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SUMMARY

We characterize an inhibitory circuit motif in the
Drosophila olfactory system, parallel inhibition,
which differs from feedforward or feedback inhibi-
tion. Excitatory and GABAergic inhibitory projection
neurons (ePNs and iPNs) each receive input from
antennal lobe glomeruli and send parallel output to
the lateral horn, a higher center implicated in regu-
lating innate olfactory behavior. Ca2+ imaging of spe-
cific lateral horn neurons as an olfactory readout
revealed that iPNs selectively suppressed food-
related odor responses, but spared signal transmis-
sion from pheromone channels. Coapplying food
odorant did not affect pheromone signal transmis-
sion, suggesting that the differential effects likely
result from connection specificity of iPNs, rather
than a generalized inhibitory tone. Ca2+ responses
in the ePN axon terminals show no detectable sup-
pression by iPNs, arguing against presynaptic inhibi-
tion as a primary mechanism. The parallel inhibition
motif may provide specificity in inhibition to funnel
specific olfactory information, such as food and
pheromone, into distinct downstream circuits.

INTRODUCTION

Inhibition occurs throughout the nervous system, impacting

diverse processes like spinal cord reflexes (Sherrington, 1906),

receptive field formation of the retinal ganglion cells (Kuffler,

1953), and cortical representations of sensory information

(Isaacson and Scanziani, 2011). In many well-studied circuits, in-

hibition is local, carried out by GABAergic neurons that lie close
to the brain areas onwhich they exert their functions. Long-range

communication between different brain regions is instead often

conveyed by excitatory neurons. There are also notable exam-

ples of long-distance-projecting GABAergic neurons, such as

cerebellar Purkinje cells and striatal spiny projection neurons.

In both cases, GABAergic neurons constitute the sole output

from the brain regions where their cell bodies reside. In this

study, we analyze a paradigm in the fly olfactory system in which

excitatory and GABAergic projection neurons each receive input

from antennal lobe glomeruli and send parallel output to overlap-

ping regions in a higher-order olfactory center, the lateral horn.

The Drosophila olfactory system (Figure 1A) is a well-estab-

lished and genetically tractable model system for studying how

sensory information is processed to produce internal represen-

tations of the outside world (reviewed in Liang and Luo, 2010;

Olsen and Wilson, 2008a; Su et al., 2009; Vosshall and Stocker,

2007). Odors are first recognized by a large repertoire of

olfactory receptors, each of which is expressed in a specific

class of olfactory receptor neurons (ORNs). ORNs expressing a

given odorant receptor project their axons to one of �50 stereo-

typic glomeruli in the antennal lobe, where their axons synapse

with dendrites of the corresponding class of projection neurons

(PNs). This organization creates �50 parallel information-pro-

cessing channels. An extensive network of local interneurons

(LNs) in the antennal lobe receive input from ORNs and PNs

and send output back to ORN axon terminals, PN dendrites, or

other LNs. The actions of these LNs contribute to the transforma-

tion of odor representations between ORNs and PNs (e.g., Bhan-

dawat et al., 2007; Olsen et al., 2010). The mammalian olfactory

system shares many of these properties and organizational prin-

ciples, highlighting a common solution to odor representation in

the brain (Bargmann, 2006).

An outstanding question is how olfactory inputs direct innate

and learned behavior. The axons from the excitatory PNs

(ePNs) relay olfactory information to the mushroom body, a cen-

ter for olfactory learning and memory (Davis, 2005; Heisenberg,
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Figure 1. Characterization of Mz699-GAL4+

Inhibitory Projection Neurons and vlpr

Neurons

(A) Schematic diagram of the fly olfactory system.

Odor is first detected by olfactory receptor neurons

(ORNs, orange), which send axons to the antennal

lobe (AL) in both hemispheres and synapse with

dendrites of projection neurons (PNs) and local

interneurons (LNs, purple). Excitatory PNs (ePNs,

green) project their axons through the inner anten-

nocerebral tract (iACT) to the mushroom body (MB)

and lateral horn (LH). Inhibitory PNs (iPNs, red) send

axons through the middle antennocerebral tract

(mACT) to innervate the LH only. Also shown is a

class of putative third-order neurons (blue) that

connects the LH with the ventrolateral proto-

cerebrum (vlpr). The area outlined by the dotted box

is shown in (B)–(E). D, dorsal; V, ventral; M, medial;

L, lateral.

(B)Mz699-GAL4 is expressed in iPNs, vlpr neurons,

and neurons that innervate the subesophageal

ganglion (SOG) as revealed by the UAS-mCD8GFP

reporter. We occasionally observed Mz699+ neu-

rons (0–2 per hemisphere) lateral to the lateral horn

neuropil, which send processes into the dorsal

lateral horn. Because of inconsistent and weak

expression, we did not further consider these

neurons in this study. Green: anti-GFP staining;

magenta: monoclonal antibody (mAb) nc82 staining

of the general neuropil. Scale = 20 mm.

(C–E) MARCM analysis allowed separate visualiza-

tion of an iPN neuroblast clone (C), a vlpr neuroblast

clone (D), or a vlpr single-cell clone (E). Green: anti-

GFP staining; magenta: anti-N-Cadherin staining of

the general neuropil. Scale = 20 mm.

(F and G) The inhibitory neurotransmitter GABA is

present in the majority of iPNs (F) but absent in

the vlpr neurons (G). Green: anti-mCD8 staining

(driven from Mz699-GAL4); magenta: anti-GABA.

Scale = 5 mm.

(H and I) Ca2+ imaging of Mz699-GAL4-driven

GCaMP3 expression in the antennal lobe (H) and

lateral horn (I) (outlined) in response to 0.1% isoamyl

acetate. Arrows point to the mACT. Scale = 5 mm.

Averaged basal fluorescence at the AL (H1) and LH

(I1). Normalized fluorescence changes DF/F (1 =

100%) are superimposed on the averaged basal

fluorescence (H2 and I2). Time courses of DF/F over

the region with positive Ca2+ signals (H3 and I3).

Odor durations (500 ms) are indicated as horizontal

bars below. Mean ± SEM (three repeats). See Fig-

ure S1 for more on MARCM analysis of Mz699+

neurons and Figure S2 for more on iPN response in

the antennal lobe.
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2003), and to the lateral horn, a less-understood higher-order

center presumed to direct olfaction-mediated innate behavior

(Heimbeck et al., 2001). Indeed, the terminal arborization pat-

terns of PN axons within the lateral horn are highly stereotyped

according to PN glomerular class, whereas their innervation pat-

terns in the mushroom body are much more variable (Jefferis

et al., 2007; Marin et al., 2002; Tanaka et al., 2004; Wong

et al., 2002). Interestingly, presynaptic terminals for PNs that

represent food odors and pheromones are spatially segregated

in the lateral horn (Jefferis et al., 2007), but little is known about

how olfactory inputs are transformed from PNs to higher-order

lateral horn neurons (Ruta et al., 2010).

