DCt).

Statistical Analysis

Glucose tolerance was analyzed by one-way analysis of
variance and Student’s t-test comparison of themeans� SEM
area under the curve of the different groups. Comparisons of
grouped data were performed with Student’s t-test orWelch’s
t-test when variances were significantly different. Statistical
analysis of real-time quantitative PCR data was performed
with DCt values.

Results

ALIOS Mice Develop Metabolic Changes and Liver
Injury Characteristic of NAFLD

Weight gain was greater in ALIOS mice than in NC mice
after 6 months, although weights converged by 12 months
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 Increased lipid turnover in ALIOS mice at 6 months. Hepatic mRNA expression of ACACA (A), FASN (B), CPT1A (C), INSR (D), IRS1 (E), and IRS2 (F)
measured by real-time PCR in mice fed normal chow (black bars) or ALIOS diet (gray bars) for either 6 or 12 months. Additional comparisons are made against
baseline liver samples (white bars). Data are expressed as means � SEM in arbitrary units (A.U.); n Z 8 to 10 animals in each group. *P < 0.05, **P < 0.01
versus baseline; yP < 0.05, yyP < 0.01 versus normal chow at same time point. ACACA, acetyl CoA carboxylase; CPT1A, carnitine palmitoyltransferase; FASN,
fatty acid synthase; INSR, insulin receptor; IRS1, insulin receptor substrate 1; IRS2, insulin receptor substrate 2.

Diet-Induced NASH and HCC in Mice
(Figure 1A). Glucose tolerance was reduced in ALIOS mice
compared with NC mice at 6 months, but this difference was
not maintained at 12 months, by which time NC mice were
similar (Figure 1B). Liver-to-body weight ratios were higher
in ALIOS mice than in chow-fed mice at both 6 and 12
months (Figure 1C) with greater levels of hepatic tri-
glycerides measured in livers of ALIOS mice than in NC
mice (Figure 1D). ALIOS mice had elevated levels of serum
alanine aminotransferase (Figure 1E) and aspartate amino-
transferase (Figure 1F) at 12 months compared with NC
mice. Expression of the tumor necrosis factor gene and
collagen, type I, a 1 gene was increased in the ALIOS
cohort at 6 and 12 months compared with chow-fed mice at
the same time points in keeping with induction of inflam-
matory and fibrogenic processes in response to the ALIOS
diet (Figure 1G). Activated stellate cells shown by a-smooth
muscle actin IHC were clearly increased in number in the
ALIOS cohort at 12 months but were infrequent or absent at
6 months and in the other cohorts (Supplemental Figure S1).

Increased Expression of Lipid Metabolism and Insulin
Signaling Genes in ALIOS Mice

Expression of acetyl-CoA carboxylase 1 and fatty acid
synthase, genes coding for key regulators of lipogenesis,
was increased in ALIOS mice at 6 and 12 months compared
with NC mice (Figure 2, A and B). Expression of carnitine
The American Journal of Pathology - ajp.amjpathol.org
palmitoyltransferase 1 gene, a rate-limiting enzyme neces-
sary for b-oxidation of long chain fatty acids, was increased
in ALIOS mice at 6 months compared with NC mice but
not at 12 months (Figure 2C). Although the activity of
these gene products was mainly regulated at the post-
transcriptional levels, these data represented increased lipid
turnover (increased lipogenesis and b-oxidation) in livers of
ALIOS mice. Expressions of insulin receptor gene, insulin
receptor substrate 1 gene, and insulin receptor substrate 2
gene were increased in ALIOS mice at 6 months compared
with NC mice but not at 12 months (Figure 2, DeF). Up-
regulation of these genes at 6 months that was lost by
12 months could indicate a failure to compensate for dietary
stresses in ALIOS mice by 12 months.

