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We derive optimal L* error estimates for semi-discrete finite element methods for 
nonlinear Sobolev equations with nonlinear boundary conditions. A new projection 
is introduced and used in the error analysis. q> 1992 Academic Press, Inc. 

1. INTRODUCTION 

Let Q c Rd (d > 1) be an open bounded domain with smooth boundary 
X2. We consider finite element approximation to the solution of the 
following Sobolev equations: 

c(u)u,-v. {a(u)Vu,+b(u)Vu} =f(u), in QxJ, 

a(u) ~ + b(u) $ = g(u), 
ap 

on LX2xJ, (1.1) 

u( ‘) 0) = u, on Szx (O}, 

where J= (0, T), T>O, a, b, c, f, g, and v are known functions; 
P = (PI > . ..T ,DJ denotes the outer-normal direction on X2. We also assume 
that the functions a, b, c, f, and g are smooth with bounded derivatives and 
there exists C,>O such that 

0 < co < a(u), C(U)? UER. 
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The problem (1.1) can arise from many physical processes. For the ques- 
tions of existence, uniqueness, and continuous dependence of the solutions 
and their applications, we refer to [2, 73 for extensive literature. For the 
numerical solution to Dirichlet boundary conditions, both finite difference 
and finite element methods have been studied by Ewing [S, 61, Ford [S], 
Ford and Ting [9, lo], and Wahlbin [15]. For problem (1.1) when 
g = g(x, t) and d < 3, finite element methods with time-stepping have been 
investigated by Ewing [7]. In these papers the authors obtained quasi- 
optimal L* error estimates except that of [ 151. While, Arnold, Douglas, 
and Thomee [ 1 ] and Nakao [ 121 considered finite element methods to a 
problem similar to (1.1) for d = 1 with periodic boundary conditions, they 
demonstrated some optimal error estimates and superconvergences. Some 
further investigations of finite element methods for Sobolev and other 
related type equations with homogeneous boundary data have been carried 
out by Lin, Thomee, and Wahlbin [ 111. 

In this paper we study finite element approximation to the solution of 
(1.1) and show that the finite element solution uh indeed possesses an 
optimal order convergence rate to the real solution u as expected. In addi- 
tion, our results are valid for any space dimension d 3 1 provided that u, 
U, E H”(Q) with s > d/2 + 1. It is well known that the restriction on d< 3 for 
parabolic equations [4] and Sobolev equations [7] cannot be removed 
because of the nonlinearity of the boundary data and the method used 
there. Hence, our method, at this point, has some advantages and provides, 
at least, some theoretical significances into the literature. 

Let H”(Q) and H”(X!) be Sobolev spaces of order s with norms II.II s and 
( .Is, and (., .) and (., .) denote the inner products in L*(Q) and L*(%2), 
respectively. 

Let S, be a family of finite dimensional subspaces of H’(Q) such that for 
some r 2 2. 

inf (lb-xll +~ll~-~Il~~~~~“Il~ll,~ 1 <s<r, u~ff”(Q). 
XS& 

We also assume that Sh is imposed on quasi-uniform triangulation of s2 
such that the usual inverse inequalities hold [3, 71. 

The semi-discrete finite element solution uh: J-+ S,, is now defined by 

(C(%) Uh,!, xl + (4uh)vuh.t + WUh)VUh, Vx) 

= (fz(Uh), x > + u-(u,h XL XESh 

uh(“) = uh 

(1.2) 

where v,, is an appropriate approximation of v into S,. 
Now let us state our main theorem in this paper. 
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THEOREM. Let u and u,, be the solutions of (1.1) and ( 1.2), respectively, 
u, Vu, uI, artd Vu, are bounded, and 1.4, u, E H”(Q) with s > d/2 + 1. Then 
there exists C= C(u) > 0, dependent upon the norms of the solution u 
mentioned above, such that 