Thus far, most physiological and behavioral studies of

Drosophila PNs have focused on the uniglomerular ePNs, which

reside dorsal and lateral to the antennal lobe and whose axons

form the inner antenno-cerebral tract (iACT), innervating both

the mushroom body and the lateral horn (Figure 1A). However,

a separate group of PNs reside ventral to the antennal lobe. Indi-

vidual ventral PNs send dendrites to either single or multiple

glomeruli and project their axons through the middle antenno-

cerebral tract (mACT) to terminate only in the lateral horn, by-

passing the mushroom body altogether (Jefferis et al., 2007;

Lai et al., 2008; Okada et al., 2009; Stocker et al., 1990). In this

study, we use the olfactory response of a specific set of

higher-order neurons to show that these ventral PNs provide

GABAergic inhibition in the lateral horn to route selective inputs

to specific higher-order neurons.

RESULTS

Mz699-GAL4 Allows Genetic Access to Ventral PNs and
vlpr Lateral Horn Neurons
Ventral PNs of the antennal lobe have previously been character-

ized using two GAL4 lines. GH146-GAL4 labels �6 ventral PNs

(Jefferis et al., 2001), all of which are GABAergic (Jefferis et al.,

2007), and all are uniglomerular except one that innervates all

glomeruli (Marin et al., 2002). Mz699-GAL4 labels >45 ventral

PNs that are mostly complementary to those labeled by

GH146-GAL4 (Lai et al., 2008). Most Mz699-GAL4-positive

(Mz699+ hereafter) ventral PNs project to multiple glomeruli

(Lai et al., 2008) and more than 80% are GABAergic (Okada

et al., 2009).Mz699-GAL4 also labels neurons in the ventrolateral

protocerebrum (vlpr) that send processes into the lateral horn

(Okada et al., 2009; Figure 1B).

To further characterize neurons labeled by Mz699-GAL4, we

used mosaic analysis with a repressible cell marker (MARCM)-

based clonal analysis (Lee and Luo, 1999). Consistent with a pre-

vious study (Lai et al., 2008), we found that Mz699+ ventral PNs

were derived from a single neuroblast (Figure 1C; Figure S1A).

Most single-cell clones innervated a few glomeruli (Figure S1B;

n = 38 out of 39), which collectively covered the majority of

glomeruli. We also introduced synaptotagmin-hemagglutinin

(Syt-HA) as a synaptic vesicle marker in these MARCM clones

and found that Syt-HA was highly enriched in the lateral horn

but was largely absent from the antennal lobe in neuroblast

and single-cell clones (Figures S1A–S1C). This is consistent

with a previous report based on the labeling of all Mz699+ neu-

rons (Okada et al., 2009). With single-cell resolution, we
observed that the majority of the ventral PN (vPN) neural pro-

cesses in the antennal lobe had fine terminal branches without

Syt-HA signal (Figure S1B), whereas Syt-HA puncta, likely repre-

senting presynaptic terminals of en passant synapses, were

distributed throughout the branches in the lateral horn (Fig-

ure S1C). These data suggest that Mz699+ ventral PNs deliver

olfactory information from the antennal lobe to the lateral horn.

Consistent with a previous report (Okada et al., 2009), we found

that the vast majority of Mz699+ ventral PNs were GABAergic

based on GABA staining (Figure 1F; 87.6% ± 2.5% GABA posi-

tive, from 8 antennal lobes with an average of 55 cells per lobe).

As described later, the ventral PNs provide inhibition that re-

quires GABA synthesis. Thus, we refer to them hereafter as

inhibitory PNs (iPNs) to distinguish them from the excitatory

PNs (ePNs) from the anterodorsal and lateral lineages.

Additionally, we examined Mz699+ vlpr neurons that also

project to the lateral horn as putative higher-order neurons in

the olfactory pathway. Neuroblast and single-cell clone analyses

of vlpr neurons showed that a subset projected to the lateral horn

as well as the vlpr neuropil (Figures 1D and 1E). Both processes

were enriched for Syt-HA (Figures S1D and S1E), similar to

several other lateral horn neurons, including those that connect

the lateral horn to the vlpr (Jefferis et al., 2007). Furthermore, in

the single-cell clone of vlpr neurons, Syt-HA+ puncta are distrib-

uted through the processes in the vlpr neuropil including most of

the terminals. In the lateral horn, however, the neural processes

end with fine branches without Syt-HA puncta (Figure S1E). This

result suggests that Mz699+ vlpr neurons mostly send informa-

tion from the lateral horn to the vlpr neuropil. Thus, these lateral

horn-projecting Mz699+ vlpr neurons represent a subset of

putative third-order neurons in the lateral horn. None of the

Mz699+ vlpr neurons were GABA positive (Figure 1G). Below,

we used their odor-evoked response as a means to investigate

the role of iPN function in olfactory signal processing.

iPNs Are Activated by Odors
To investigate the function of iPNs, we first examined their odor

responses utilizing two-photon Ca2+ imaging in alert flies labeled

by Mz699-GAL4 driving UAS-GCaMP3 (Tian et al., 2009). When

we applied 500 ms pulses of 0.1% isoamyl acetate (IA), a major

component of the banana odor, to the antennae, we observed a

robust increase of Ca2+ signals in the antennal lobe (Figure 1H;

Figure S2A), the lateral horn (Figure 1I), and the mACT tract

before it enters the lateral horn neuropil (Figure 1I, arrow). Appli-

cation of 1% apple cider vinegar gave similar results (data not

shown; see below). We further tested Ca2+ response of iPNs to

IA applied at different concentrations in the antennal lobe (Fig-

ures S2C and S2E). At low IA concentration, the response was

sparse and weak. As the odor concentration increased, more

glomeruli were recruited with elevated Ca2+ signals, similar to

the concentration-dependent odor responses of ORN and ePN

(Hallem and Carlson, 2006; Wang et al., 2003).

Because the neuronal elements that express GCaMP3 in

the antennal lobe were derived exclusively from dendrites

of Mz699+ iPNs, we conclude that iPNs are activated by

odors, likely through ORN/iPN synapses in the antennal lobe

glomeruli, although it is possible that iPNs are instead or addi-

tionally activated by ePNs. At the same time, through their
Neuron 79, 917–931, September 4, 2013 ª2013 Elsevier Inc. 919



Figure 2. Lateral Horn Response of vlpr Neurons to Isoamyl Acetate Is Inhibited by iPNs via the mACT Projection

(A) Schematic diagram of the experimental procedures to dissect iPN and vlpr Ca2+ responses in the lateral horn (LH). Ctrl, control hemisphere; Exp, experimental

hemisphere. The sequence of the experimental procedures is outlined at the bottom, which corresponds to the images and time course in (B) and (C).

(B) Isoamyl acetate (IA)-induced Ca2+ signals corresponding to each step above from a representative fly. The lateral horn is outlined. Yellow arrows point to the

mACT prior to its entry into the lateral horn. White arrows point to the entry site of vlpr dendrites into the lateral horn. After transection, Ca2+ signals disappeared

from themACT but appeared at the vlpr dendrites (compare B3 with B2). The differences between (B1) and (B2) are due to images taken at different focal planes of

the lateral horn in the control and experimental hemispheres.

(C) Time course of the corresponding DF/F in (B1)–(B4). Odor durations (500 ms) are indicated as horizontal bars below. Mean ± SEMs (three repeats).