ALIOS Mice Develop Histological Features of NASH

Baseline (8-week-old) mice displayed no evidence of liver
injury or steatosis (Figure 3A), whereas NC mice developed
mild steatosis of mixed droplet size with a predominantly
perivenular distribution at 12 months (Figure 3B). In ALIOS
mice steatosis was more severe, more diffuse, and pro-
gressed with time. Moderate macrovesicular steatosis with a
predominantly periportal distribution was typically seen at
6 months (Figure 3C). This pattern of steatosis persisted
for ALIOS mice at 12 months by which time micro-
vesicular steatosis was also prominent in perivenular
1553
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Figure 3 ALIOS mice develop histological features
of NASH. A: Baseline mouse (8-week-old) shows no
evidence of steatosis. B: Normal chow mouse at 12
months shows very mild perivenular steatosis. C:
Moderate macrovesicular steatosis with a predomi-
nantly periportal distribution in an ALIOS mouse at 6
months. D: Severe panlobular steatosis in an ALIOS
mouse at 12 months. Macrovesicular steatosis still has
a mainly periportal distribution. Microvesicular stea-
tosis is more prominent in perivenular regions. E:
Mixed large and small droplet fatty change in an ALIOS
mouse at 12 months. The arrow indicates a cell
thought to have possible ballooning. However, no
definite Mallory-Denk bodies were found by immuno-
staining for ubiquitin and K18 (data not shown).
Portal inflammation (F) and lobular inflammation (G)
in an ALIOS mouse at 12 months. H: Pericellular and
bridging fibrosis in an ALIOS mouse at 12 months (H).
H&E stain (AeG); van Gieson stain (H). H, hepatic
vein; P, portal tract.

Dowman et al
regions (Figure 3D). Steatosis was mild or moderate after
6 months of ALIOS diet (Figure 3C) and severe in 9 of
10 mice at 12 months (Figure 3D). The presence of bal-
looned hepatocytes and Mallory-Denk bodies was char-
acteristic features of NASH.17 Distinction of ballooned
hepatocytes from the frequently extensive microvesicular
steatosis made assessment of this histological feature
difficult. Although occasional cells with a ballooned
appearance were initially thought to be present in H&E-
stained sections from ALIOS mice at 6 and 12 months
(Figure 3E), no definite Mallory-Denk bodies were identified
by immunostaining for ubiquitin or K18 (data not shown).
For all animals the ballooning component of the NAS was
thus scored as 0. In addition, no increase was found in the
expression of sonic hedgehog in mice on the ALIOS diet
1554
(Supplemental Figure S2). ALIOS diet induced lobular
inflammation in 7 of 10 ALIOS-fed mice at 6 months that
was not observed in any chow-fed mice at this time point. At
12 months lobular inflammation was present in 9 of 10 of the
ALIOS cohort and in 2 of 9 of the chow-fed mice. Lobular
inflammatory cells comprised a mixed population of lym-
phocytes and neutrophils (Figure 3F), with periportal in-
flammatory infiltrates observed in 4 of 10 ALIOS mice at 12
months (Figure 3G). Fibrosis was observed histologically in 8
of 10 ALIOS mice and in 1 of 9 chow-fed mice at 12 months.
In all cases, fibrosis had a perisinusoidal pattern similar to
that observed in human NASH. Among ALIOS mice at
12 months, fibrosis severity ranged from mild periportal
through to bridging fibrosis. The latter was characterized by
the presence of diffuse dissection of the parenchyma by
ajp.amjpathol.org - The American Journal of Pathology
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Figure 4 Histological scoring of disease severity. Steatosis grade scores (A), lobular
inflammation scores (B), fibrosis stage scores (C), and total NASs (D) according to the Kleiner
histological scoring system. Data are expressed as means � SEM. **P � 0.01, ***P � 0.001
(Student’s t-test).

Diet-Induced NASH and HCC in Mice
delicate strands of perisinusoidal collagen without the
development of broader fibrous septa (Figure 3H). The single
NC mouse with fibrosis at 12 months only had mild peri-
portal fibrosis. Cirrhosis was not observed in any mice.

The use of the Kleiner histological system (NAS) indicated
significantly increased severity of steatosis grade (PZ 0.003)
(Figure 4A), lobular inflammation (P< 0.0001) (Figure 4B),
and fibrosis stage (P Z 0.001) (Figure 4C) in ALIOS
mice compared with NC mice at 12 months. At 6 months,
none of the 10 NCmice scored for any components of NAS,
whereas ALIOS-fed mice had a mean NAS of 2.4� 0.6. By
12 months, NC mice had a mean NAS of 1.3 � 0.4 and
ALIOS-fed mice a mean NAS of 5.0 � 0.6 (P < 0.001)
(Figure 4D).

