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Abstract 

The main result of this paper can be quickly described as follows. Let G be a bipartite graph 
and assume that for any vertex v of G a strongly base orderable matroid is given on the set of 
edges adjacent with v. Call a subgraph of G a system of representatives of G if the edge 
neighborhood of each vertex of this subgraph is independent in the corresponding matroid. 
Two systems of representatives we call compatible if they have no common edge. We give 
a necessary and sufficient condition for G to have k pairwise compatible systems of representa- 
tives with at least d edges. Unfortunately, this condition is not sufficient if we deal with arbitrary 
matroids. Furthermore, we establish a listing variant of the Edmonds’ covering theorem for 
strongly base orderable matroids. 

1. Introduction 

Transversal theory has its basis in the classical theorem of Hall [lo] on distinct 

representatives that gives a necessary and sufficient condition for a family 

&‘=(A,: TV T) of subsets of S to possess a system of distinct representatives (i.e., 

a family (x,: teT) of elements of S such that x,EA, for any LET and x,#x,, if t #t’). 

There are many variations and generalizations of this theorem. The results regard- 

ing transversals and matroids are very interesting, especially the two classical the- 

orems established by Rado [ 181 and Edmonds and Fulkerson [9] (sell also [ 171). The 

first result describes a necessary and sufficient condition for a finite family of sets to 

possess a transversal which is independent in a given matroid and the second result 

says that the partial transversals of a finite family of sets form matroid. 

Another generalization is the study of k-transversals (see [16,19,20]) where each 

seS can be used as a representative of several but at most k sets of d. In [l l] we have 
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introduced M-transversals which are based on the idea that for any SES, the set of the 

indices t for which s represents A, is independent in a given matroid M. Using this idea 

we have generalized theorems of Hall and Welsh (see [ll]) and the theorem of 

Edmonds and Fulkerson (see [12-141). 

Welsh [19] introduced p-transversals where each set of & is represented by its 

subset of a given cardinality. 

Asratian [2,3] called two systems of representatives (x,: JET) and (xi: LET) of 

d compatible if xt #xi for any tE T and presented a necessary and sufficient condition 

for & to possess k pairwise compatible systems of distinct representatives. 

Joining the ideas of M-transversals and p-transversals we deal with so called 

“(As, &&)-systems of representatives” in this paper and generalize the results of 

Asratian. In the third section we present a necessary and sufficient condition for 

a finite family of sets to possess k pairwise “compatible” (As, &$)-systems of repres- 

entatives if we deal with strongly base orderable matroids only. Our condition is also 

necessary for arbitrary matroids, but not sufficient as will be shown in the fourth 

section. In the last section we present a listing variant of the covering theorem of 

Edmonds [7]. The second section is of preliminary character. 

We suppose that the reader is familiar with the theory of matroids. For a survey of 

matroid theory we refer to Welsh [20]. A comprehensive survey of transversal theory 

is in Mirsky [16] and also in Welsh [20]. 

2. Basic notations and definitions 

If M is a matroid on S with the rank function p then Mtk) denotes the union of 

M with itself k times and pCk) denotes the rank of MCk), 

p”‘(A)=rnn(kpX+/A\XI) (FIGS). (1) 

If YcS then M 1 Y denotes the restriction of M to Y. The rank function of M 1 Y is 

just the restriction of p to Y(see [20]). U nz orm matroids of rank k on S are denoted by If 

u,,,. Note that u!Fk= ‘!&.,s. 

Let S 1, . . . , Sk be mutually disjoint sets and S = u f= 1 Si. If MI, . . . , Mk are matroids 

on S Ir . . . . Sk with the rank functions pl, . . . . pk and the collections of independent sets 

_% i , . . . , y,( respectively, then 

is the collection of independent sets of matroid M on S whose rank function p is given 

by 

p(A)= i pi(AnSi) (A GAS). (2) 
i=l 
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We call this matroid the product (or direct sum) of M1 , . . . , Mk and denote it by nf= 1 Mi 
(see e.g. Cl]). 

One of the basic results of matroid theory is the Edmonds’ intersection theorem [S]. 

Theorem 2.1. Let MI, M, be matroids on S with rank functions pl, pz, respectively. 

Then M, and M2 have a common independent set of cardinality k if and only iffor all 

AGS 

The focus of our attention will be the following class of matroids. 