(D) Overlay of the before- (red) and after-transection (green) Ca2+ signals for experimental (D1) and control (D2) hemispheres. The spatial patterns of green and red

are distinct in (D1) but overlap extensively in (D2).

(legend continued on next page)
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mACT axonal projection, iPNs effectively send olfactory signals

to the lateral horn (see below).

Acute mACT Transection Distinguishes the iPNs and
vlpr Responses at the Lateral Horn
Since both iPNs and vlpr neurons send processes to the lateral

horn, IA-elicitedCa2+signalswithin the lateral horn (Figure1I)could

be contributed by either or both of these neuronal types. We next

aimed to isolate putative postsynaptic signals of vlpr neurons from

presynaptic signals in iPNs within the same lateral horn using a

laser transection protocol outlined in Figure 2A. Specifically, we

first obtained lateral horn odor responses from control and exper-

imental hemispheres.We thenusedMz699-labeled iPNaxonsasa

guide and applied spatially confined laser pulses from the two-

photon laser (Ruta et al., 2010) to transect themACTprior to its en-

try to the lateral horn on the experimental hemisphere. Following

the laser transection,weagain imaged lateral hornodor responses

in both experimental and control hemispheres.

Several lines of evidence suggested that our laser transection

of mACT was complete and specific. First, we could observe a

small cavitation bubble at the mACT from basal GCaMP3

fluorescence with our two-photon microscope immediately

following the laser application (Figure S3A), a hallmark of

laser transection (Vogel and Venugopalan, 2003). Second, retro-

spective immunostaining validated the complete transection of

the mACT (Figure S3B, n = 15) with no visible effect on the integ-

rity of the nearby iACT that conveys signals from the ePNs (data

not shown). Third, odor-evoked GCaMP3 signals in mACT near

the lateral horn entry site (e.g., Figure 2B2, yellow arrow) were

invariably abolished after laser transection of mACT (Figure 2B3,

yellow arrow), validating that the responses observed in intact

preparations were due to iPN contributions and were lost after

mACT transection. Fourth, applying the same energy from the

two-photon laser at locations away from mACT did not cause

similar changes in lateral horn Ca2+ signals (data not shown).

Fifth, we did not detect changes of iPN responses in the antennal

lobe before or aftermACT transection (data not shown), suggest-

ing that olfactory input still activates iPNs in the antennal lobe af-

ter mACT transection. Thus, we could assume that olfactory

response in the lateral horn neuropil after mACT transection is

mostly contributed by the vlpr neurons.

mACT Transection Revealed that iPNs Normally Inhibit
vlpr Responses to Isoamyl Acetate
How does iPN projection contribute to olfactory information pro-

cessing at the lateral horn, and specifically, how are the re-
(E) Peak DF/F values before or after transection within the region of interest (ROI) a

exhibited a significant increase on the experimental side (three repeats; p < 0.05

(F) Paired comparisons ofDF/F before and after mACT transection across differen

of vlpr responses after transection (paired t test) (F1). The control hemisphere sh

ANOVA, mACT transection, brain hemisphere (experimental versus control), and

respectively).

(G) Calibrated DF/F of vlpr responses (experimental hemisphere divided by the c

section (paired t test).

(H) Each circle represents the correlation coefficient of spatial patterns before an

experimental hemisphere (mean = 0.067), but high correlation on the control hem

significantly different (paired t test). For all statistical analyses in this and subsequ

(not significant), p > 0.05. See Figure S2 for validation of mACT transection and
sponses of putative third-order vlpr neurons modulated by iPN

input? To address these questions, we compared Ca2+ signals

in response to isoamyl acetate application in the lateral horn

(referred to as IA response hereafter) before and after laser tran-

section (Figures 2B and 2C). In all cases, IA responses in the

lateral horn were robust (Figure 2C). However, a striking change

occurred in the spatial patterns in the experimental hemisphere

(compare Figures 2B3 and 2B2). Before transection, the IA

response was scattered across the lateral horn (Figure 2B2).

After transection, IA response appeared most intense in the

ventral lateral horn near the lateral horn entry site of vlpr den-

drites (Figure 2B3, white arrow). This change of spatial pattern

was evident when we superimposed the IA response before

and after transection on the same lateral horn (Figure 2D1). By

contrast, the spatial patterns of IA response in the control hemi-

sphere appeared similar before and after mACT transection

(compare Figures 2B1 and 2B4; Figure 2D2).

We used two approaches to quantitatively analyze the

changes of IA response before and after mACT transection.

In the first approach, we defined a region of interest (ROI)

based on the spatial pattern of the after-transection IA

response for each imaging plane (see Supplemental Experi-

mental Procedures). In the control hemisphere, this ROI

encompasses the activated regions of both iPNs and vlpr neu-

rons. In the experimental hemisphere, however, this ROI would

correspond to activated regions of vlpr neurons only, since iPN

input was eliminated after mACT transection. We then quanti-

fied DF/F signals within the ROI for the IA responses before

and after transection. In the experimental hemisphere, the

after-transection response was significantly increased com-

pared to that before transection (Figure 2E1), suggesting that

most after-transection responses in the ROI (i.e., vlpr neuronal

responses) were newly gained as a consequence of mACT

transection. This difference was highly significant across indi-

vidual flies (Figure 2F1).

To rule out the contribution of olfactory adaptation or potential

nonspecific deterioration of fly physiology during the imaging

procedure, we used the lateral horn IA response in the control

hemisphere from the same fly as an internal control. The magni-

tude of the IA response in the lateral horn remained unchanged in

the example fly (Figure 2E2). Although across flies there was a

slight increase in the control hemisphere after transection com-

pared with before (Figure 2F2; see Supplemental Experimental

Procedures for a likely cause), when we used calibrated re-

sponses (IA responses within ROI of the experimental hemi-

sphere divided by that of the control hemisphere from the
s defined by the spatial pattern after transection (green in D). The vlpr response

; t test), but not on the control side (three repeats).

t flies (n = 15). The experimental hemisphere shows a highly significant increase

ows a slight, but significant, increase (F2). With two-way repeated-measures

their interaction are all statistically significant (p < 0.001; p < 0.01; p < 0.001,

ontrol hemisphere for the same fly) exhibited a significant increase after tran-

d after mACT transection for an individual fly. There is little correlation on the

isphere (mean = 0.516). The correlation coefficient between the two groups is

ent figures, error bars represent ±SEM. *p < 0.05; **p < 0.01; ***p < 0.001; N.S.

Figure S6 for dependence of vlpr response to IA concentration.

Neuron 79, 917–931, September 4, 2013 ª2013 Elsevier Inc. 921



Figure 3. Blocking GABA Synthesis in iPNs Suppresses iPN Inhibition of vlpr Neurons

(A and B) Compared with No-RNAi control (A), Gad1-RNAi expression caused a loss of GABA staining in Mz699+ neurons (B). Magenta, anti-GABA; green, anti-

GFP. The confocal images are from single z planes. Scale = 5 mm.