Ilu(t) - ~Jf)ll + IIu,(t) - +,,(t)ll d C(u) h”> (1.3) 

provided that v E H”(Q) and oh is given by 

(v~v-~,),vx)+(~--uh,x)=o, XESh. (1.4) 

In next sections we shall use the following inequalities: 

AB Q &A2 + B2/4&, E > 0, (1.5) 

l4:2(m2 ~~11~~112+~~~~11~112, E > 0, (1.6) 

I~Ir~Ci-,rl14r+l,2~ O<r<i,r#l. (1.7) 

In Section 2 we introduce a new projection W and study its approxima- 
tion properties. The proof of the theorem will be given in Section 3. 

2. A NEW PROJECTION W(t) 

In order to derive optimal error estimates for finite element approxima- 
tions for diffusion type problems, it is well known [ 14, 161 that it is 
necessary to introduce Ritz projection into the analysis. The authors of 
[l, 7, 8, 12, 151 took this standard approach to treat the problems 
considered therein. 

As a preparation of the proof for the theorem stated in Section 1, instead 
of using Ritz projection, we shall introduce an auxiliary function, called 
nonlinear nonclassical elliptic projection of the solution u into finite 
element spaces S,, which is now defined in the following way: Let 13 0 
and W(t): [0, T] -+ S, be defined by 

(a(u) V( W, - u,) + b(u) V W- u), Vx) + 4 W, - u,, xl 

-(g(w-du),x)=o~ t>o,XESh, 

W(O)=v,ES~. 

(2.1) 

We see, of course, that the study of this new projection will certainly 
take some extra effort, but optimal error estimates can be demonstrated in 
a very simple way as usual for parabolic equations [4, 143 if this projection 
W(t) is used (see Section 3). 

We show that W(t) in (2.1) is well defined. 



FINITEELEMENT FOR SOBOLEV EQUATIONS 183 

LEMMA 2.1. For any I > 0 there exists a unique W(t) E S,, satisfying 
(2.1). 

Proof: First, we shall prove that for any v E S,, there exists a unique 
W,(t) E S,, such that 

(a(u) V WV,, - u,) + b(u) V WV - u), Vx) + 4 W,,,, - 4, x) 

- ( g(v) - g(u), x > = 0, t>o, XESh, 

W,(O) = Uh. 

(2.2) 

For this purpose we let S,=span{$,},N=O, where ($,}f=, is a linearly 
independent set, and W(t) = Cp=, C,(t) $,Jx). Thus, we can write (2.2) as 

(‘4(t)+io)-$C(t)+B(t)C(t)=C(t), 
(2.3) 

C(0) = determined by oh, 

where A(t), B(t), and D are matrices, 

A(t) = ((a(u) Wk, Wd), B(t) = ((b(u) w/o W,)), D = (Ic/,o +A 

and C and F are vectors, 

C(t) = (C(t), 3 . . . . c(0,)‘, J’(t) = (F(t),, . . . . F(t),v)=, 

F(t),= (a(u) Vu, + 4~) Vu, WJ + (g(v) - g(u), $,>, 1= 1, . . . . N. 

It follows from our assumptions that A(t) + AD is positive definite, and we 
find from general theory of initial value problems of ordinary differential 
equations that there exists a unique C(t) in (2.3). Consequently, W,(t) is 
well defined in (2.2) for any v E S,,. 

Now let W” = v,, and { Wm> be defined by 

(a(u)V(Wy+’ - u,) + b(u) V( W” + ’ -U),VX)+E.(W’:-+‘-u,,X) 

- (g(W”)- g(u), x> =o, t>o,XESh, (2.4) 

wm+‘(o) = Uh, m=0,1,2 ).... 