Definition 2.2. We say a matroid M is strongly base orderable if for any two bases B1, 
B2 there exists a bijection n: B1-+B2 such that for all subsets AGB, (B1\A)unA is 

a base of M. (It is easy to show that (B,\xA) u A is also a base of M.) 

Strongly base orderable matroids were introduced in [4, 5, 153. It is known that the 

cycle matroid of a graph is strongly base orderable if and only if it does not contain 

a subgraph homeomorphic from K,. Gammoids are strongly base orderable, there- 

fore transversal matroids and uniform matroids are strongly base orderable (see [20, 

Ch. 141 for more details). 

Davies and McDiarmid [6, Theorems 3, 41 have proved the following generaliz- 

ation of the Edmonds’ intersection theorem for strongly base orderable matroids. 

Theorem 2.3. Let M,, M, be strongly base orderable matroids on a$nite set S with rank 

functions pl, pz, respectively and let d be a positive integer. Then the following 

conditions are equivalent. 

(a) MI and M2 have k disjoint common independent sets of cardinality d. 

(b) Mfk) and M p) have a common independent set of cardinality kd. 

(c) For all subsets X and Y of S 

k(plX+p,Y)+lS\(XuY)I3kd. 

Note that the conditions (b) and (c) are equivalent for arbitrary matroids. In [20] is 

proved. 

Lemma 2.4. If M is a strongly base orderable matroid any minor of M is strongly base 

orderable. The union and product of strongly base orderable matroids are strongly base 
orderable. 

If it is clear from the context that we are referring to a set rather than an element we 

abbreviate {x> to x. For example Xux means Xv(x), X x x means X x (x}. 

Throughout this paper T denotes a finite index set and JZZ denotes the finite family 

(A,: te T) of subsets of a finite set S. Suppose that Sn T= 8. 
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A family x=(X,: TV T) of subsets of S is called a subsystem of JZJ’ if X, GA, for any 

tET. Then the sum CfET 1X,1 is called the length of %. 

If each X, is a singleton then we write .%Y=(x,: te T) and .!8 is called a system of 

representatives (SR) of ~4. If each X, is a singleton or empty set we get a partial SR of 

JZZ. Clearly a partial SR of &’ of length 1 TI is an SR of &‘. An SR (x,: te T) of zz’ is 

called a system of distinct representatives of d if x, # x,, for any t # t’. 

We shall call two subsystems x=(X,: teT) and %‘=(Xi: teT) of JZZ compatible if 

XtnX;=8 for any te T. 

We shall also use the following notation. If x2 is a family (A,: te T) of subsets of S, 

then, for any SE& denote 

A,={tET; SEA,} (CT). 

Set S’=S x T and for any teT and SES, let 

A;=A,xt, A;=sx A,, 

i.e., A;, A: c S x T= S’. Then denote by 

A’=UA;=U A: (cs’). 
[ET SE.9 

Similar notation we shall use also for any subsystem X of &. 

Let &Ys = (M,: s E S) be a family of matroids on T and let &r = (M,: t e T) be a family 

of matroids on S. Then a subsystem Z-=(X,: tc T) of &’ we shall call (J& .,$&)-system 
of representatives (in abbreviation (J&, &)-SR) of & if X, is independent in M, and 

X, is independent in M, for any tE T, s E S. 
If, for any s E S, M, is equal to the same matroid M we write (M, J&)-SR instead of 

(J&, J&-)-SR. Furthermore, if M = U k, T then we write (k, A=)-SR instead of 

UJIC, T, J.&)-SR. (As, M)-SR, (As, k)-SR, (M, k)-SR, (k, M)-SR and (k, k’)-SR can be 

defined in a similar way. 

(As, l)-SR of J$ are in fact partial systems of representatives of &. In this case we 

omit 1 and (As, l)-SR are called partial _&-SR. Analogously can be introduced 

partial M-SR (if M,= M for any s ES) and partial k-SR (if M,= U,, T for any s E S). 