Hepatic Stem Cell Activation in ALIOS Mice Correlates
with Histological Features of NASH

Pan-CK IHC has been previously used to identify hepatic
progenitor (oval cells) and ductular reactive cells in ro-
dents.18 More recently Sox9, a nuclear transcription factor,
has been reported as a marker of hepatic progenitor cells,19

allowing a more specific population of stem/progenitor
cells to be identified by IHC than with pan-CK. Pan-CK
and Sox9 expression in livers of baseline mice had a similar
pattern to those of NC mice at 12 months, whereby pan-CK
expression was found to be largely restricted to the biliary
epithelium (Figure 5A). Sox9 immunostaining was likewise
positive within the biliary epithelium (Figure 5B). In
contrast, by 12 months ALIOS mice had greatly increased
numbers of pan-CKþ and Sox9þ cells observed throughout
The American Journal of Pathology - ajp.amjpathol.org
the parenchyma in addition to cells located within the
biliary epithelium seen in chow-fed animals (Figure 5, C
and D). This observation was confirmed by quantification
of the percentage area covered by pan-CKþ cells and the
number of observed Sox9þ cells per area (Figure 5, E and
F). Increased accumulation of pan-CKþ and Sox9þ cells
was closely associated with severe steatosis (score Z 3),
lobular inflammation (score � 2), and fibrosis severity
(score � 2) (Figure 5, G and H).

ALIOS Mice Develop Hepatocellular Neoplasms That
Contain Perivascular Sox9þ Tumor Cells

A total of nine lesions (five macroscopic and four micro-
scopic) were observed in 6 of 10 ALIOS mice (60%)
(Table 1). Macroscopically visible nodules (diameter > 3
mm) developed in 4 of 10 ALIOS mice (40%) at 12 months
(Figure 6A), of which two nodules were found in one
mouse. No macroscopic nodules or microscopic foci of
atypical hepatocytes were seen in any NC mice.

All of the lesions identified macroscopically and micro-
scopically were well circumscribed and well differentiated.
Macroscopic lesions were associated with compression of
adjacent nonlesional tissue, but no invasion of blood ves-
sels, portal tract stroma, or surrounding liver tissue was
seen. Histological examination showed lesions composed of
hepatocytes with low-grade cytological atypia in the form of
mild nuclear pleomorphism, a slightly increased nuclear-
to-cytoplasmic ratio, and occasional mitoses. Microscopic
foci (<1 mm diameter) composed of atypical hepatocytes
with a similar appearance were present in a further two
1555
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Figure 5 Hepatic stem cell activation in ALIOS
mice correlates with histological features of NASH.
Representative examples of pan-CK (A) and Sox9 (B)
IHC of livers from NC mice at 12 months. Represen-
tative examples of pan-CK (C) and Sox9 (D) IHC of
livers from ALIOS mice at 12 months. Mean percentage
area covered by pan-CKþ cells (E) and average number
of Sox9þ cells (F) per �200 field, in liver sections
from baseline, NC, and ALIOS mice. Correlation be-
tween histological scores and mean percentage
covered by pan-CKþ cells (G) and average number for
Sox9þ cells (H) per �200 field. Data are expressed as
means � SEM. *P � 0.05, **P � 0.01, and
***P � 0.001 (analysis of variance with Bonferonni’s
correction).

Dowman et al
ALIOS-fed mice (Figure 6B). In the absence of evidence
of invasion to confirm a definite diagnosis of malignancy
we attempted to further characterize these lesions by using
additional markers (Table 1) that have been shown to be
altered in previous studies of rodent models20,21 and/or
human HCC.22,23

AFP is expressed by hepatoblasts during liver development
but is absent in rodent and adult liver.24 Detection of circu-
lating AFP is routinely used clinically in the screening and
early detection of HCC in high-risk patients.25We observed a
small proportion of AFPþ tumor cells in three of five
macroscopic lesions in ALIOS mice (Figure 6C) but an
absence of AFPþ tumor cells in microscopic lesions and
background liver of all mice. Loss of the normal reticulin fiber
pattern is a characteristic feature of human HCC, although
reticulin fibers are sometimes retained in well-differentiated
1556
neoplasms. Reticulin staining was difficult to assess because
it was somewhat patchy in nonlesional liver tissue. However,
a clear reduction in the number of reticulin fibers present
could be observed in all (five) macroscopically visible nod-
ules from ALIOS-fed mice (Figure 6D). Reticulin fibers also
appeared to be reduced, to a lesser extent, in three of four
microscopic foci. Up-regulation of GS expression is a feature
that has been used to distinguish well-differentiated HCC
from premalignant lesions in the human liver.26 In nonle-
sional liver, we observed a perivenular distribution of GS,
similar to the pattern of expression seen in normal human liver
(Figure 6E).Diffuse staining forGSwas present in three of the
four atypical microscopic foci seen in ALIOS-fed mice,
similar to the pattern that has been described in human HCC
(Figure 6F). Interestingly, three of five macroscopic nodules
appeared to have a reduced expression of GS, with loss of the
ajp.amjpathol.org - The American Journal of Pathology
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Figure 6 ALIOS mice develop HCC that contains
perivascular Sox9þ tumor cells. A: Representative
example of macroscopic hepatocellular lesion from
ALIOS mouse at 12 months. B: Representative example
of microscopic hepatocellular lesion (dotted line)
from NC mouse at 12 months by H&E staining. C: AFP
IHC of macroscopic hepatocellular lesion (above
dotted line) shows the presence of AFPþ tumor cells.
Inset show a higher magnification image of AFPþ

