
The Journal of Logic and Algebraic Programming 79 (2010)291–294

Contents lists available at ScienceDirect

The Journal of Logic and Algebraic Programming

j ourna l homepage: www.e lsev ie r .com/ loca te / j lap

A quick introduction to membrane computing

Gheorghe Păun

Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, 014700 Bucureşti, Romania

Department of Computer Science and Artificial Intelligence, University of Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

A R T I C L E I N F O A B S T R A C T

Article history:
Available online 6 May 2010

Keywords:

Natural computing

Membrane computing

P system

Turing computability

Membrane computing is a branch of natural computing inspired from the architecture and

the functioning of biological cells. The obtained computing models are distributed parallel

devices, called P systems, processing multisets of objects in the compartments defined by

hierarchical or more general arrangements of membranes. Many classes of P systems were

investigated–mainly fromthepoint of viewof computingpower and computing efficiency;

also, a series of applications (especially in modeling biological processes) were reported.

This note is a short and informal introduction to this research area, introducing a few basic

notions, research topics, types of results, and pointing out to some relevant references.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Membrane computing is a branch of natural computing which abstracts computingmodels from the architecture and the

functioning of living cells, as well as from the organization of cells in tissues, organs (brain included) or other higher order

structures such as colonies of cells (e.g., of bacteria). The initial goal was to learn something useful (or, at least, interesting)

for (theoretical) computer science from biology, following the encouraging examples of, e.g., evolutionary, neural, and DNA

computing, and the approachproved to be successful – also providing a systematic framework for devising (discrete,modular,

algorithmic) models for various biological processes.

Membrane computing was initiated in 1998, with the final version of the paper first circulated as a research report

being published in 2000, [14], and the literature of this area has grown very fast (already in 2003, Thompson Institute for

Scientific Information, ISI, has qualified the initial paper as “fast breaking" and the domain as “emergent research front in

computer science" – see http://esi-topics.com). A comprehensive presentation at the level of year 2002 can be found in

the monograph [16] and a recent coverage of the domain can be found in [19]. Details, in particular, many downloadable

papers, can be found at the area website from [22].

The firstmodels ofmembrane computingwere starting from the single cell and its organization as a hierarchical structure

of compartments, defined by membranes, where a localized biochemistry takes place. Thus, the obtained computing device

was a distributed parallel model, withmultisets of objects (“chemicals") placed in regions (nodes of a tree) and processed by

“reactions" of a biochemical type. Themodel was extended in variousways, following biological suggestions (e.g., processing

the objects by means of other types of operations, such as the symport and antiport operations known in biology), or

with mathematical or computational motivations (e.g., passing from single cells to populations of cells, hence from tree

arrangements of membranes to arbitrary graphs), trying to cover other biological areas (such as the brain one), etc.

The obtained computing devices proved to be rather powerful, equivalent with Turing machines even when using re-

stricted combinations of features, and also computationally efficient (in certain cases, able to solve computationally hard

problems, typically,NP-complete problems, in a feasible/polynomial time). Then, a number of applications were reported in

E-mail address: gpaun@us.es

1567-8326/$ - see front matter © 2010 Elsevier Inc. All rights reserved.

doi:10.1016/j.jlap.2010.04.002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82793546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.sciencedirect.com/science/journal/15678326
http://www.elsevier.com/locate/jlap
mailto:gpaun@us.es


292 G. Păun / Journal of Logic and Algebraic Programming 79 (2010) 291–294

several areas – biology, bio-medicine, linguistics, computer graphics, economics, approximate optimization, cryptography,

etc. Several software products for simulating P systems and attempts of implementing P systems on a dedicated hardware

were reported.

The present text is only a quick introduction to membrane computing, only mentioning some basic ideas, types of results

and of applications, and indicating some references where details and further references can be found.

2. Basic classes of P systems

Themain ingredients of a P system are (i) the membrane structure, delimiting compartments where (ii)multisets of objects

evolve according to (iii) (reaction) rules of a biochemical inspiration. The rules can process both objects and membranes.

Thus, membrane computing can be defined as a framework for devising cell-like or tissue-like computing models which

process multisets in compartments defined by means of membranes. These models are (in general) distributed and parallel.