Partial As-SR (partial M-SR, partial k-SR) of d of length I TI are called J&-SR 

(M-SR, k-SR) of d (i.e., we delete the word “partial”). This notation is in accordance 

with the notation from [20] and [l 11. According to our notation a system of distinct 

representatives is just a l-SR or a (1, l)-SR of &’ of length ) TI. 
As before, let .& = (M,: s E S) be a family of matroids on T and J& = (M,: t E T) be 

a family of matroids on S. Then denote by Mi the matroid on s x T induced from 

M, by the bijection t H (s, t) for any s ES and by M; the matroid on S x t induced from 

Mt by the bijection SH(S, t) for any tET. Finally, denote Mk=JJ,,sM;, MT=ntETM;. 

Mi and Mb are matroids on s’. 

Then Z = (X,: t E T) is an (Ass, _&)-SR of d if and only if X’ is independent in Mi ( A’ 
and M+ I A’. Thus from the properties of M; I A’, M+ I A’ and Theorem 2.1 follows the 
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next theorem, which was proved also in [13]. (Let us stress the fact that it is true for 

families of arbitrary matroids.) 

Theorem 2.5. Let ._& = (A,: tE T) be a family of subsets of a finite set S and let As = 

(M,: s ES) (J& =(M,: tE T)) be a family of matroids on T(S). Let ps (p,) denote the rank 

function of M, (MJ for any s E S (te T). Then & has an (As, J&-)-SR of length d if and 

only iffor any subsystem x=(X,: tE T) of ZZ’ holds 

3;~,(X,)+ c p,(A,\X,)bd. 
ter 

Finally, let =A$? (_A!!‘) denote the family of matroids (A%‘~~‘: SES) ((Mjk’: tE T)) on 

T(S), where Mik’ (Mik’) is the union of M, (M,) with itself k times. 

3. Characterization of compatible (A!&, A&-)-SR 

Theorem 3.1. Let JZZ = (A,: tE T) be a family of subsets of a finite set S and iet .ks = 
(M,: s ES) (J&- =(M,: tE T)) be a family of strongly base orderable matroids on T(S). Let 

ps (p,) denote the rank function of M, (Mt) f or any s E S (te T) and d be a positive integer. 

Then the following conditions are equivalent. 

(4 JZI has k pairwise compatible (As, &)-SR of length d. 

(b) & has an (J@, &I@‘)-SR of length kd. 

(c) For all subsystems 3=(X,: tE T) and Y=( x: tE T) of & 

5;sp,(X,)+ 1 PAY,) + 1 lAt\(X~uWI~kd. 
fET ttT 

Proof. d has k pairwise compatible (Ass, A$.)-SR of length d if and only if M; 1 A’ and 

Mi 1 A’ have k pairwise disjoint common independent sets of cardinality d. d has an 

(A@, .A$‘)-SR of length kd if and only if (Ms)‘k’I A’ and (Mi)‘k’I A’ have a common 

independent set of cardinality kd. By Lemma 2.4, MsI A’ and M> I A’ are strongly base 

orderable. Thus Theorem 3.1 follows from Theorem 2.3 and the properties of 

Msl A’, M;l A’. 0 

Note that in general (i.e., if As and AT are families of arbitrary matroids) the 

conditions (b) and (c) are equivalent and (a) implies both (b) and (c). 

Now we deal with consequences of this theorem to As-SR. 

Corollary 3.2. Let ~4 = (A,: tE T) be a finite family of subsets of a finite set S and let 

ds=(M,: s E S) be a family of strongly base orderable matroids on T. Let ps denote the 

rank function of M, for any SES. Then the following conditions are equivalent. 

(a) JZZ has k pairwise compatible .&-SR. 
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(b) ~2 has an (A!$), k)-SR of length kl7’1. 

(c) For any J E T and any subsystem 2” =(X,: tE T) of d 

,~~~(kp,(X,nJ)+I(A,n/)\X,l)~klJl. 

Proof. Replacing, in Theorem 3.1, M, by U1 , s we get the conditions (a) and (b). Now pt 

is the rank function of the matroid U l,s (i.e., ptX=sg 1x1). Furthermore, d= I TI. 

If 9 = (D,: tE T) is a family of subsets of S, then for any K c T, denote by 9(‘) = 

(0:“): tET) the subsystem of 9 such that Di”)=fl if t# K and DjK)=D1 if TV IS. 

