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We derive optimal L’ error estimates for semi-discrete finite element methods for
nonlinear Sobolev equations with nonlinear boundary conditions. A new projection
is introduced and used in the error analysis.  © 1992 Academic Press, Inc.

1. INTRODUCTION

Let Q< R (d > 1) be an open bounded domain with smooth boundary
Q. We consider finite element approximation to the solution of the
following Sobolev equations:

c(uyu,— V- {a(u) Vu,+ b(u) Vu} = f(u), in Q2xJ,

3 P
a(u)a—”’+b(u)53=g(u), on Q2xJ, (L)
u u
u(-,0)=v, on Q2x{0},

where J=(0,T7), T>0, ab,¢c,f, g, and v are known functions;
u=({y, .., 4 ) denotes the outer-normal direction on ¢Q2. We also assume
that the functions a, b, ¢, f, and g are smooth with bounded derivatives and
there exists Cy> 0 such that

0< Cy<alu), c(u), ueR
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The problem (1.1) can arise from many physical processes. For the ques-
tions of existence, uniqueness, and continuous dependence of the solutions
and their applications, we refer to [2, 7] for extensive literature. For the
numerical solution to Dirichlet boundary conditions, both finite difference
and finite element methods have been studied by Ewing [5, 6], Ford [8],
Ford and Ting[9, 10}, and Wahlbin [15]. For problem (1.1), when
g=g(x, t) and d <3, finite element methods with time-stepping have been
investigated by Ewing [7]. In these papers the authors obtained quasi-
optimal L? error estimates except that of [15]. While, Arnold, Douglas,
and Thomee [1] and Nakao [12] considered finite element methods to a
problem similar to (1.1) for d=1 with periodic boundary conditions, they
demonstrated some optimal error estimates and superconvergences. Some
further investigations of finite element methods for Sobolev and other
related type equations with homogeneous boundary data have been carried
out by Lin, Thomee, and Wahlbin [11].

In this paper we study finite element approximation to the solution of
(1.1) and show that the finite element solution u, indeed possesses an
optimal order convergence rate to the real solution u as expected. In addi-
tion, our results are valid for any space dimension d> 1 provided that u,
u, € H*(2) with s > d/2 + 1. It is well known that the restriction on d< 3 for
parabolic equations [4] and Sobolev equations [7] cannot be removed
because of the nonlinearity of the boundary data and the method used
there. Hence, our method, at this point, has some advantages and provides,
at least, some theoretical significances into the literature.

Let H*(2) and H*(0Q) be Sobolev spaces of order s with norms |||, and
|-1,, and (-, -) and {-, -> denote the inner products in L*(2) and L*(8Q),
respectively.

Let S, be a family of finite dimensional subspaces of H'(£2) such that for
some r =2,

inf {flu—xl +hllu—xl f<Chlul,,  1<s<r, ueHY(Q)

We also assume that S, is imposed on quasi-uniform triangulation of Q
such that the usual inverse inequalities hold [3, 7].
The semi-discrete finite element solution u,,: J - S, is now defined by

(c(uy) uy,,, x) + (a(u,) Vu, , + b(u,) Vu,, Vy)
=glu), x>+ (fup) 1), xeS, (1.2)

uy(0)=v,

where v, is an appropriate approximation of v into S,,.
Now let us state our main theorem in this paper.
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THEOREM. Let u and u, be the solutions of (1.1) and (1.2), respectively,
u, Vu, u,, and Vu, are bounded, and u, u,e H(Q) with s> d/2+ 1. Then
there exists C=C(u)>0, dependent upon the norms of the solution u
mentioned above, such that

l[u(2) = u ()] + llu(2) — up, L)} < Clu) 1, (1.3)
provided that ve H*(Q) and v, is given by
(V(v—v,), V) + (v—2,, ) =0,  x€S,. (1.4)

In next sections we shall use the following inequalities:

AB<eA*+ B*/4e, &>, (1.5)
4] 32000, <€lIVul? + Cle) |ul®,  e>0, (1.6)
IulrscT,rHuHr+l/2a 0<r<%’r¢1- (17)

In Section 2 we introduce a new projection W and study its approxima-
tion properties. The proof of the theorem will be given in Section 3.

2. A New PRroJECTION W(1)

In order to derive optimal error estimates for finite element approxima-
tions for diffusion type problems, it is well known [14, 16] that it is
necessary to introduce Ritz projection into the analysis. The authors of
[1,7,8,12,15] took this standard approach to treat the problems
considered therein.