The objects and the membranes are processed by the rules, thus changing the configuration of the system; a sequence of

such changes (transitions) forms a computation, and with a halting computation a result can be associated in various ways.

When a P system is considered as a computing device, hence it is investigated in terms of (theoretical) computer science,

the main issues studied concern the computing power (in comparison with standard models from computability theory,

especially Turing machines/Chomsky grammars and their restrictions) and the computing efficiency (the possibility of using

parallelism for solving computationally hard problems in a feasible time). Computationally and mathematically oriented

ways of using the rules and of defining the result of a computation are considered in this case. For instance, the main way

of evolving a P system is based on a non-deterministic maximally parallel use of rules, with the system being synchronized

(the clock is universal and in each time unit one uses a maximal multiset of rules in each membrane). Many variants are

possible: unsynchronized, with various types of parallelism different from the maximal one (local, bounded, minimal, etc.),

deterministic, with local halting, etc. When a P system is constructed as a model of a bio-chemical process, it is examined

in terms of dynamical systems, with the (deterministic or probabilistic) evolution in time being the issue of interest, rather

than a specific output.

At thismoment, thereare threemain typesofP systems: (i) cell-likeP systems, (ii) tissue-likeP systems, and (iii) neural-like

P systems.

The first type imitates the (eukaryotic) cell, and its basic ingredient is the membrane structure, which is a hierarchical

arrangement of membranes (understood as three dimensional vesicles), i.e., delimiting compartments where multisets of

objects are placed (there also are models where the objects are placed on membranes, like many proteins in the case of the

biological cell); the objects are in general described by symbols from a given alphabet; rules for evolving these objects are

provided, also localized, acting in specified compartments or on specified membranes. The most common types of rules are

multiset rewriting rules (similar to chemical reactions, i.e., of the type u → v, where u and v are multisets of objects) and

transport rules, e.g., symport or antiport rules [13], inspired by biological processes (symport rules are of the form (u, in) or

(u, out), moving objects ofmultiset u through amembrane, and antiport rules are of the form (u, out; v, in), moving the objects

ofmultisetuoutsideamembraneat thesametimewithmoving theobjectsofmultisetv inside).Also theobjectsproducedbya

transition rule can pass throughmembranes (we say that they are “communicated” among compartments), under the control

of target indications associatedwith the objects from v, themultiset of objects produced by the rule u → v. The rules can have

several other forms, and their use can be controlled in various ways: promoters, inhibitors, priorities, etc. Also the hierarchy

of membranes can evolve, e.g., by creating and destroying membranes, by division, by bio-like operations of exocytosis,

endocytosis, phagocytosis, as in [3], and so on. (The “computer" itself evolves during the computation.)Moreover, the objects

can be of various types, not only described by letters from a given alphabet, as in the basic class of P systems. For instance,

the objects can be described by strings, and then they evolve by string processing rules (for instance, rewriting, splicing,

insertion–deletion), they can be pairs name-value, called conformons [6], or even more complex data structures (arrays).

In tissue-like P systems [10], several one-membrane cells are considered as evolving in a common environment. They

contain multisets of objects, while also the environment contains objects. Certain cells can communicate directly (channels

are provided between them) and all cells can communicate through the environment. The channels can be given in advance

or they can be dynamically established – this latter case appears in so-called population P systems [2]. In the case when the

cells are simple, of a limited capacity (as the number of objects they contain or of rules they can use), we obtain the notion

of a P colony.

Finally, there are two types of neural-like P systems.One is similar to tissue-like P systems: the cells (neurons) are placed in

the nodes of an arbitrary graph and they containmultisets of objects, but they also have a statewhich controls the evolution.

Another variant was introduced in [9], under the name of spiking neural P systems, where one uses only one type of objects,

the spike, and the main information one works with is the distance between consecutive spikes (for instance, a number is

encoded in the number of time units between two consecutive spikes entering a system and the number is recognized if the

device eventually halts).

All these types of P systems can be used in the generativemode (starting from the initial configuration, one proceeds until

reaching a halting configuration, when a result is provided – in general, as the number of objects in a given membrane), or

in the accepting mode (for instance, a number is introduced in a membrane, in the form of the multiplicity of a given object,

and this number is accepted if the computation halts) – the latter case leads to the notion of a P automaton. Extensions to



G. Păun / Journal of Logic and Algebraic Programming 79 (2010) 291–294 293

vectors of numbers and to strings and languages were also investigated. When also an input and an output are considered,

we have a computing P system.