(C and D) Compared with No RNAi (C1), fly expressing Gad1-RNAi in Mz699+ neurons shows greatly enhanced IA response in the lateral horn (D1) before mACT

transection. mACT transection induced robust changes in the intensity and spatial pattern of IA responses in control (compare C2 with C1), including the loss of

mACT signal (yellow arrows) and the gain of signals at the vlpr dendrite entry site (white arrows). By contrast, mACT transection did not cause robust increases in

IA response (D2) nor change the spatial pattern in theGad1-RNAi fly (compare D2with D1), except the signal loss at themACT (yellow arrows).DF/F of Ca2+ signals

are superimposed on the averaged raw images. (C3) and (D3) are an overlay of Ca2+ signals before (red) and after (green) mACT transection for (C1) and (C2) and

(D1) and (D2), respectively. Lateral horns are outlined. Scale = 5 mm.

(legend continued on next page)
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same fly), IA response increase was highly significant across in-

dividual flies after mACT transection (Figure 2G).

In the second approach, we analyzed the correlation of spatial

patterns of IA response before and after mACT transection (see

Supplemental Experimental Procedures). The control hemi-

sphere showed a high correlation (Figure 2H, right column),

consistent with the resemblance of their spatial activity patterns

before and after transection. By contrast, the experimental hemi-

sphere exhibited a significantly smaller correlation coefficient

(Figure 2H, left column) compared to the control hemisphere.

This smaller correlation coefficient likely reflected combined

effects of a loss of iPN response and gain of vlpr response.

Taken together, these data indicate that while the iPN contri-

bution to the lateral horn IA response was abolished as a result

of mACT transection, there was an additional, highly significant

gain of IA response in the vlpr neurons after mACT transection.

This suggests that the vlpr response to IA stimulation is normally

inhibited by iPN projections through the mACT.

Blocking GABA Synthesis in iPNs Suppresses iPN
Inhibition of vlpr Neurons
To test whether GABA release mediates the observed inhibitory

signals from the mACT onto the vlpr lateral horn neurons,

we perturbed GABA synthesis from iPNs by introducing UAS--

Gad1-RNAi in conjunction withUAS-Dicer2 into our imaging flies

(Mz699-GAL4, UAS-GCaMP3) to knock down glutamic acid

decarboxylase 1 (Gad1), the critical enzyme responsible for

GABA biosynthesis (Küppers et al., 2003). Immunostaining

revealed no detectable GABA in 49 out of 51 Mz699+ neurons

under the experimental condition (Figure 3B; compared to con-

trol in Figure 3A). Although the Gad1 RNAi transgene was also

expressed in Mz699+ vlpr neurons, these neurons should be

unaffected since they were not GABAergic (Figure 1G).

Control flies (no UAS-Gad1-RNAi) exhibited general elevation

and a spatial pattern change of IA response in the lateral horn

after mACT transection (Figure 3C2) compared with before (Fig-

ure 3C1), aswe have described (Figure 2). However, Gad1 knock-

down in iPNs resulted in a robust lateral horn IA response in intact

flies, with a spatial pattern that resembled IA response after

mACT transection (Figure 3D1). Specifically, in intact Gad1

knockdown flies, IA robustly activated the ventral lateral horn

near the vlpr dendrite entry site (Figure 3D1, white arrow), a region

that normally exhibited robust IA response only after transection

in control flies. mACT transection no longer resulted in significant

spatial pattern changes, as shown by the representative images

(Figures 3D2 and 3D3) and by a higher correlation coefficient of

spatial patterns before and after mACT transection compared

with controls (Figure 3E). Using ROIs defined by after-transection

patterns to isolate vlpr responses, we found a statistically signif-

icant interaction between the fly genotype and mACT transec-

tion. Separate statistical tests on the ablation effect showed no
(E) The spatial patterns of the DF/F in the lateral horn before and after laser trans

significantly different from the No-RNAi group (t test).

(F) Paired comparison of DF/F before and after transection across flies. After-tran

response.With two-way repeated-measures ANOVA,mACT transection, genotyp

respectively). No-RNAi flies exhibited a significant increase after mACT transect

RNAi flies. Gad1-RNAi: n = 8; No-RNAi: n = 6.
statistically significant change in Gad1 knockdown flies before

and after mACT transection, in contrast to the increase of IA

response in control animals after mACT transection (Figure 3F).

Together, these experiments indicate that GABAergic inhibi-

tion from the mACT is largely responsible for the suppression

of IA responses of vlpr neurons under physiological conditions.

The phenotypic similarity between mACT transection and

Gad1 knockdown in Mz699+ neurons also suggests that

Mz699+ neurons provide the major inhibitory input through the

mACT to the lateral horn in our experimental context.

iPN Inhibition of vlpr Neurons Is Odor Dependent
Our results thus far suggest that GABA release from iPNs inhibits

IA responses of higher-order vlpr neurons. Do iPNs inhibit all

odors similarly? To address this question, we used the same

paradigm and analysis method (Figure 2) to examine the Ca2+

response of vlpr neurons to several other odors.

We first examined apple cider vinegar, a natural attractant for

flies that has been used for physiological and behavioral exper-

iments (Semmelhack and Wang, 2009). We found similar results

as IA, both qualitatively and quantitatively (Figure 4A, compared

with Figure 2). Specifically, there was a marked increase of

vinegar responses in new regions of the lateral horn after

mACT transection (Figures 4A1–4A3). The correlation coefficient

for spatial patterns before and after mACT transection was

significantly smaller in the experimental hemisphere compared

to the control hemisphere (Figure 4A4). Using ROIs created

from after-transection patterns to isolate the vlpr response, we

found a significant increase of vlpr vinegar response after

mACT transection in the experimental, but not control, hemi-

sphere (Figure 4A5).

Next, we examined the lateral horn responses triggered by

optogenetic stimulation of Or67d ORNs, which are activated

by a well-characterized pheromone, 11-cis-vaccenyl acetate

(cVA) (Ejima et al., 2007; Kurtovic et al., 2007; van der Goes

van Naters and Carlson, 2007). Activating these neurons largely

recapitulates behavioral responses to cVA (Kurtovic et al., 2007).

To optimize light responses in expressing neurons, we used a

channelrhodopsin variant that contained both the H134R muta-

tion that increases photocurrent sizes (Nagel et al., 2005) and the

C128Tmutation that slows the channel photocycle (Berndt et al.,

2009). The resulting ChR2TR channels showed robust photocur-

rents in cultured mammalian neurons and triggered spiking with

high light sensitivity in vivo (Figure S4). To genetically access two

neuronal populations independently for optogenetic stimulation

and Ca2+ imaging, we utilized the Q system (Potter et al., 2010)

to express ChR2TR in Or67d neurons (Figures S5A and S5B).

