composed of hundreds of proteins, selectively controlling all traffic between the nucleus and the cytoplasm. The architecture of the NPC is central to understanding nuclear transport. However, due to its sheer size, its local environment and its dynamic nature, determining its structure at molecular resolution remains a challenge for conventional techniques. Combining FIB milling, cryo-ET, and image processing enables the study of the NPC in its native environment, free of the distortions caused by purification. This approach has not only revealed the NPC architecture at unparalleled resolution, but also captured different conformational states in action. Other uses of cryo-FIB-ET to study diverse cellular environments at molecular detail will be presented, including actin networks, the architecture of cell division, and the distribution of macromolecular complexes within organelles such as mitochondria.

1815-Pos Board B707
Direct Visualization of HIV-1 with Correlative Live-Cell Microscopy and Cryo-ElectronTomography
Sangmi Jun1,2, Danxia Ke2, Karl Debiec2, Gongguo Zhao2, Xin Meng3, Zandrea Ambroose3, Gregory A. Gibson3, Simon C. Watkins3, Peijun Zhang2.
1Korea Basic Science Institute, Daejeon, Korea, Republic of, 2University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
Cryo-electron tomography (cryoET) allows 3D visualization of cellular structures at molecular resolution in a close-to-physiological state. However, due to the poor signal, low contrast, and radiation sensitive nature of unstained frozen-hydrated specimens, acquisition of tomographic projection series is not generally selective in choice of imaging targets. Therefore, the full potential of cryoET for 3D cellular imaging is realized, especially for cellular processes that are rare or dynamic. In order to overcome this limitation in cryoET analysis, approaches for correlating fluorescent light microscopy and cryoET are highly desirable, not only to complement the structural information obtained from cryoET with the dynamic functional data from fluorescent labeling, but also to guide sampling in cryoET. Such tools are particularly valuable for investigating the early events of HIV-1 infection in cells, which are the most difficult to catch. Here, we report on a methodology that combines high speed 3D live-cell imaging with cryoET tools. We applied this technology to visualize the process viral entry into HeLa cells, following of the same particles. Through direct 3D visualization we identified HIV-1 particles that are smaller than the diffraction limit of light microscopy (~100 nm). They were found attached to plasma membrane and in MVBs after cell entry. We also showed, for the first time under near-native conditions, that intact hybridable mutant HIV-1 cores are released into the cytoplasm of host-cells. We anticipate that the methodology established here will not only constitute a useful tool for studying virus-host cell interactions at various stages during infection, but will also open new ways to investigate cell signaling events and many other cellular processes in general.

1816-Pos Board B708
Structural Plasticity within the Postsynaptic Density
Madeline M. Farley1, Matt T. Swulius2, Yoshihisa Kubota1, M. Neal Waxham1.
1UTHealth, Houston, TX, USA, 2California Institute of Technology, Pasadena, CA, USA.
The postsynaptic density (PSD) is a large protein complex that clusters neurotransmitter receptors at the synapse and organizes the intracellular signaling molecules responsible for altering the efficiency of synaptic transmission – termed synaptic plasticity. We propose that synapses from different parts of the brain place unique demands on the process of synaptic transmission and that the structure and composition of the PSD play a role in providing these distinctive properties. To begin to address this question, PSDs were isolated from adult rat cerebella, hippocampi and cortices, three brain areas amenable to distinctive properties. To begin to address this question, PSDs were isolated from adult rat cerebella, hippocampi and cortices, three brain areas amenable to
denlectron microscopy (EM) enables visualization and structural determination of biological macromolecules. Examination of several samples by TEM is greatly limited by the time that it takes to insert each sample on Holey Carbon Support Film. In order to make sure that the cells are suitable for observation we analyzed the same parameters of cell movement and cell division on Quantifoil using Fiji and compared these properties with those of cells grown on a normal cell culture plastic plate. After phosphate-buffered saline washing, the cells were done rapid freeze fixation (vitrification) by dripping in liquid ethane using Vitrobot™. Mark IV instead of the usual chemical fixation and were transferred onto the microscope immediately while keeping the environment under liquid N2. Cells were imaged over an angular range from ~70 degrees to 70 degrees at 2 degrees x cos 0 tilt increments automatically and analyzed with Inscpect 3D and Amira software to provide 3D images and Volume rendering respectively. We observed some unique architectures of a part of Lamellipodium in GFP-Mycosin X expressed COS 7 cell and them from near the nuclear membrane to plasma membrane in COS 7 and several eukaryotic cells (HeLa, NIH3T3 – etc.) by Cryo-EM tomography using STEM using intact cells and vitreous cell section. At future, our system can provide any new information about many kinds of cells and organelles during important events.

1814-Pos Board B706
Development for Dynamic Live Cell Imaging by Cryo-Electron Tomography and Stem
Atsuko H. Iwane1,2, Ruriko Ogawa2, Rina Nagai1, Akihiro Kawamoto1,2, Kazuhiro Aoyama1,3.
1Osaka University, Suita, Japan, 2RIKEN QBIC, Suita, Japan, 3FEI JAPAN, Tokyo, Japan.
Cryo-EM tomography of intact cells is an emerging technology that compli-