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The purpose of the paper is to give two theorems about the uniqueness of solu- 
tions of parabolic semilinear nonlocal-boundary problems. The paper is a continua- 
tion of previous papers by Byszewski and the generalization of some results from 
[R. Rabczuk, “Introduction to Differential Inequalities,” PWN, Warsaw, 1976 
[Polish]; J. Chabrowski, On nonlocal problems for parabolic equations, Nagoya 
Math. J. 93 (1984), 109-1311. The theorems obtained in this paper can be applied in 
the theories of diffusion and heat conduction with better effects than the analogous 
theorems about parabolic initial-boundary problems and than the analogous 
theorems about parabolic periodic-boundary problems. I#? 1992 Academic Press, Inc. 

1. INTRODUCTION 

In papers [l-5] the author studied parabolic and hyperbolic nonlinear 
problems together with nonlocal conditions. The coefficients in these condi- 
tions had the values belonging to the intervals [ - 1, 0] and (- 1, 1). In this 
paper we give two theorems about the uniqueness of solutions of parabolic 
semilinear boundary problems together with nonlocal conditions. In these 
theorems the coefficients in the nonlocal conditions have the values 
belonging to the interval [ - 1, 11. Therefore, the problems considered in the 
paper are more general than the analogous parabolic initial-boundary 
problems and than the analogous parabolic periodic-boundary problems. To 
prove the results of the paper, a method is used other than in the author’s 
earlier papers about nonlocal problems. The proofs of the theorems from 
the paper are based on the Green formula about the integration by parts. 

The paper is a continuation of papers [l-7] and the generalizations of 
some results from [lo] (see [lo, Sect. 453) and [8] (see [8, Theorem 41). 

Analogously, as in [l-3] the results obtained in this paper can be 
applied for some problems in the theories of diffusion and heat conduction 
with better effects than the analogous known classical parabolic problems. 
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2. PRELIMINARIES 

The notation, definitions, and assumptions from this section are valid 
throughout this paper. 

Let t, be a real finite number, 0 < T < 00 and x = (x1, . . . . .x,) E R". Define 
the domain 

D :=D,x (to, to+ T), 

where Do is an open and bounded domain in R" such that the boundary 
dD, satisfies the following conditions: 

(i) If rr> 2 then aD, is an union of a finite number of surface patches 
of class C’ which have no common interior points but have common 
boundary points. 

(ii) If n > 3 then all the edges of dD, are sums of a finite numbers of 
(n - 2)-dimensional surface patches of class C’. 

Conditions (i) and (ii) are understood in the sense that for n = 3 the 
edges of 8D, are the arcs and for n = 2 the surface patches of dD,, are also 
the arcs. Since for n = 2 the edges of aD, are the points and since for n = 1 
the surface patches of aD, are also the points then conditions (i) and (ii) 
are only formulated for n > 2 and n > 3, respectively. 

BY n,, where XE aD,, we denote the interior normal to aD, at x. If it 
does not lead to misunderstanding the interior normal n, will be denoted 
by n. 

The symbols L and P are reserved for two operators given by the 
formulae 

(2.1) 

and 

(2.2) 

where av=a_,j(x, t) (i, j= 1, . . . . n) and c = c(x, t) are given functions defined 
for (x, t)~ D. Moreover, we assume that ag(x, t) =aji(x, t) (i,j= 1, . . . . n) 
for (x, t) E 6. 

By Z(D) we denote the set of the functions u(x, t) continuous in 4, 
possessing continuous derivatives (au/ax,) (i = 1, . . . . n) in d and possessing 
continuous and bounded derivatives (&@x, ax,) (i, j = 1, . . . . n), au/at in D. 

Let u E Z, x0 E aD,, and t E [t,, t, + T]. The expression 

dub, t) 
dv(x,,:= c n ""~~' I',$, aq(x,, t)COS(n,,, Xj) (2.3) 

i= 1 I 

is called the transversal derivative of the function u at the point (x0, t), 
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If it does not lead to misunderstanding the transversal derivative 
du(x, t)/dv(x,, t) will be denoted by (d/dv) u(x,, t) or du/dv. 

For the given functions A 4, rc/, h defined on D x R, D,,, ?D,, x 
[to, to + U, Do, respectively, the first Fourier’s nonlocal problem in D 
consists in finding a function u E Z(D), satisfying the equation 

(Pu)b, t) =f(x, f, 4-G t)) for (x, t)~ D, (2.4) 

the nonlocal condition 

u(x, to) + h(x) u(x, to + T) = d(x) for x E D,,, (2.5) 

and the boundary condition 

4x3 f) = $(A c) for (x. t) E CJD, x [to, to + Z’]. (2.6) 

A function u possessing the above properties is called the solution of the 
first Fourier’s nonlocal problem (2.4)-(2.6) in D. 

If condition (2.6) from the first Fourier’s nonlocal problem (2.4t(2.6) is 
replaced by the condition 

; u(x, t) + k(x, t) u(x, t) = $(x, t) for (x, t) E CYD, x [to, to + T], 

(2.7) 

where k is the given function defined on 8D, x [to, f, + T], then problem 
(2.4), (2.5), and (2.7) is said to be the mixed nonlocal problem in D. 
A function u E Z(D), satisfying Eq. (2.4) and conditions (2.5), (2.7) is called 
the solution of the mixed nonlocal problem (2.4), (2.5), and (2.7) in D. 