As a preparation of the proof for the theorem stated in Section 1, instead
of using Ritz projection, we shall introduce an auxiliary function, called
nonlinear nonclassical elliptic projection of the solution u into finite
element spaces S,, which is now defined in the following way: Let A1>0
and W(¢): [0, T]— S, be defined by

(a(u) VW, —u,) +b(u) V(W —u), Vy) + AW, —u,, 1)
—(g(W)—g(u),x>=0, 1>0,%€S,, (2.1)
W(O) = Uh € Sh'
We see, of course, that the study of this new projection will certainly
take some extra effort, but optimal error estimates can be demonstrated in
a very simple way as usual for parabolic equations [4, 14] if this projection

W(t) is used (see Section 3).
We show that W(r) in (2.1) is well defined.
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LemMa 2.1. For any A>0 there exists a unique W(t)e S, satisfying
(2.1).

Proof. First, we shall prove that for any ve S, there exists a unique
W.,(t)e S, such that

(@) VW, —u)+b) VW, —u), VY)+ AW, —u,, x)
—<glv)—glu), x>=0, t>0,7€S,, (2.2)

For this purpose we let S, =span{y,}¥_,, where {y}~_, is a linearly
independent set, and W(t)=X7_, Ci(1) ¥,(x). Thus, we can write (2.2) as

(A(t) + AD) 4 C(1)+ B(1) C(t) = C(1),
dt (23)
C(0) = determined by v,,

where A(t), B(t), and D are matrices,

A= (@) Vi, V), B()=((b(u) VW, V), D=(, ¥)),
and C and F are vectors,

C(t)y=(C(1)1, . C()\)T,  F(t)=(F(1),, .. F(1)5)T,
F(t),= (a(u) Vu, + b(u) Vu, Vi )) + {g(v) — glu), ¥,>, I=1,.,N.

It follows from our assumptions that A(¢) + AD is positive definite, and we
find from general theory of initial value problems of ordinary differential
equations that there exists a unique C(¢) in (2.3). Consequently, W (¢) is
well defined in (2.2) for any ve S,,.

Now let W°=v, and { W™} be defined by

(a@) VW7 —u )+ b)) VW™ —u), V) + AW —u,, 1)
—<g(W™)—g(u), x> =0, 1>0,1€S,, (24)
Wm+1(0)=v,, m=0,1,2,...

We know from the above that {W™} is well defined. It we set
Z™=Wm*' — W™ we obtain from (2.4) that

(a(u) VZT7 + b(u)VZ™, Vy) + MZT, 1) — {g(W™)
_g(Wmil)’X>=0, t>0,X€Sh’ (25)
Z"0)=0, m=1,2,...
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By setting y =27 € S,, it is easy to see from (2.5) and (1.5)-(1.6) that
ColVZTI2+ AN Z711? + Az
< CHVZ'”{I VZ7I+ Clz” "Jlfumo, !fZ"’flmm)

SNz + CIVZTE + RV ZI 5120+l
vz sz c [ azmieize e 2o
Here we have used Z™(0)=0 and
1zmi<c [ 1z

Thus, (2.6) and Gronwall’s lemma imply that

t
izrii<c | 1zp iars e <
V]

Here we have assumed that || Z°(¢)||, is uniformly bounded in [0, 7]. In
fact, it can be seen easily from (2.4) and an argument similar to the above
that

riE<C+C | W it m>1

Since W°=v, it follows that W (z)|, is uniformly bounded and so is
| Z°(¢)Il, by its definition and the above inequality. Hence, {W"™} is a
Cauchy sequence in S,, so there exists a unique W(t)eS, such that
W"—W and W"—> W, in S,. Lemma 2.1 is now complete by letting
m— oo in (2.4). Q.E.D.

LEMMA 2.2. Assume that |v—v,ll +hllv—v,ll, < CH o), u, u,€ H(L2)
with s> d/2+ 1, u and Vu bounded. Then there exists a C= C(u) >0 such
that

VW — )| + IV(W,—u) [ < Ch*~ H(llull s+ 0], (2.7)

where

k '
H“Hi—,szz{”D{u(t)“f‘*’.[o uD{u(r)ufdr}, k=0, tel

Jj=0
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Proof. Let n=W—uand P,: L}(2) > S, be L* projection [3, 14]. We
know from (2.1), (1.5}-(1.7), and [3, 14] that

(a(u) Vi, + b(u) Vn, V) + A(n,, n,) — (g(W) — g(u), n,»
< (al(u) Vi, + b(u) Vi, V(u — P,u},)
+ A, (4= Pyu),) — {g(W) — gu), (u— Pyu),>
< CUVnl + IV V(e — Py )| + Clin |l [ (= Pyu), |

+ Clinl 2e0) (e — Pyut), || 1200,
S% Vn,I1? +§ I + Cllml T+ Ch> 2l S+ Hull D),
and then,
CollVn, 1> + Aln |17

A
TOIIVHIII +§l|71,|| +Clinll + Ch*=2(lull 3 + [l )13

CO IVa.01? +%Iln 12+ C(IVA(0)]1% + In(0)]1*)

I3
O (24 112+ C [l e
From Gronwall’s lemma and our assumptions on v, we obtain

I 3 < CRZ 72 (Jull T+ oll?). (2.8)

Hence, Lemma 2.2 follows from
Il < Clin(0)|3 +C L I I3 dr. QED. (29)
We now turn to an estimate for n = W —u in L*(Q).