3. Power and efficiency

From a theoretical point of view, P systems are both powerful (most classes of P systems are Turing complete, even when

using ingredients of a reduced complexity – a small number of membranes, rules of simple forms, ways of controlling the

use of rules directly inspired from biology are sufficient for generating/accepting all sets of numbers or languages generated

by Turing machines; also small universal P systems of various types were produced, i.e., given systems which can simulate

any particular system from a specified class, after introducing a code of the particular system in the universal one) and

efficient (many classes of P systems, especially those with enhanced parallelism, can solve computationally hard problems –

typically NP-complete problems, but also harder problems, e.g., PSPACE-complete problems – in a feasible time – typically

polynomial). Such a speed-up is obtained by trading space for time, with the space grown exponentially in a linear time

by means of bio-inspired operations. The most investigated way to obtain such an exponential workspace is membrane

division [15], but also membrane creation, membrane separation, string replication and other operations were used. These

operations were then extended to cells in a tissue-like P system and even to neurons in a spiking neural P system – and in

all cases similar results were obtained: polynomial time solutions to computationally hard problems. Details can be found,

e.g., in [20]. Most complexity investigations concern time as the main parameter, but also space complexity was developed,

[21], while recently [?] also a distributed way to solve a problem was proposed, thus making possible the development of a

theory of communication complexity, in the style of [8] (several cell-like P systems linked by communication channels as in

tissue-like P systems receive as inputs parts – distributed in a balanced way – of a problem and they cooperate in building

the answer by internal work and by communication). Naturally, both in investigations related to the computing power and in

any other casewhen a P system is to be constructed (e.g., when constructing universal P systems of various types), a constant

concern is the size of the system in the sense of descriptional complexity already classic in language and automata theory,

see, e.g., [7]. A possible way to combine the time complexity (number of steps) with the “effort done in each step" (e.g., the

number of rules used in parallel) was proposed in [5], under the name of Sevilla carpet.

Details about all these notions and results about them can be found in the references mentioned below, especially in the

handbook [19] and at [22].

4. Applications

As amodeling framework,membrane computing is rather adequate for handling discrete (especially biological) processes,

having many features which are attractive from this point of view: easy understandability, scalability and programmability,

inherent compartmentalization and ability to handle discrete data, etc. Most applications use cell-like P systems and tissue-

like P systems, and the general protocol is the following: a P system is written which models a given (biological – but not

only: also economic processes, evolution of ecosystems, and of other processes were addressed in this framework) process,

capturing the objects, compartments, and evolution rules, then a program is written to simulate this P system, or a program

available on internet is used, after that computer simulations are performed, tuning parameters until correctly describing

the real process; related processes are then investigated within this framework. Details can be found in [4], including case

studies and a description of existing software products (at the level of 2005), and at [22]. Besides programs to simulate P

systems on the existing computers, sometimes on grids, clusters, networks of computers (such programs are currently used

in applications), there are several attempts to implement P systems on a dedicated hardware; we mention here only [11],

where further references can be found.

There also are applications of other types, e.g., in computer graphics, cryptography, approximate optimization (this last

directionof researchwas initiated in [12] andcontinuedbymany researchers and the results are rather encouraging; basically,

we have a distributed evolutionary computing approach, with the distribution and the computation organized like in a P

system), and so on.

Comprehensive andup-dated information (at the level of year 2009) about all issuesmentioned above, frommathematical

theory of P systems, power and efficiency included, for various different classes of P systems, to applications, available

software and implementations, can be found in [19] (chapters are dedicated to each significant issue) and, providing the

state-of-the-art, in the membrane computing website [22]. In particular, Chapter 1 of [19] is a friendly and comprehensive

introduction to membrane computing.

Further (somewhat preliminary) connections betweenmembrane computing and programming (languages, engineering,

etc.) can be found in several papers, e.g., presented during the series ofWorkshops onMembrane Computing (details at [22];

the tenth edition of WMC took place in August 2009, [18]), as well as in [1].