We shall use the following: 

LEMMA 2.1 (See [9, Sect. 17.111). Zf t= t(x) and q=?(x) are con- 
tinuous functions for XE Do and @(x)/ax,, (8q(x)/axi) (i= 1, . . . . n) are 
continuous and bounded functions for x E Do, then 

s Wx) W,xdx= -j 5(x) V(X) co& xi) da DO I 8D,, 

X(x) - 
I 

v(x) ax - dx (i = 1, . . . . n), 
Do I 

where da is a surface element in R”. 

3. THEOREMS ABOUT UNIQUENESS 

In this section we shall prove two theorems about the uniqueness of 
solutions of nonlocal semilinear parabolic boundary problems. 
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THEOREM 3.1. Assume that 

1. ai, (i, j= 1, . . . . n) are continuous in 6, (aa,/ax,) (i,j, k = 1, . . . . n) 
are continuous and bounded in D, and c is continuous in D. 

2. CyjC1 a,(~, t) ;l,Aj>,Ojor arbitrary (x, t)ED and (A,, . . . . L,)ER”. 
3. c(x, t)bOjor (x, t)ED. 
4. h is a continuous junction in 6, such that Ih( < 1 for XE D,. 
5. The functions f(x, t, z) and af(x, t, z)/az are continuous for 

(x, t) E 6, z E R. Moreover, af(x, t, z)/az > 0 for (x, t) E B, z E R. 

Then the first Fourier’s nonlocal problem (2.4)-(2.6) admits at most one 
solution in D. 

Proof: Suppose that u1 and u2 are two solutions of problem (2.4k(2.6) 
in D and let 

w:=u*-u*. 

Then the following formulae hold: 

(3.1) 

(Pw)b, t) =f(x, t, u,(x, t)) -f(x, t, u,(x, t)) for (x, t) E D, (3.2) 

w(x, to) + h(x) w(x, to + T) = 0 for XED,, (3.3) 

w(x, t) = 0 for (x, t) E aD, x [to, t, + T]. (3.4) 

From the assumption that u,, u2 E Z(D), from assumption 5 and from 
the mean value theorem, there exists 19 E (0, 1) such that 

f(x, t, u,(x, t)) -f(x, t, 4x, t)) 

= w(x 
> 

t) af(x, 4 4(x, t) + 04x, t)) 
az for (x, t) ED. (3.5) 

By (3.5), (3.2), by assumption 1, by (2.2), (2.1) and by Lemma2.1, 

1 dt 

WPW dx dt 1 
= j,;+T[Ja0wLwdx]dt+lt;+T[,0cw2dx]dt 

- w dx dt 1 
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From (3.6), (3.4) and from assumptions 2, 3, 

w2 ax, t, u2 + flw) 
aZ dx]dt< -j,r+T[[Do$vdx]dt. (3.7) 

Using integration by parts, it is easy to see that 

w dx dt =- 
1 j 

; w’(x, t,,) dx. (3.8) D 
0 

w’(x, t, + T) dx-; j 
Do 

Formulae (3.7) and (3.8) imply the inequality 

W2 

I 
dt 

d -f jD [w’(x, t, + T) - w*(x, to)] dx. (3.9) 
0 

From (3.9) and (3.3), we have 

W2 
dt 

Do l3Z 1 

1 6 -- 
2 s w’(x, t, + T)[ 1 - h’(x)] dx. 

DO 

By (3.10) and by assumption 4, we obtain 

DO 
From the above inequality and from assumption 5, 

w2(x, t) 6 0 for (x, t) E D 

and therefore 

w(x, t)=O for (x, 1) G D. 

The proof of Theorem 3.1 is thereby complete. 

(3.10) 
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THEOREM 3.2. Suppose that assumptions l-5 from Theorem 3.1 are 
satisfied. Assume, additionally, that 

6. The function k is continuous in 8D, x [to, t, + T] and 

k(x, t)dO for (x, t)EaD,x [to, t,+ T]. (3.11) 

Then the mixed nonlocal problem (2.4), (2.5), and (2.7) admits at most one 
solution in D. 

Proof Suppose that ur and u2 are two solutions of problem (2.4), (2.5), 
and (2.7) in D, and let 

w:=ul-u*. (3.1) 

Then the following formulae hold: 

(Pwk t)=f(x, 4 u,(x, t))-fk 4 U&Y t)) for (x, t) ED, (3.2) 

w(x, to) + h(x) w(x, t, + T) = 0 for XED,,, (3.11) 

f w(x, t) + k(x, t) w(x, t) = 0 for (x, t) E 8D, x [to, t, + T]. (3.12) 

Using the same argument as in the proof of Theorem 3.1 and using the 
definition of du/dv (see (2.3)) we have 

IO+ T 

J [J 
w2 af(x, t, u2 + ew) dx dt 

f0 Do az 1 r’o+TTr dw 1 
= -J,, ~Jaaow%-q dt 
- G”[JD ,t a$gdx]dt 

0 LJ- 1 ’ J 

+~~;+T[~o,cw2dx]dt-j-;+T[[n0~wdx]dt. (3.13) 

From (3.13), (3.12), from assumptions 2, 3, and from (3.8), (3.3) we obtain 

r,, + T 

J [J 
dt 

f0 Do 1 
fo+ T 

< J [J kw’du dt-; 1 J w’(x, t, + T)[ 1 - h2(x)] dx. (3.14) 
to JDO DO 

409/165/2-12 
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By (3.14), (3.11) and by assumption 4, we obtain the inequality 

From the above inequality and from assumption 5, 

d(x, t) d 0 for (x, t)ED 

and, therefore, the proof of Theorem 3.2 is complete. 
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