IfX=(X,: t~T)andg=(Y,:t~T)are twosubsystemsofdandJ={tET; K=@}, 

then 

Therefore, in Theorem 3.1(c) we can restrict our attention to %= 5?) and Y = J&~\~), 

in other words the condition (c) from Theorem 3.1 is equivalent with 

(c’) For any J G T and any subsystem X=(X,: tE T) of lal 

k 1 p,(X;-‘))+ 1 P,(A’,“~‘) + 2 IA,\(XjJ)uA(;r’\J))lbklTI. 
FE.7 1ET t6T 

But 

XcJ) =X S nJ s ) Ida’,““‘)= I T\J I 

and 

Thus (c’) is equivalent with the condition (c) from Corollary 3.2, concluding the 

proof. 0 

The following result was proved in fact by Asratian [2]. 

Corollary 3.3. Let &‘=(A,: tE T) be a finite family of subsets of a finite set S. Then the 

following conditions are equivalent. 

(a) LZZ has k pairwise compatible systems of distinct representatives. 

(b) & has a (k, k)-SR of length kITI. 

(c) For any J E T 
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Proof. Replace ps by the rank function of U 1, T in Corollary 3.2. As pointed out earlier 

u 1.T is strongly base orderable matroid. 

Fix JG T. Then take the subsystem f =(Jt: JET) of J&’ such that 

J,=A,nJ if ]A,nJ]>k, 

J,=@ if IA,nJl<k. 

Then for any subsystem x=(X,: TV T) of d and any s E S 

kp,(X,nJ)+I(A,n~)\X,I~kp,(J,nJ)+I(A,nJ)\J,I 

=min{k, IA,nJI}. 

Thus the subsystem 5Y from Corollary 3.2(c) can be replaced by the subsystem $ and 

we get the condition (c) from Corollary 3.3. The details are left to the reader. Cl 

4. Construction of contraexamples 

Now we show that Theorem 3.1 does not hold in general. The first simple example 

is in fact a modification of an example presented in [6]. (By the way, the example over 

there shows that Theorem 2.3 is not true in general.) 

Example 4.1. Let S = { 1,2}, T= { a, a’, b, b’, c, c’} and A, = S for any t E T. Let Ml be the 

cycle matroid of the graph K, depicted in Fig. 1, M, be the transversal matroid of the 

family ({a,~‘}, {b,b’), {c,c’)), &ifS=(M1, M,) and hfT=(Mr=Ul,s: teT). Since 

independent in Mi2), M’,Z) then & is’ an (Mp), 2)-SR of &. But d has no 

compatible Ms-SR since M, and M, do not have two disjoint common bases. 

T is 

two 

K 4 

Fig. 1 
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The matroids M1 and M2 from Example 4.1 are different. Now we present another 

example, where the matroids of A’s are equal to the same cycle matroid of a graph, i.e., 

we shall deal with M-SR. 

Example 4.2. Let S={O, 1, . . . . 12) and T= {el, ez, . . . . e36}. Elements of T will be 

presented as edges of graphs. 

If H is a graph with the edge set E(H) = {ei, , eil, . . . , eir} (G T) and k is a positive 

integer, then by H+ k we denote the graph with the edge set E(H+ k)= 

{eii+k, $+k, . ..?ei.+k } and isomorphic with H such that there exists an isomorphism 

C$ : V(H)-+ V(H + k) satisfying: if (u, u)=ei then (&, c+~o)=Q+~. (Note that we shall use 

this operation such that E(H) n E(H + k) = fl and no confusions will occur.) 

Let H, and Gi be the graphs depicted in Fig. 2. Take Gz = G1 + 12 and G3 = Gt + 24. 

Let G be a graph with the edge set equal to T erasing from Ho, G1, Gz, G3 such that 

we glue the edges el, e2, e13, e14, Q5, e26 from H, with the same edges of G1, G2, G3. 

Note that from this construction we can erase several nonisomorphic graphs, but take 

G to be one of them. Let M be a cycle matroid of G. It is a matroid on T. Let 

Hi, H,, H3, H, be the subgraphs of Gi depicted in Fig. 3 and 

Hg=H1+12, H6=H2+12, H7=H3+12, Hs=H4+12, 

Hg=H,+24, Hlo=Hz+24, Hll=H3+24, H12=H4+24. 

Take the family & = (A,: tE T) of subsets of S such that for any s E S, A, is the edge set 

of the graph H,. 

Fig. 2. 
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9 

eg era 

0 
e44 

0 

H 
e1, 

3 

Fig. 3. 