tumor cells. D: Representative example of absent
reticulin staining in a macroscopic hepatocellular
lesion (dashed line) from ALIOS mouse at 12 months.
There is compression of the normal reticulin framework
in surrounding nonlesional tissue. Examples of GS IHC
of liver from baseline mice (E) and microscopic lesion
from ALIOS mouse (F) at 12 months. G: Example of
nuclear accumulation of b-catenin (arrows) in cells of
hepatocellular lesion from ALIOS mouse at 12 months.
H: Example of perivascular Sox9þ tumor cells (arrows)
of hepatocellular lesion from ALIOS mouse at 12
months.

Diet-Induced NASH and HCC in Mice
normal perivenular pattern of staining (Supplemental
Figure S3). Aberrant nuclear accumulation of b-catenin was
indicative of tumorigenesis andwas associated with increased
tumor progression and a worse prognosis.27 A small propor-
tion (<5%) of tumor cells in three lesions (one macroscopic
and two microscopic) displayed nuclear accumulation of b-
catenin (Figure 6G).

Sox9, a marker of murine hepatic stem cell (mHpSC) and
primitive stem cells of the biliary and intestinal epithe-
lium,28 was observed in the nuclei of neoplastic hepatocytes
in five nodules (four macroscopic and one microscopic).
These appeared to be preferentially located in a perivascular
distribution, but otherwise they had a similar morphology to
surrounding tumor cells, without obvious evidence of biliary
differentiation (Figure 6H).
The American Journal of Pathology - ajp.amjpathol.org
With the use of Ki-67 IHC (Table 1), we observed
increased proportions of proliferating hepatocytic tumor
cells compared with the proportion of proliferating hepato-
cytes in background liver (16.0% � 7.3% versus
3.0% � 1.6%; P Z 0.001). Moreover, turnover was higher
in nodules that contained tumor cells with nuclear accu-
mulation of b-catenin, fold change in proliferation index
over background (13.2 � 4.9 versus 3.9 � 2.4; P Z 0.005).
Discussion

In this study we demonstrate that mice exposed to the
ALIOS lifestyle for an extended period of 12 months
develop a broad spectrum of NAFLD-related histological
1557
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Table 2 Comparison of Human NASH and the Murine ALIOS Model

Characteristics Human NASH Murine ALIOS

Clinical features
Cause Multifactorial (diet/environment/genetics) Diet alone
Body weight Significant association with obesity and central

adiposity
Weight gain (then subsequent loss with severe
disease burden)

Hepatomegaly Clinical sign (not present in all cases) Increased liver-to-body weight ratios at 6 and
12 months

Glucose intolerance
(diabetes)

Significant association with insulin resistance and type
2 diabetes; reciprocal risk factors

Observed at 6 months

Blood markers Elevated ALT and AST, but can have significant disease
with normal LFTs

Elevated ALT and AST at 12 months

Hepatic tumorigenesis Significant risk of HCC development in NASH cirrhosis
(versus normal population)

Hepatocellular lesions observed in 50% of
animals at 12 months

Histopathology
Steatosis distribution
and pattern

Early stages Z perivenular macrovesicular
Later stagesZ panacinar with mixture of macrovesicular
and microvesicular steatosis

Periportal macrovesicular steatosis at 6
months

Periportal macrovesicular and perivenular
microvesicular steatosis at 12 months

Steatosis severity Variable; in end-stage cirrhosis steatosis may be absent Moderate at 6 months
Severe at 12 months