LEMMA 2.3. Under assumptions of Lemmal2 and |v—v,| ,,<
Ch®|v|l,. We have

7l + lin ) < CA(full, + Tl ). (2.10)
Proof. Let ae H'(R2) such that
(a(u) Va+ b(u) Vn, VV) + Ao, V) — (G, V> =0, Ve H(), (2.11)
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where

Ld
G:j d—g(9u+(l—9)W)d().

o adu

The existence and uniqueness of such x € H'(£2) is guaranteed by taking A
large enough. We shall, from now on, assume that 1 is big enough (fixed)
for all our needs. We see from (2.1) and (2.11) that

(a)V(n,—a), Vy)+in,—a, x)=0,  xeS,. (2.12)

Noticing that #,—a=W,—u,—a=W,—(u,+a), we see that W, is
actually a standard Ritz projection of u, + « into S,, so that we have from
Lemma 2.2 and [3, 14, 16],

” Wl_ul_a” SC]’I” W,—ur—fxl|1<Ch(H’1,||1 + ”(xHI)
SCR(Jully s+ vl )+ Chlall,. (2.13)
Also, we see that the elliptic regularity and (2.11) imply
lelly < CUIVAIL+ Clinll o) < Clinlly < CR* - M(llully s + Hloll),

and hence,
ln,—all S CR(lully s + llvll,). (2.14)

It remains now to estimate ||«|. Let S e H'(£2) be defined by

(a(u) VB +b(u) Vi, VIV + AB, V)= (G, V> =(a, V), Ve HY(Q).
(2.15)

If we set V'=ain (2.15) and V= f in (2.11), we obtain from integration by
parts, (1.5)-(1.7), and our assumptions that

o] * = (a(u) VB + b(u) Vi, Va) + A(B, o) — {Gn, &)
= (b(u) Vn, V(a— B)) — <G, a — B>

3

=<n,@b(a—b)>—(n,V-bV(a—ﬁ))~<Gn,a—ﬂ>

<C|’7|2~x/2+8|°‘_ﬁ|§/2+C”UHZ
+8||a—ﬂ||§+C|77|2Al/2+8|0!—ﬂ|f/2

<Clnl2 2+ Clinll? + Cella— Bl

<eClla— B3+ Clin(0)I* + Cln(0)12 , + CL Unl? + 1ml 21 p) de

< Cella—BlI3 + Ch* ol + Cfo Un.l* + 1n 12, ) dr. (2.16)
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We obtain by subtracting (2.15) from (2.11) that
(aw)V(e—B), VV)+ Aa—B, V)= (a, V), Ve H\(Q),

and, thus, |« — Bl < Cllall. It is now easy to see by taking ¢ small (fixed)
in (2.16) that

ol < CH(Jul ]+ 1003)+ C [ (il + 1l ) de. (217)

By (2.14) and (2.17) we see that we need to estimate |y,| ,,. For this
purpose we let ye H'(Q) be such that

(a(u) Vy +b(u) Vi, V) + A(y, V)= <Gn, V) = (3, V>, Ve H\(RQ),
(2.18)

where 55H1/2(59) and |5|1/2 =1n,l —1/2» o, n0= |ﬂ|i1/2- Setting
@ =y—aq, it follows from (2.11) and (2.18) that

(a(u) VO, VV)+ A(D, V)= 4, V>, Ve HY(Q) (2.19)
and, then, the elliptic regularity implies

@l < Clél,=Cln . (2.20)

Now let V=n, in (2.19) together with integration by parts and
(1.5)-(1.7). We obtain

Il = (alu) V@, Vn,) + A(®, n,) = (a(u) Vn,, V) + A(n,, D)
= (a(u) Vi, + b(u) Vn, V®) + A(n,, D)
—LGn, @) +{Gn, D> — (b(u) Vn, VD)
=(a(u) Vn,+ b(u) Vn, V(& — I, D))
+An,D—1,0)—{Gn, ®—1,D>