Blue light stimulation induced a robust and specific Ca2+

response of ePNs in the DA1 glomerulus, the target of Or67d

ORN axons (Figure S5C), supporting the potency and specificity

of optogenetic activation. We also characterized iPN antennal
ection are highly correlated in individual Gad1-RNAi flies and, as a group, are

section patterns were used to define an ROI for quantification to isolate the vlpr

e, and their interaction are all statistically significant (p < 0.01; p < 0.05; p < 0.05,

ion compared with before, but no significant change was observed for Gad1-
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Figure 4. iPN Inhibition of vlpr Neurons Is Odor Specific

(A–C) Ca2+ responses to 1% apple cider vinegar (A), optogenetic activation of Or67d ORNs (B), and 1% phenylacetic acid (PAA) (C) are shown as representative

images before (A1, B1, and C1) or after (A2, B2, and C2) mACT transection. Their overlay is shown in (A3), (B3), and (C3). Whereas the spatial patterns of vinegar

response change drastically after mACT transection, including signal loss in mACT (yellow arrows) and signal gain in vlpr dendrite entry site at the ventral lateral

(white arrows), few changes are seen in Or67d and PAA responses before and after transection. Lateral horns are outlined. Scale = 5 mm. Correlation coefficients

of spatial patterns of Ca2+ response for before- and after-transection (A4, B4, and C4). For vinegar, the average correlation before versus after is close to 0 and

significantly smaller than that in the control hemisphere (paired t test) (A4). For Or67d and PAA stimuli, the correlation coefficients in experimental hemispheres are

comparable to the control hemispheres. Quantification ofDF/F across different animals for the three stimuli in ROI created by after-transection responses (A5, B5,

(legend continued on next page)
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lobe responses to different levels of optogenetic activation of

Or67d ORNs. iPN signals are restricted to the DA1 glomerulus

and increased with increasing laser power from 0.012 to

0.12 mW/mm2 (Figures S2B, S2D, and S2F).

We chose the 0.06 mW/mm2 as the laser power to activate

Or67d ORNs and examined the lateral horn Ca2+ response

(referred to as Or67d responses hereafter). We found a robust

Or67d response (Figure 4B1), which is dependent on the pres-

ence of the ChR2TR transgene. In contrast to the marked gain

of new regions for IA or vinegar responses after mACT transec-

tion (Figures 2 and 4A), the spatial patterns of Or67d responses

appeared similar before and after mACT transection (Figure 4B).

This can be seen by the minimal changes from superimposition

of the spatial patterns (Figure 4B3 compared with Figures 4A3

and 2D1), similar correlation coefficient in the experimental and

control hemispheres (Figure 4B4), and similar Ca2+ response

magnitudes before and after transection using an ROI defined

by the after-transection response (Figure 4B5). Together, these

data suggest that Or67d activation led to robust vlpr neuronal

response in intact flies and that this response was not signifi-

cantly inhibited by iPNs.

To test whether other olfactory-processing channels behave

similarly to Or67d, we tested phenylacetic acid (PAA), which is

derived from food but enhances male courtship (Grosjean

et al., 2011). PAA activates mostly Ir84a-expressing ORNs

that project to the VL2a glomerulus (Grosjean et al., 2011; Sil-

bering et al., 2011). The axonal projections of VL2a PNs in the

lateral horn exhibit more similarities to pheromone-represent-

ing, rather than food-representing, PNs, consistent with its func-

tion in promoting mating behavior (Grosjean et al., 2011). We

found that the lateral horn responses of Mz699-GAL4, UAS-

GCaMP3 flies to PAA resembled those of Or67d activation:

the responses exhibited strong similarity before and after

mACT transection (Figure 4C), suggesting that PAA normally

activates vlpr neurons, and this activation is minimally inhibited

by iPNs. Thus, using olfactory response of vplr neurons as the

readout, our data suggest a difference in iPN inhibition of

food- versus pheromone-related odor-processing channels,

though we cannot rule out the possibility that the difference is

due to simultaneously activating multiple glomeruli in the case

of IA or vinegar and stimulating single glomeruli in the case of

Or67d or PAA.

To examine whether the odor-selective iPN inhibition is

affected by stimulus intensity, we performed additional experi-

ments with varying stimulus strengths. We found that lateral

horn responses to higher or lower concentrations of IA than

our original concentration (10�3) were both elevated after

mACT transection, although a higher concentration of IA (3 3

10�3) evoked Ca2+ response of vlpr neurons in some intact

animals (Figure S6A). By contrast, mACT transection did not

affect the dose-response curve of Or67d stimulation (Fig-
and C5). mACT transection leads to a drastic increase in vlpr neuron response to v

PAA (n = 5) stimulation. In all cases, Ca2+ signals in the control hemisphere are

transection, brain hemisphere (experiment versus control), and their interaction

statistically significant for Or67d > ChR2TR or PAA stimulation. See Figure S2 fo

terization in mammalian neurons, Figure S5 for characterization of Or67d-QF and

Or67d > ChR2TR stimulation intensity.
ure S6B). These experiments suggest that the differential inhibi-

tion is dependent on the nature of the odorants, rather than a

consequence of different levels of excitation by these different

odors.

The Or67d/vlpr Processing Channel Is Insulated from
iPN Inhibition
Of the above four stimuli we have examined, IA and vinegar re-

sponses of vlpr neurons were robustly inhibited by iPNs,

whereas the responses to Or67d or PAA stimulation were

not. We envisioned two contrasting models that could account

for these differences. In the first model, which we termed ‘‘bulk

inhibition’’ (Figure 5A), iPN inhibition is nonselective and pro-

portional to the number of iPNs that are excited by the odor.

Since IA or vinegar each activate many glomeruli (Semmelhack

and Wang, 2009; Wang et al., 2003), they should also activate

a large number of iPNs, and therefore send a strong bulk

inhibitory signal to the lateral horn (Figure 5A1). By contrast,

Or67d neurons or PAA stimulation each activates a single

glomerulus, and therefore engages a smaller number of

iPNs, with limited inhibitory tone in the lateral horn (Figure 5A2).

In the alternative model, which we termed ‘‘selective inhibi-

tion’’ (Figure 5B), the Or67d- or PAA-processing channel is

insulated from iPN inhibition that applies to the IA and vine-

gar-processing channels.

These two models have different predictions if we were to

costimulate Or67d neurons with IA. If the bulk inhibition model

was correct, the lateral horn Or67d response (mostly contrib-

uted by vlpr neurons) would be diminished with IA coapplication

in intact animals, as IA application would activate many iPNs

and send a strong inhibitory signal to the lateral horn (Fig-

ure 5A3). Alternatively, if the selective inhibition model was

true, the Or67d response would not change with IA coapplica-

tion (Figure 5B3).

We thus compared the lateral horn responses to IA, Or67d,

and IA + Or67d in the same fly. Activating Or67d neurons by

optogenetic means simplified the experimental paradigm and

circumvented possible peripheral odor-odor interactions (Su

et al., 2011) or cross-contamination of residual odors during

odor delivery. We measured lateral horn odor response to IA,

Or67d neuronal activation, and costimulation in intact animals

for 3–6 iterations (Figure 5C). To test whether Or67d neuronal

responses would be inhibited by IA coapplication, we isolated

the ROI of vlpr response to Or67d stimulation by performing

mACT transection (Figure 5D). Within the ROI, we found that

costimulation of IA did not cause a detectable change of

Or67d response magnitude in intact flies (Figures 5E–5G),

despite the fact that IA clearly activated lateral horn responses

outside the ROI (Figures 5C1 and 5C3). This experiment provided

strong support to the selective inhibition model, at least for the

cVA-processing channel.
inegar stimulation (n = 14, paired t test), but not to OR67d > ChR2TR (n = 17) or

not significantly changed. With two-way repeated-measures ANOVA, mACT

are all statistically significant (p < 0.001) to vinegar stimulation, but none are

r Or67d > ChR2TR characterization in the antennal lobe, Figure S4 for charac-

QUAS-ChR2TR transgenes, and Figure S6 for dependence of vlpr response to
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Figure 5. vlpr Response to Or67d Activation Is Not Inhibited by Coapplication of IA

(A) In the bulk inhibition model, iPNs as a whole (represented by a single red neuron) inhibit all vlpr responses nondiscriminately, but the strength of inhibition

(represented by the size of the iPN) is proportional to the number of activated glomeruli. IA stimulation (A1) causes stronger inhibition than Or67d stimulation (A2)

because IA activates more glomeruli (orange circle) than Or67d (purple circle). IA + Or67d costimulation is predicted to decrease vlpr response to Or67d (A3). In

the schematic shown here and in (B), solid neurons represent active neurons; dotted neurons are not activated and/or are inhibited.