Inflammation Portal and lobular inflammation Portal and lobular inflammation
Hepatocyte ballooning Diagnostic of definite NASH* Not identified
Fibrosis Perisinusoidal � periportal progressing to bridging

fibrosis; broad septa and nodules (cirrhosis) in late-
stage disease

Perisinusoidal � periportal progressing to
bridging pericellular fibrosis at 12 months;
no broad septa or cirrhosis at 12 months

Hepatic stem/progenitor
cells

Activation of hepatic progenitor cells commonly seen in
periportal and periseptal ductular reactions

Periportal expansion of hepatic progenitors
into surrounding parenchyma observed as
single cells and ductules

*According to American Gastroenterological Association guidelines in 2012.
ALT, alanine aminotransferase; AST, aspartate aminotransferase; LFT, liver function test.
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changes, including severe steatosis, lobular inflammation,
fibrosis, and hepatocellular neoplasia. We also demonstrate
a marked expansion of mouse HpSC and their close asso-
ciation with neoplastic foci in a clinically relevant model of
NASH.

The distribution of steatosis observed in ALIOS mice
was of an initial predominantly macrovesicular periportal
steatosis with relative sparing of acinar zones 2 and 3.
With time and disease progression, increasing micro-
vesicular steatosis that extended into the centrilobular re-
gion was observed. A similar zonal variation in the
distribution of microvesicular and macrovesicular steatosis
in ALIOS mice was also observed in the study by Tetri
et al.14 Of note, the extensive microvesicular steatosis
observed with the ALIOS diet may also reflect more
progressive disease, because a recent large study found
that this feature correlated with more severe histological
changes in human NAFLD liver biopsies.29 Quantification
of liver triglyceride confirmed these histological findings,
with significantly greater triglyceride in the ALIOS livers
than in control livers at 6 months, although by 12 months
this difference was reduced by a significant increase in the
control group. This observation is again consistent with the
predisposition of aging mice to the development of a
metabolic phenotype.30
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Although developed for assessing the severity of NAFLD
in human liver tissue, the NAS has also been used in other
murine studies. In the present study NAS was significantly
higher in the ALIOS cohort at both 6 and 12 months. By 12
months, although several of the control mice had developed
some features of NAFLD (ie, mainly steatosis), NAS scores
in the ALIOS group were significantly higher. The assess-
ment of hepatocyte ballooning in humans is used diagnos-
tically, yet our understanding of the causative contribution
of hepatocyte ballooning in the pathogenesis of NASH re-
mains unclear. Despite applying three staining techniques
routinely used for the assessment of ballooning (H&E,
ubiquitin, and K18) we were unable to observe hepatocyte
ballooning in response to ALIOS. Our observations appear
to be similar to those of Tetri et al14 who observed in their
16-week model of ALIOS some cytoplasm alterations and
clumping, suggestive of ballooning, and possible Mallory
hyaline in zone 3. However, only H&E staining was re-
ported in this study, and additional IHC was not used to
confirm the presence of Mallory-Denk bodies. We were
unable to discern whether the lack of ballooning in our
study was due to intrinsic variation between rodent and
human liver injury or the extended duration of the ALIOS
diet to 6 and 12 months. Severe steatosis, bridging fibrosis,
and hepatic stem cell activation were observed in the
ajp.amjpathol.org - The American Journal of Pathology
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ALIOS model at 12 months. However, differences between
murine and human histopathology was observed in the
pattern and distribution of steatosis, fibrosis, and stem cell
proliferation (Table 2).

Histological fibrosis was observed in only two of the
ALIOS mice and no control animals at 6 months, and in
both cases it was in a periportal (stage 1c) distribution.
However, collagen, type I, a 1 mRNA expression was
4.2-fold higher in the ALIOS mice at this time point,
providing additional evidence of an early fibrotic response.
By 12 months, fibrosis was observed in only one of the
controls (10%) but in eight of the ALIOS mice (80%), four
of which showed bridging fibrosis. The >10-fold increase in
collagen, type I, a 1 expression in the ALIOS cohort at this
time point was consistent with these findings.