Clearly, any A, (TV T) has cardinality two and any H, (s E S) can be covered by two 

disjoint forests. Thus JZZ is an (M (‘) 2)-SR of d. Let zz2 has two compatible M-SR. , 
Denote them by 5% = (X,: t E T) and g = ( Y,: TV T). Take the sets X’ and Y ‘. Without the 

abuse of generality we can suppose that (0, e,)EX’. Then we can check that 

(1, ede Y’, (Led E X’, (2,4 E Y’, (2,4 E X’, 

(1, e4) E Y’, (1, e7)EX’, (3, e7)E Y’, (3,4 E x’, 

(1, ed E Y’, (1, ez)EX’, (0, ez) l Y ‘. 
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Thus X0 (Y,) contains just one element of the set {ei, e2). Similarly it can be proved 

that X0 (Y,) contains just one element of the set {els, er4} and X0 ( YO) contains just 

one element of the set {ezs, ez6). Then X, and Y, cannot be both independent in 

M - a contradiction. Thus d has no two compatible M-SR. 

Note that G1 (thus also G) cannot be covered by two forests. Thus T is not 

independent in M . w This fact will be interesting in connection with a problem 

presented in the next paragraph. 

The matroids MI from Example 4.1 and M from Example 4.2 are not strongly base 

orderable because both are cycle matroids of graphs that contain K4. But the class of 

graphic matroids is regarded as one of the simplest and has plenty of interesting 

properties. Thus Examples 4.1 and 4.2 in fact show that if we go behind the class of 

strongly base orderable matroids then Theorem 3.1 cannot be extended in relatively 

simple cases. 

5. A generalization of the Edmonds’ covering theorem 

If M is a matroid on T with rank function p, then the covering theorem of Edmonds 

[7] says that M has k independent sets whose union is T if and only if for any .Js T 

kpJ>IJI. 

Now let us look at this theorem from the point of view of M-systems of representa- 

tives. We can prove the following theorem. 

Theorem 5.1. Let S and T be finite sets and M be a matroid on T with rank function p. 
Then the conditions (a)-(d) are equivalent 

(a) M has k independent sets whose union is T, 
(b) kpJ2lJjfor any JcT, 
(c) the family 93 = (I?,: tE T) such that B, = { 1, . . . , k} for any tE T has an M-SR, 
(d) any family %‘=(C,: tET) of subsets of S such that IC,I= k has an M-SR. 

Moreover, if M is strongly base orderable then also the condition 
(e) any family % =(C,: tE T) of subsets of S such that 1 C,l = k has k pairwise compat- 

ible M-SR 
is equivalent with (a)-(d). 

Proof. By Edmonds [7], (a) and (b) are equivalent. It is clear that also (a) and (c) are 

equivalent and that (d) implies (c). We prove that (b) implies (d). 

Let (b) hold and %?=(C,: tg T) be a family satisfying the conditions of(d). We have 

proved in [ll] that $F? has an M-SR if and only if for any JC T 
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(This also follows from Corollary 3.2 or Theorem 2.5.) But, by (b), p(C,nJ)2 

\C,nJl/k, thus 

for any Jc T and %? has an M-SR. Therefore (b) implies (d). 

Clearly, (e) implies (d). We show that if M is strongly base orderable then (b) 

implies (e). 

Let (b) hold. Then for any JG T and any subsystem x=(X,: tE T) of %? 

= 1 IC,nJ(=klJI. 
SSS 

Thus, by Theorem 3.1, if M is strongly base orderable then %? has k pairwise 

compatible M-SR, concluding the proof. El 

Items (d) and (e) describe something as “listing variants” of the Edmonds’ covering 

theorem. Item (e) is of some interest also for another reason. As pointed out earlier, 

Theorem 3.1 cannot be extended in relatively simple cases. On the other hand there is 

a possibility that the conditions (a)-(e) from Theorem 5.1 are equivalent for arbitrary 

matroids or at least for a larger class of matroids than is the class of strongly base 

orderable matroids. Let us formulate our assumption. 

Problem. Are the conditions (a)-(e) from Theorem 5.1 equivalent for any matroid? 

This question is answered affirmatively for strongly base orderable matroids in 

Theorem 5.1. As pointed out at the end of the fourth section, Example 4.2 cannot be 

used as a negative solution of this problem, since the matroid M from this example 

cannot be covered by two of its independent sets. 
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