We know from the above that { Wm} is well defined. It we set 
Z”= wm+l - W”, we obtain from (2.4) that 

(a(u) VZY + b(u) VZ”, W + WY, xl - (A WY 

-g(W”-‘),x)=0, t>o,XESh, (2.5) 

Zrn(0) = 0, m = 1, 2, . . . 
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By setting x= .Z~ES~, it is easy to see from (2.5) and (1.5)-( 1.6) that 

co llvz;~ll z + 1 llZ’:ll 2 + J. llZyql 2 

d ~lIVZ”ll IIVZ~II + CIIZ”’ %‘(r’R, llm1.&Y2l 

~~llvz:“ll’+cIIvz”l,‘+~llvz:‘l/‘+~ /lz:“l~2+cIlz” ‘11: 

<$ Ilvzy +; llZy”+ CI; (llz’;1ll:+ IIZT ‘II:, dz. (2.6) 
0 

Here we have used Zm(0) = 0 and 

Thus, (2.6) and Gronwall’s lemma imply that 

Here we have assumed that IlZf(t)ll , is uniformly bounded in [0, r]. In 
fact, it can be seen easily from (2.4) and an argument similar to the above 
that 

Since W” = oh it follows that (( W:(t)11 r is uniformly bounded and so is 
IlZ~(t)ll r by its definition and the above inequality. Hence, { Wm} is a 
Cauchy sequence in S,, so there exists a unique W(t) E Sh such that 
W” + W and WY -+ W, in Sh. Lemma 2.1 is now complete by letting 
m -+ co in (2.4). Q.E.D. 

LEMMA 2.2. Assume that /lu-z~~)l +hllv--uhlll ~Ch~lluil,, u, u,EH”(Q) 
with s > d/2 + 1, u and Vu bounded. Then there exists a C = C(u) > 0 such 
that 

Ilv(W-u)/l + IlV(W,-u,)ll < Chs~-‘(IIull,..~+ Ilulls), (2.7) 

where 
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Proof: Let q = W-U and P,: L*(a) + S, be L* projection [3, 141. We 
know from (2.1), (1.5t(1.7), and [3, 141 that 

(a(u) VY, + b(u) V% VY,) + 4rl,, rlt) - (g(W) - g(u), rlt) 

d (a(u) V?, + b(u) vrl, Ru - PhU),) 

+4ilt, (u-phu),)- <g(W)-g(u), (u-phU)t) 

d CW?,ll + IIWI) IIVU- PhU),)ll + CII?,II ll(~-P,~M 

+ CIl’1IlLqan) Il(u- ph~),lILq,?Q) 

and then, 

+ ch2s-2 w41:+ Ilu,ll:)icjd IlvltllV~. 

From Gronwall’s lemma and our assumptions on uh we obtain 

IIPtll:d~~2”~2~ll~ll:,,+ ll4f,. (2.8 1 

Hence, Lemma 2.2 follows from 

ll~ll:~clls~o~ll:+c~~ IlIrlX~~. Q.E.D. (2.9) 

We now turn to an estimate for q = W- u in L*(O). 

LEMMA 2.3. Under assumptions of Lemma 2.2 and Iv - v,, ~ 1,2 < 
Ch”(lv(ls. We have 

l/v/l + llrl~ll G CWll4 l,s+ ll~lld. (2.10) 

Proof: Let cr~H’(S2) such that 

(a(u)Vcr+b(u)Vq,VJ’)+I(cr, I’- (Gq, V)=O, VE H’(Q), (2.11) 
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where 

G=~ol~(eu+(l -e)W)de. 

The existence and uniqueness of such x E H’(Q) is guaranteed by taking 1, 
large enough. We shall, from now on, assume that 2 is big enough (fixed) 
for all our needs. We see from (2.1) and (2.11) that 

(a(u) vvl, - a), Vx) + 4v, - 4 x) = 0, XESh. (2.12) 

Noticing that ~~-a= IV-u,--CI= W,- (~,+a), we see that W, is 
actually a standard Ritz projection of U, + CI into S,, so that we have from 
Lemma2.2 and [3, 14, 161, 

IlW,--,--II d~~I/~,-~,-~ll,d~~~llrl,ll,+ Il4l,) 