(B) In the selective inhibition model, iPN inhibition is processing-channel selective. Specifically, iPNs inhibit vlpr responses to IA (B1), but not to Or67d (B2),

stimulation. Hence, IA + Or67d costimulation is predicted to not affect vlpr response to Or67d (B3).

(C) Ca2+ responses of the same fly to IA (C1), OR67d > ChR2TR (C2), and IA + OR67d > ChR2TR (C3). Each image is the average of three raw images from three

iterations of first IA, followed by alternating Or67d and IA + Or67d stimulations.

(legend continued on next page)
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Figure 6. Presynaptic Ca2+ Signals of ePNs Are Not Affected by mACT Transection

(A) InGH146-GAL4,UAS-GCaMP3 flies, lateral hornCa2+ signal in intact flies is a sumof�90ePNsand6 iPNs.AftermACT transection (guidedby iPNaxons), lateral

hornCa2+ signal is contributedby ePNsonly,which shouldbe elevated compared to intact flies if iPNs act by presynaptic inhibition, but remainmostly unchanged if

iPNs do not inhibit ePNs presynaptically (five of the six iPNs are uniglomerular iPNs that innervate glomeruli not activated by IA; see Jefferis et al., 2007).

(B) In a representative fly, 0.1% IA evoked robust response in the axon terminals of PNs in intact fly (B1). There was no apparent change of response pattern after

the mACT transection (B2). Delivery of 1% IA at the end of the experiment elevated ePN response (B3), indicating that 0.1% IA did not saturate the PN response.

(C) Overlay of the Ca2+ signals before and after mACT transection in the example fly.

(D) The spatial patterns of before and after laser transection showed high correlation.

(E) The peak ePN response to 0.1% IA was not changed after mACT transection across flies (n = 12) in an ROI defined by the spatial pattern after laser transection.
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Evidence against Presynaptic Inhibition of ePNs as the
Primary Mechanism of iPN Action
The lateral horn neuropil is composed of axon terminals from

ePNs and iPNs as well as dendrites of putative third-order neu-

rons, including the vlpr neurons. In principle, iPN inhibition of

vlpr response could be caused by a direct inhibition of vlpr neu-

rons, presynaptic inhibition of ePNs, or a combination of both.

Ca2+ imaging does not have sufficient temporal resolution to

discern whether the vlpr neurons receive direct iPN input. How-

ever, we could examine the contribution of presynaptic inhibition

of ePNs by comparing Ca2+ imaging of ePN terminals before and

after mACT transection. If there was presynaptic inhibition on

ePN terminals, and the inhibition occurred at the step of or before

presynaptic Ca2+ entry that triggers neurotransmitter release as

most GABA-mediated inhibition does, we would expect an

elevated Ca2+ response to the same olfactory stimulation after

mACT transection.

To test if ePN presynaptic Ca2+ signals are normally inhibited

by iPNs, we used GH146-GAL4 to drive GCaMP3 expression,

since this GAL4 labels the majority of ePNs that allowed us to

image Ca2+ response of IA at their axon terminals as well as a

few iPNs that allowed us to target mACT for transection (Fig-

ure 6A). We found that the Ca2+ responses in the lateral horn

were similar before and after mACT transection (compare Fig-
(D) Ca2+ responses as in (C), shown only for regions within an ROI that isolates vlp

Or67d response subtracting its small overlap with the IA response before transec

Lateral horns are outlined. Scale = 5 mm.

(E) Averaged DF/F over time for the response to OR67d > ChR2TR (blue) and to c

indicates the 500ms optogenetic and/or odor stimulation duration. The vertical bo

from the ChR2TR-activating blue laser.

(F and G) Quantification of the peak (F) and integrated (G) DF/F response. In bot
ures 6B1 and 6B2) in both their spatial patterns (Figures 6C and

6D) and response magnitude (Figure 6E). The lack of elevation

of Ca2+ signal in response to mACT transection was not due to

saturation of GCaMP3 sensors in the ePN axon terminal, as

this response was elevated by stimulation with a higher IA con-

centration (Figure 6B3). These data argue against the presynap-

tic inhibition mediated by reduction of Ca2+ influx as a primary

mechanism for iPN inhibition.

DISCUSSION

Two general circuit motifs involving inhibitory neurons are

widely used in vertebrate and invertebrate nervous systems.

In feedback inhibition (Figure 7A), inhibitory neurons are locally

activated by excitatory neurons. In turn, they inhibit a broad

array of excitatory neurons, including those that excite them.

In feedforward inhibition (Figure 7B), excitatory input activates

both excitatory and inhibitory target neurons, and the activated

inhibitory target neurons further inhibit the excitatory target neu-

rons. The mammalian olfactory bulb, for instance, provides ex-

amples of both motifs. As an example of feedback inhibition,

granule cells are activated by mitral cells in response to odor

stimuli. In turn, they inhibit the same and neighboring mitral

cells. As an example of feedforward inhibition, ORN axons
r response to Or67d stimulation. This ROI was determined by after-transection

tion to ensure that only the vlpr response to Or67d stimulation was quantified.

oapplication with IA (red) (mean ± SEM, three repeats). Gray bar at the bottom

x represents the time at which imaging was turned off to avoid sensing the light

h cases, Or67d response was not affected by IA costimulation (n = 12).
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Figure 7. Inhibitory Circuit Motifs and Schematic Summary

(A–C) Schematic for feedback inhibition (A), feedforward inhibition (B), and

parallel inhibition (C). Arrows indicate the direction of signal flow. See Dis-

cussion for details.

(D) Schematic summary of the current study. From the perspective of the

Mz699+ vlpr olfactory response, iPNs function via a parallel inhibition strategy

to suppress vlpr activities elicited by food odors, but not pheromones. ePNIA

presumably also activate other higher-order neurons to elicit foraging behavior

(bottom right). Likewise, ePNDA1 also activate other higher-order neurons (not

shown; see Ruta et al., 2010). In contrast to ePNs, which send collaterals to the

mushroom body, iPNs project axons only to the lateral horn.