9
+ (G, ®) - <n, azb(u)cz>> + (1, V- b(u) Vo)
c C

< hlindt+ InlD)+el @13 +—1nl2

+e(|®—1,P15,+1Pl10) + Clul 2],

C . Crt
<O+ 1o12) + Cel @3+ = [ Inl2 qde @21)
0
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Taking ¢ small (fixed), we find from (2.20) and (2.21) that
M2 S Rl 12+ C [ in i

Applying Gronwall’s lemma to above inequality, we see
112 10 S CRP(ul3 5+ 0] 2). (2.22)
Using (2.22), (2.17), and (2.14), we see again from Gronwall’s lemma that
1> < CR*(llu)) 7+ [lo]13) (2.23)

and, then,

IMIIZSCIM(O)H2+CJO In.1* de < Ch*(lull?  + Iv0])3). QED. (2.24)

In Lemma 2.3 we assumed that |v—uv,| ,,<Ch*||v],, this is not valid
in general. Thus we are required to approximate our initial data v in a
suitable way so that this assumption holds.

LEMMA 2.4. If v, is defined by (1.4), then we have for some C >0,
[v—v4l 12 <CH|v|,. (2.25)
Proof. Since
[v—v4l 1 p=sup{<v—1,, 8> [|l:.=1, g H"*(0Q)}.
If we let € H*(2) such that

) 0
VA +y=0,in Q, %=¢, on 2,
then we see that

o—v,, > =(V(v—0,), V) + (v —v,, )
=(V(v—v,), V(- LY)) + (v —v,, ¥y — L,¥)
S Ch vl k)2 < Ch vl 19l 12
Thus, we complete Lemma 2.4. Q.E.D.

LEMMA 2.5. If u,u,e H(Q) with s>df2+ 1 and Vu, Vu, are bounded,
then we have

Wl o + IV o + W ] o + IV L, < Clu). (2.26)
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Proof. Let R,u be the Ritz projection of u into S,; we then see from
Lemma 2.2 and {3, 13, 14] that
IV . < IVRyull o + [V(R,u = W)l
< C(u) + Ch=*|V(R,u— W)|
< C(u)+ Ch=*(IV(R,u— )| + [V(u— W)[)
< Cu)+ Ch“*h*~ull, , < Clu).

The remainder of the proofs is similar to the above, so we omitit. Q.E.D.

3. PROOF OF MAIN THEOREM

In this section we shall prove our main theorem stated in Section 1 by
using nonclassical projection W introduced and studied in Section 2. By
definition of W in (2.1) we see that

(c(u) W,, x)+(a(u) VW, + b(u) VW, Vi) — (g (W), 1)
= —((A+c@)n, )+ x)  1€Sh (3.1)

If we write the error u—u,=(u— W)+ (W-u,)=n+06, we know from
Lemma 2.2 and Lemma 2.3 that

Il + Nl < ChECllall s + ol ) (3.2)

Thus, it remains to estimate 6 only. We see from (1.2) and (3.1) that 8
satisfies

(c(un) 0,5 1)+ (alun) VO, + b(u,) VO, Vi) — (G*8, x>
= — ((a(u) —a(u,)) VW, + (b(u) — b(u,)) VW, Vy)
— ((c(u) = c(uy)) Wi+ (A+ c(w)) n, x) + (f() = fun)y 1), X € Shs

(3.3)
where
14
G*=| ZEW+(1-Ou) .
o au
which is bounded from our assumption on g. Letting y =0, and using
Lemma 2.5, we obtain

CollO.|I7 + (b(uy) VO, V6,) — <G*6,0,>
<ClO+nl (VO +10,1)+ Clin .l 16]

C
STO 180T+ CBI + 1, 1* + 1711 %). (3.4)

409/165/1-13
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Also, by (1.5)—(1.7),
[(b(u, VO, V0,) — <G*0, 6, S% 19,117+ C 1ol (3.5)
Combining (3.2)}-(3.5) we find
10,03 < CI8IE + Clinll> + .2 < CR2(lull2, + o)1) + CJO' 16,03 dr. (3.6)
Here we have used 6(0) = W(0)— v, =0. Hence Gronwall’s lemma yields
16,13 < Ch*(llull 7, + llv) ), (3.7)

so that
61T <C fo 10,117 dr < Ch*(lull3 , + o]l 2). (3.8)

Hence, we have from (3.7)-(3.8), (3.2), and triangle inequality that
lu—upl + e, —uy | <CH(Jully o+ lvll,). QED. (3.9)

Remark. As mentioned in the Section1 we assumed that s> 1+ d/2
which is needed in Lemma 2.5 in order to bound W etc. [16]. In the case
of linear equations, i.e., a=al(x, t), b=b(x, t), and ¢ =c(x, t), the restric-
tion on s> 14 d/2 can be removed, since Lemma 2.5 will be no longer
necessary in our error estimates.
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