G CW4l,,+ lMJ+ CWll,. (2.13) 

Also, we see that the elliptic regularity and (2.11) imply 

II41 d CIIVrlIl + Cllrlll LWQ)~ Mill1 G Ch” ‘(ll4,,+ lI4I,), 
and hence, 

llv,-~11 ~Ch”(ll41,,+ Ilull.,). (2.14) 

It remains now to estimate /Iall. Let p E H’(Q) be defined by 

(a(u) VP + b(u) Vr, W + W, v) - ((3, V = (a, I’), VE H’(S2). 
(2.15) 

If we set V = c( in (2.15) and V = p in (2.11), we obtain from integration by 
parts, (1.5)(1.7), and our assumptions that 

ll~l12=~~~~~~B+~~~~~rl,~~~+~~B,~~-~~rl,~~ 

=(Qu)Vv,Va-PI)- (Grl,a-B> 
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We obtain by subtracting (2.15) from (2.11) that 

(a(u) V(a - P), w + 4a - 8, v = (4 0 VE H’(SZ), 

and, thus, Ilcr-bljz< Cjlorll. It is now easy to see by taking E small (fixed) 
in (2.16) that 

By (2.14) and (2.17) we See that we need to estimate lq,lP,,2. For this 
purpose we let yeH’(B) be such that 

(a(u) YJ + b(u) Vv, W + 4~ V - (Grl, 0 = (4 J’>, VE H’(Q), 
(2.18) 

where ~EH’/*(~Q) and 161,,2= lqtlLl,2, (6, q,>= lq121,2. Setting 
@ = y - tl, it follows from (2.11) and (2.18) that 

(a(u) V@, VV) + A(@, V) = (6, V), VE H’(Q) (2.19) 

and, then, the elliptic regularity implies 

II~II2~~l~l~,*=~l?rl~1/2~ (2.20) 

Now let V=qt in (2.19) together with integration by parts and 
(1.5)-( 1.7). We obtain 

ld2,,2 = (a(u) V@> VI1t) + 4@, ?,I = (a(u) vv,, V@) + JOI,, @) 

= (a(u) vv, + b(u) V?, V@P) + 4?,, @I 

- (‘3, @> + <Grl, @> - (b(u) Vrl, V@) 

= (a(u) vrlt + b(u) V% V(@ - Zh@)) 

+4rlr, @-I,@,)- <@I,@-I,@> 

+(Gg,m)-(g,~h(u)Q)+(~,V.b(u)V~) 

&?,ll:+ ll’111~~+~ll~ll:+~lr112112 E 

+4I@--h@l:,2+ l@l1,2)+cll~ll ll@ll* 

+~llull:;,+ llBli)+W@ll’:+~s,~ lv,l?1,2dr. (2.21) 
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Taking E small (fixed), we find from (2.20) and (2.21) that 

Applying Gronwall’s lemma to above inequality, we see 

I~rlZ~~2d~~*“~Il~ll:.*+ Ildf). (2.22) 

Using (2.22), (2.17), and (2.14) we see again from Gronwall’s lemma that 

Il’1tl12~~~2”~ll~lI:,.~+ IIW (2.23) 

and, then, 

ll1ll2~cll~~o~ll*+c~~ IIv,l12d z 6 Ch*“( Ilull :,,y + Ilull,z). Q.E.D. (2.24) 

In Lemma 2.3 we assumed that (u - u,J ~ 1,2 < Ch” llujl s , this is not valid 
in general. Thus we are required to approximate our initial data u in a 
suitable way so that this assumption holds. 

LEMMA 2.4. If oh is defined by (1.4), then we haue for some C > 0, 

IO--uhl 1,2-c Chsll~ll.~. (2.25) 

Proof. Since 

l~--vhl~1,2=~~P{~~--uh~~~ I l~lli2=1,~EH1’*(dn)}. 