Currently used rodent models of chronic hepatic injury,
HpSC activation, and hepatocarcinogenesis rely on the use of
toxic agents31 or genetic manipulations32 that fail to replicate
the complex pathogenesis of NAFLD. This study provides
the first detailed characterization of a clinically relevant
murine model of metabolic liver injury and provides new data
on the spatiotemporal association between NAFLD, mHpSC
activation, and the development of hepatic dysplasia/cancer.
In human disease, loss of mature biliary epithelial cells and
hepatocytes, as occurs in chronic biliary diseases and meta-
bolic liver disease, respectively, results in a marked accu-
mulation of hHpSC.33e35 Activation of the mHpSC niche has
been extensively studied in a range of murine liver injury
models, including genetic,36 diet,37 bile duct ligation,38 and
alcohol,39 but activation in nontoxic diet models with the use
of wild-type mice has previously not been reported. Here, we
demonstrate activation of the mHpSC niche in response to the
ALIOS model of chronic metabolic liver injury with the use
of pan-CK and Sox9 IHC. The number of mHpSC observed
increased with duration and severity of liver injury and
correlated with increased fibrosis, inflammation, and stea-
tosis but were largely absent from NC mice. Our findings
support the observation of a close association between
hHpSC activation and histological features of chronic liver
injury in humans.40

The finding of hepatocellular neoplasms in 6 of 10
ALIOS mice is of significant concern, given the high pop-
ulation consumption of both high-fructose corn syrup and
trans-fatty acids. HCC is a well-recognized complication of
advanced NASH in humans and is also increasingly
recognized to occur in noncirrhotic NASH.41 Previous ro-
dent models of HCC have described the development of
a spectrum of similar focal hepatocellular lesions,20,21

which have been variously classified as preneoplastic foci,
dysplastic foci, adenoma, and benign hepatoma, as well as
HCC. Similar problems have been encountered with the
classification of precursor lesions and early HCC in human
livers.22,23

The extent to which the murine lesions are comparable
with hepatocellular neoplasms in human liver has not been
fully established. In an attempt to address this problem,
The American Journal of Pathology - ajp.amjpathol.org
we performed detailed characterization, using many of the
markers used to diagnose early HCC in human livers. This
characterization revealed many features consistent with that
of early human HCC, including the loss of biliary structures,
disruption or loss of reticulin fibers, aberrant expression of
GS and AFP, and nuclear accumulation of b-catenin. These
changes were accompanied by various degrees of cytolog-
ical atypia that are also recognized as a feature of human
HCC, establishing this as a novel model for the study of
HCC development on the background of NASH.

Sox9 is a marker of endodermal stem cells in liver,
pancreas, biliary tree, and intestine,28 and its expression is
associated with progression of a number of tumors.42e44

Although studies have suggested a causal link between
hHpSC and HCC development,36 a direct link between
Sox9þ hHpSC and HCC development and progression has
yet to be described. In this study we report for the first time
the presence of small foci of perivascular Sox9þ tumor cells
in murine HCC, which also notably express higher levels of
Ki-67 indicative of higher proliferative rates. Increasing
evidence suggests that small populations of tumor cells
possess significantly greater abilities for self-renewal and
tumor initiation than other cells of the tumor bulk.45 These
cells also frequently express stem cell-related markers and
are found in perivascular locations,46 suggesting that the
presence of perivascular Sox9þ tumor cells may represent a
cancer stem cell niche within HCC tumors of ALIOS mice.
It is possible that these Sox9þ cells represent a form of
transitional cell between a stem cell and a neoplastic hepa-
tocyte. We are unable to determine the cell of origin for the
tumors observed in ALIOS mice or to assess the contribu-
tion of Sox9þ tumor cells to the development and pro-
gression of HCC, although their close spatial association
requires further research. Further work with the use of cell
fate tracking experiments specifically labeling mHpSC in a
relevant injury model will aid in determining the origin of
Sox9þ HCC tumor cells but was not possible in this study.

This study found that the environmental factors are suf-
ficient in causing the full spectrum of NAFLD but did not
determine the relative importance of individual components
through the use of interventions or assessed the potential
contribution of genetic variables. Despite the length of this
model, further studies that use targeted interventions or
genetic manipulation will have value in aiding the identifi-
cation of patients at highest risk of progression and in-
terventions or pharmacologic agents that have efficacy in
the treatment of NAFLD.

In conclusion, we report the development of a clinically
relevant murine model of NASH which replicates many of
the features seen in human disease, as well as demonstrating
activation of the hepatic stem cell niche in response to di-
etary and lifestyle changes. This study demonstrates that, in
the absence of toxins or genetic variation, high-fat/fructose
diet and sedentary lifestyle are sufficient for the induction
of NASH, stem cell mediated-regeneration, and hep-
atocarcinogenesis in wild-type mice.
1559
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