Neuron
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excite periglomerular cells and mitral cells in parallel; some peri-

glomerular cells inhibit mitral cells in the same and adjacent

glomeruli. Both granule cells and periglomerular cells contribute

to the lateral inhibition and sharpening of the olfactory signals

that mitral cells deliver to the olfactory cortex (Shepherd

et al., 2004). Similarly, the fly antennal lobe, the equivalent of

the mammalian olfactory bulb, has a diversity of GABAergic

local interneurons (LNs) (Chou et al., 2010). Some LNs are

excited by ORNs and subsequently provide feedback inhibition

onto ORN axon terminals for gain control (Olsen and Wilson,

2008b; Root et al., 2008). Other LNs may act on PN dendrites

for feedforward inhibition. Here we describe an inhibitory circuit

motif that differs from classic feedforward and feedback inhibi-

tion, which we term parallel inhibition (Figure 7C), wherein excit-

atory and inhibitory projection neurons receive parallel input

and send parallel output to a common target region (the lateral

horn; Figure 7D).

What are the possible roles of iPNs, and what advantages

might the parallel inhibition motif confer? Bymonitoring olfactory
928 Neuron 79, 917–931, September 4, 2013 ª2013 Elsevier Inc.
responses of a subset of putative third-order lateral horn neurons

(the vlpr neurons) and by laser transecting the ascending mACT

input from iPNs while sparing ePNs, we showed that iPNs selec-

tively route olfactory input to vlpr neurons. Specifically, the vlpr

responses to the food odors are inhibited by the iPNs, but the

response to the cVA pheromone-processing channel is not sub-

jected to this inhibition (Figure 7D). Previous anatomical studies

revealed highly stereotyped branching and terminal arborization

patterns for uniglomerular ePNs and iPNs (Jefferis et al., 2007;

Lai et al., 2008). Results in this study provide functional demon-

stration that GABAergic iPNs regulate olfactory inputs to the

lateral horn neurons. Indeed, the fact that removing iPN inhibition

allows IA and vinegar signals to activate vlpr neurons suggests

that anatomical segregation of PN axon terminals representing

food and pheromone (Jefferis et al., 2007) alone is not sufficient

to prevent food odors to activate vlpr neurons, at least some of

which are normally activated by pheromones. iPN inhibition pro-

vides another level of specificity of the higher-order neuronal re-

sponses to olfactory input.

This specificity of inhibition provides a special feature of

parallel inhibition (Figures 7C and 7D) in comparison with feed-

forward and feedback inhibition (Figures 7A and 7B). Feedfor-

ward and feedback inhibition tend to be nonspecific with respect

to their target population within the same neuronal type, which is

optimal for certain functions these motifs serve, such as lateral

inhibition and gain control (Isaacson and Scanziani, 2011). In

the Drosophila antennal lobe, for example, while exhibiting a

large variety of arborization patterns, most LNs innervate many

to all glomeruli, where they both receive input and send output

(Chou et al., 2010). By contrast, the specific dendritic glomerular

innervation of individual iPNs in the antennal lobe, as well as their

stereotyped axonal arborization patterns in the lateral horn,

enable iPNs to selectively inhibit some olfactory-processing

channels, but not others (Figure 7D). We speculate that food

odors should activate other lateral horn higher-order neurons

relevant to foraging and that such activation is not strongly in-

hibited by iPNs, perhaps also due to inhibition specificity (Fig-

ure 7D, bottom right).

Another interesting feature of parallel inhibition is the timing of

inhibition. Inhibition from feedforward and certainly feedback

motifs arrive later than excitation due to transmission through

an extra synapse, which is used to confine the magnitude and/

or duration of excitation (Buzsáki, 1984; Isaacson and Scanziani,

2011). The parallel inhibition motif in principle allows for simulta-

neous arrival of excitation and inhibition at the postsynaptic

neurons, potentially enabling inhibition to completely suppress

excitation, and is ideally suited for information gating. We pro-

vided evidence that the primary action of iPNs is unlikely through

presynaptic inhibition of ePNs, as ePN presynaptic Ca2+ signals

in response to olfactory stimuli were not elevated by mACT tran-

section. A caveat of this interpretation is that some forms of pre-

synaptic inhibition can bypass Ca2+ entry, for instance through

Gbg action on the release machinery (Gerachshenko et al.,

2005); however, we are not aware of GABAergic inhibition that

acts in this manner. Thus, we favor the idea that iPNs act directly

on postsynaptic third-order neurons under our experimental

conditions. Due to the limited temporal resolution of Ca2+

imaging, we have not explored the temporal property of parallel
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inhibition in this study. It will be interesting for future research to

measure the arrival time of both excitatory and inhibitory input

directly with more sensitive and temporally precise electrophys-

iological methods.

Here, we describe the use of the parallel inhibition motif in

sensory systems. Long-distance GABAergic projections are

prevalent in themammalian brain (see Introduction). Specifically,

some GABAergic neurons in the hippocampus and cortex have

recently been identified that send long-distance projections,

sometimes to the same area as the glutamatergic projection

neurons (Higo et al., 2009; Jinno et al., 2007; Melzer et al.,

2012). Thus, parallel inhibition can potentially be a widely used

mechanism in the nervous system.

We identified a unique class of higher-order neurons that

respond to Or67d (and presumably cVA) activation. Or67d

ORNs and their postsynaptic partner DA1 excitatory PNs ex-

press FruM, a male-specific transcription factor that is a key

regulator of sexual behavior (Manoli et al., 2005; Stockinger

et al., 2005). A previous study identified a number of Fru+

higher-order cVA-responsive neurons whose cell bodies reside

dorsal and lateral to the lateral horn (Ruta et al., 2010). Indeed,

the analyses of Fru+ neurons have so far provided many exam-

ples where Fru+ neurons are connected with each other to

regulate different aspects of sexual behavior (Dickson, 2008;

Yu et al., 2010). However, lateral horn-projecting Mz699+ vlpr

neurons do not appear to express FruM (data not shown), despite

their robust activation by Fru+ Or67d ORNs. This may reflect a

broad function of cVA as a pheromone that regulates not only

mating but also aggression (Wang and Anderson, 2010) and

social aggregation (Bartelt et al., 1985).

Our study revealed a difference between food- and phero-

mone-processing channels in their susceptibility to inhibition

by iPNs and suggests that pheromone channels may be insu-

lated from general inhibition by iPNs. It is almost certain that

iPNs play additional functions than reported here, as we only

examined iPN function from the perspective of their effect on

the olfactory response of a specific subset of higher-order neu-

rons. Indeed, in a companion manuscript, Parnas et al. (2013)

showed that iPNs play an instrumental role in facilitating the

discrimination of mostly food odors, as assayed by quantitative

behavioral experiments. Taken together, these studies

uncovered two distinct aspects of iPN function: increased

discrimination of diverse food odors and information gating be-

tween qualitatively different olfactory stimuli.

Finally, it is notable that of the two major ePN targets, iPN

axons only project to the lateral horn but spare the mushroom

body (Figure 7D). The mushroom body is a well-documented

center for olfactory learning and memory, whereas PN projec-

tions to the lateral horn are implicated in regulating innate olfac-

tory behavior (Heimbeck et al., 2001) (see also Parnas et al.,

2013). ePN axons exhibit striking stereotypy in their terminal

arborization patterns in the lateral horn, but not in the mushroom

body (Caron et al., 2013; Jefferis et al., 2007; Marin et al., 2002;

Wong et al., 2002). Recent anatomical tracing in mice also

revealed differential input organization in distinct olfactory cor-

tical areas (Miyamichi et al., 2011; Sosulski et al., 2011), suggest-

ing a common principle in olfactory systems of insects and

mammals. The selective innervation by iPNs of targeting neurons
in the lateral horn suggests that regulation of innate olfactory

behavior engages an additional level of specific inhibition to

ensure that olfactory information carrying different biological

values, such as food and pheromone, is funneled into distinct

downstream circuits, resulting in the activation of distinct behav-

ioral outputs.