If we let tj E H2(sZ) such that 

a$ -V**+*=O,inm, -=fj,on&2, 
aP 

then we see that 

(~-u,,~>=(v(~-~,),v*)+(v--oh,~) 

=(v(u-v,),v(~-z,$))+(u-u,,*-z,*) 

~~~“~‘II~ll~~II~II,~~~“ll~11~1~1~,2. 

Thus, we complete Lemma 2.4, Q.E.D. 

LEMMA 2.5. If u, u, E H”(Q) with s > d/2 + 1 and Vu, Vu, are bounded, 
then we have 

II WII m + IIVW 5 + II W,II m + llV~,ll5 G C(u). (2.26) 
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Proof. Let R,u be the Ritz projection of u into S,; we then see from 
Lemma 2.2 and [3, 13, 141 that 

IIVWI ot < IlVR,Alm + IIVUO - W)ll cc 
6 C(u) + Ch-di2 IIV(R/,u - W)il 

dC(u)+Ch-d’2(IlV(R~~-u)lI + IIV(u- W)lI) 

6C(u)+Ch~d’2h”~‘11~/Il,s~C(~). 

The remainder of the proofs is similar to the above, so we omit it. Q.E.D. 

3. PROOF OF MAIN THEOREM 

In this section we shall prove our main theorem stated in Section 1 by 
using nonclassical projection W introduced and studied in Section 2. By 
definition of W in (2.1) we see that 

(c(u) w,, xl + (4u) VW* + b(u) VW, Vx) - <g(W), x> 

= -((I* + c(u)) ?r, x) + (f(u), XL XESh9 (3.1) 

If we write the error u - u,, = (u - W) + ( W- uh) = q + 0, we know from 
Lemma 2.2 and Lemma 2.3 that 

Ilvll + ll~tll Q Ch”(Ilull l,s+ Ilolls). (3.2) 

Thus, it remains to estimate 8 only. We see from (1.2) and (3.1) that 8 
satisfies 

(c(h) 6, XI + (4~~) ve, + b4 ve, w - w*e, X) 

= - ((4u) - 4%)) VW* + (b(u) - H&J) VW, Vx) 

- ((c(u) - 4%)) w, + (A + c(u)) VI> x) + (f(u) -f(u!J, xl, x E Sh, 
(3.3) 

where 

G* = j’ $ (5 W+(l-t)u,)&, 

which is bounded from our assumption on g. Letting x = O1 and using 
Lemma 2.5, we obtain 

co lie,ii: + (oh) w vu - w*e, 0,) 

G cw+d (iiwl + ilw+ CIIV,II iloll 

+J lle,ll:+ ww+ i14P+ IIVII~). (3.4) 

409/165/l-13 
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Also, by (1.5)-(1.7), 

l(b(u,W,W,)- <c*e, @,>I + Il~,ll:+cll~ll:. (3.5) 

Combining (3.2)(3.5) we find 

/l~,ll:GCll~ll:+ Cllrll12+ ll~,l126Ch2”(llull:,,+ ~~v~l~)+CSD’ llOIJfdz. (3.6) 

Here we have used 0(O) = W(0) - vh = 0. Hence Gronwall’s lemma yields 

iie,ii:~ c~Iz~:,.,+ ii413 (3.7) 

so that 

i~eii;aj”‘ile,ii:d~~ch2~(ii~ii:,,+ IiW (3.8) 
0 

Hence, we have from (3.7))(3.8) (3.2), and triangle inequality that 

l/u- ~4 + lb- u,z,,ll < ‘WII~II,,., + IM,y). Q.E.D. (3.9) 

Remark. As mentioned in the Section 1 we assumed that s> 1 + d/2 
which is needed in Lemma 2.5 in order to bound W etc. [16]. In the case 
of linear equations, i.e., a=a(x, t), h=b(x, t), and c= c(x, t), the restric- 
tion on s > 1 + d/2 can be removed, since Lemma 2.5 will be no longer 
necessary in our error estimates. 
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