References

[1] J.-P. Banatre, P. Fradet, J.-L. Giavitto, O. Michel (Eds.), Unconventional Programming Paradigms. International Workshop UPP 2004, Le Mont Saint
Michel, France, September 15-17, 2004, Revised Selected and Invited Papers, LNCS, vol. 3566, Springer, Berlin, 2005.

[2] F. Bernardini, M. Gheorghe, Population P systems, J. UCS, 10 (5) (2004) 509–539.



294 G. Păun / Journal of Logic and Algebraic Programming 79 (2010) 291–294

[3] L. Cardelli, Brane calculus, in: Computational Methods in Systems Biology, International Conference CMSB 2004, Paris, France, May 2004, Revised
Selected Papers, LNCS, vol. 3082, Springer, Berlin, 2005, pp. 257–280.

[4] G. Ciobanu, Gh. Păun, M.J. Pérez-Jiménez (Eds.), Applications of Membrane Computing, Springer, Berlin, 2006.
[5] G. Ciobanu, Gh. Păun, Gh. Ştefănescu, Sevilla carpets associated with P systems, in: M. Cavaliere et al. (Eds.), Proc. Brainstorming Week on Membrane

Computing, Tarragona Univ., TR 26/03, 2003, pp. 135–140.
[6] P. Frisco, Advances in Membrane Computing, Oxford University Press, 2008.
[7] J. Gruska, Descriptional complexity of context-free languages, in: Proceedings of the Symposium on Mathematical Foundations of Computer Science,

MFCS, High Tatras, 1973, pp. 71–83.
[8] J. Hromkovic, Communication Complexity and Parallel Computing: The Application of Communication Complexity in Parallel Computing, Springer,

Berlin, 1997.
[9] M. Ionescu, Gh. Păun, T. Yokomori, Spiking neural P systems, Fund. Inform. 71 (2–3) (2006) 279–308.

[10] C. Martín-Vide, Gh. Păun, J. Pazos, A. Rodríguez-Patón, Tissue P systems, Theoret. Comput. Sci. 296 (2) (2003) 295–326.
[11] V. Nguyen, D. Kearney, G. Gioiosa, A region-oriented hardware implementation for membrane computing applications, in [18], 388–412.
[12] T.Y. Nishida, An application of P systems: a new algorithm for NP-complete optimization problems, in: N. Callaos et al. (Eds.), Proceedings of the 8th

World Multi-Conference on Systems, Cybernetics and Informatics, vol. V, 2004, pp. 109–112.
[13] A. Păun, Gh. Păun, The power of communication: P systems with symport/antiport, New Gener. Comput. 20 (2002) 295–306.
[14] Gh. Păun, Computing with membranes, J. Comput. System Sci. 61 (1) (2000) 108–143 (and Turku Center for Computer Science-TUCS Report 208,

November 1998. <www.tucs.fi>).
[15] Gh. Păun, P systems with active membranes: attacking NP-complete problems, J. Autom. Lang. Comb. 6 (1) (2001) 75–90.
[16] Gh. Păun, Membrane Computing. An Introduction, Springer, Berlin, 2002.
[17] Gh. Păun, M.J. Pérez-Jiménez, Solving problems in a distributed way in membrane computing: dP systems, Int. J. Comput. Commun. Control 5 (2)

(2010) 238–252.
[18] Gh. Păun, M.J. Pérez-Jiménez, A. Riscos-Núñez, G. Rozenberg, A. Salomaa (Eds.), Membrane Computing, Tenth International Workshop, WMC 2009,

Curtea de Argeş Romania, August 2009, Selected and Invited Papers, LNCS, vol. 5957, Springer, Berlin, 2009.
[19] Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), Handbook of Membrane Computing, Oxford University Press, 2009.
[20] M.J. Pérez-Jiménez, A computational complexity theory in membrane computing, in [18], 125–148.
[21] A.E. Porreca, A. Leporati, G. Mauri, C. Zandron, Introducing a space complexity measure for P systems, Int. J. Comput. Commun. Control 4 (3) (2009)

301–310.
[22] The P Systems Website: <http://ppage.psystems.eu>.

http://www.tucs.fi
http://ppage.psystems.eu

	A quick introduction to membrane computing
	Introduction
	Basic classes of P systems
	Power and efficiency
	Applications
	References