EXPERIMENTAL PROCEDURES

Ca2+ Imaging of Odor Response

Two-photon GCaMP imaging experiments were performed with either a LSM

510 Two-Photon Laser-Scanning Confocal Microscope (Zeiss) with a 403 NA

0.8 water-immersion objective (Zeiss) and modelocked Ti:Sapphire laser

(Coherent) tuned to 920 nm or a customized two-photon microscope (Prairie

Technologies) with a 403 NA 1.0 water-immersion objective (Zeiss) and laser

tuned to 927 nm at �73–75�F. The excitation power at the specimen was �10

mW, and the pixel dwell time was 2.0 ms. All lateral horn images were acquired

at a 2.488 Hz frame rate with 460 3 300 pixels per frame. Each imaging cycle

was 45 s, and 500 msec odor stimuli (as determined by the solenoid valves)

were always delivered at 5 s. To minimize bleaching, images were only taken

from the first 16 s (40 frames) of each cycle. In most experiments, the same

odor was applied every other cycle for three repeats, while different odors

were usually applied in an alternate manner to minimize potential olfactory

adaptation. Image acquisition was suspended during the 500 msec optoge-

netic stimulation period to protect the PMTs. On average, each imaging

session lasted �1.5 hr, with most of the flies appearing healthy at the end

of the experiments; they could still move their legs at a regular pace. For

some experiments, the fly brains were dissected and fixed for post hoc

staining.

Time-lapse imaging series of GCaMP3 from a single z plane were usually

recorded in the control hemisphere once before mACT transection and once

after transection. On the experimental hemisphere, three different z planes

were recorded both before and after transection in most experiments to

maximize the likelihood of capturing vlpr processes in the imaging plane.

The z plane with the largest area of vlpr responses after laser transection

was used for image analysis.

Optogenetic Stimulation

Flies of the genotype Or67d-QF/y; UAS-GCaMP3, QUAS-ChR2TR; Mz699-

Gal4/+ were used for optogenetic stimulation of Or67d ORNs. Adult male flies

were collected 0–2 days after eclosion and transferred to new vials containing

10 g instant fly food (Carolina Biological, Formula 4-24) dissolved in 500 ml

5 mM all trans-Retinal (Sigma, R2500) and kept in a dark, humidified container

at room temperature. Flies were transferred to a new vial of such food every

2 days for �8–10 days before imaging. ChR2TR was activated by a 473 nm

diode-pumped blue solid-state laser (CrystaLaser 60 mW). The blue laser

was coupled to an optical fiber for light delivery. The other end of the fiber

was screwed into a connector mounted on the fly chamber so as to deliver

the same light power for each experiment. The same TriggerSync plugin

(Prairie Technologies) was used to synchronize the laser activation and image

acquisition. For each imaging cycle, optogenetic stimulation was on between

5 s and 5.5 s.

Laser Transection

Guided by the GCaMP3 basal-level fluorescence at 927 nm, we first defined

a transection window (�4 mm 3 3 mm, at zoom 310 and in a single focal

plane) centered on the mACT about 10 mm before its entry site into the lateral

horn. A �80 mW laser pulse (measured after the objective) at 800 nm was

then applied onto this window. The pulse contains 16 repetitions of contin-

uous frame scanning with a pixel dwell time of 8 ms and a total estimated

energy of 0.04 J. Successful transection usually resulted in a small cavitation

bubble formed in the mACT as reported before (Vogel and Venugopalan,

2003).

Supplemental Experimental Procedures contain additional sections on

genetics and molecular biology, MARCM analysis and immunostaining, pre-

paring flies for Ca2+ imaging, and data analysis.
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Küppers, B., Sánchez-Soriano, N., Letzkus, J., Technau, G.M., and Prokop, A.

(2003). In developing Drosophila neurones the production of gamma-amino

butyric acid is tightly regulated downstreamof glutamate decarboxylase trans-

lation and can be influenced by calcium. J. Neurochem. 84, 939–951.

Kurtovic, A., Widmer, A., and Dickson, B.J. (2007). A single class of olfactory

neurons mediates behavioural responses to a Drosophila sex pheromone.

Nature 446, 542–546.

Lai, S.L., Awasaki, T., Ito, K., and Lee, T. (2008). Clonal analysis of Drosophila

antennal lobe neurons: diverse neuronal architectures in the lateral neuroblast

lineage. Development 135, 2883–2893.

Lee, T., and Luo, L. (1999). Mosaic analysis with a repressible cell marker for

studies of gene function in neuronal morphogenesis. Neuron 22, 451–461.

Liang, L., and Luo, L. (2010). The olfactory circuit of the fruit fly Drosophila

melanogaster. Sci China Life Sci 53, 472–484.

Manoli, D.S., Foss, M., Villella, A., Taylor, B.J., Hall, J.C., and Baker, B.S.

(2005). Male-specific fruitless specifies the neural substrates of Drosophila

courtship behaviour. Nature 436, 395–400.

Marin, E.C., Jefferis, G.S.X.E., Komiyama, T., Zhu, H., and Luo, L. (2002).

Representation of the glomerular olfactory map in the Drosophila brain. Cell

109, 243–255.

Melzer, S., Michael, M., Caputi, A., Eliava, M., Fuchs, E.C., Whittington, M.A.,

and Monyer, H. (2012). Long-range-projecting GABAergic neurons modulate

inhibition in hippocampus and entorhinal cortex. Science 335, 1506–1510.

Miyamichi, K., Amat, F., Moussavi, F., Wang, C., Wickersham, I., Wall, N.R.,

Taniguchi, H., Tasic, B., Huang, Z.J., He, Z., et al. (2011). Cortical representa-

tions of olfactory input by trans-synaptic tracing. Nature 472, 191–196.

Nagel, G., Brauner, M., Liewald, J.F., Adeishvili, N., Bamberg, E., and

Gottschalk, A. (2005). Light activation of channelrhodopsin-2 in excitable cells

of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 15,

2279–2284.

Okada, R., Awasaki, T., and Ito, K. (2009). Gamma-aminobutyric acid (GABA)-

mediated neural connections in the Drosophila antennal lobe. J. Comp.

Neurol. 514, 74–91.

Olsen, S.R., and Wilson, R.I. (2008a). Cracking neural circuits in a tiny brain:

new approaches for understanding the neural circuitry of Drosophila. Trends

Neurosci. 31, 512–520.

Olsen, S.R., and Wilson, R.I. (2008b). Lateral presynaptic inhibition mediates

gain control in an olfactory circuit. Nature 452, 956–960.

Olsen, S.R., Bhandawat, V., and Wilson, R.I. (2010). Divisive normalization in

olfactory population codes. Neuron 66, 287–299.

Parnas, M., Lin, A.C., Huetteroth, W., and Miesenböck, G. (2013). Odor
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